
Communications System Toolbox™

Reference

R2014b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Communications System Toolbox™ Reference
© COPYRIGHT 2011–2014 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.
Revision History

April 2011 First printing Version 5.0
September 2011 Online only Version 5.1 (R2011b)
March 2012 Online only Version 5.2 (R2012a)
September 2012 Online only Version 5.3 (R2012b)
March 2013 Online only Version 5.4 (R2013a)
September 2013 Online only Version 5.5 (R2013b)
March 2014 Online only Version 5.6 (R2014a)
October 2014 Online only Version 5.7 (R2014b)

www.mathworks.com
www.mathworks.com/sales_and_services
www.mathworks.com/matlabcentral
www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

iii

Contents

Functions — Alphabetical List
1

Blocks — Alphabetical List
2

Alphabetical List
3

iv

1

Functions — Alphabetical List

1 Functions — Alphabetical List

1-2

algdeintrlv
Restore ordering of symbols using algebraically derived permutation table

Syntax

deintrlvd = algdeintrlv(data,num,'takeshita-costello',k,h)

deintrlvd = algdeintrlv(data,num,'welch-costas',alph)

Description

deintrlvd = algdeintrlv(data,num,'takeshita-costello',k,h) restores the
original ordering of the elements in data using a permutation table that is algebraically
derived using the Takeshita-Costello method. num is the number of elements in data
if data is a vector, or the number of rows of data if data is a matrix with multiple
columns. In the Takeshita-Costello method, num must be a power of 2. The multiplicative
factor, k, must be an odd integer less than num, and the cyclic shift, h, must be a
nonnegative integer less than num. If data is a matrix with multiple rows and columns,
the function processes the columns independently.

deintrlvd = algdeintrlv(data,num,'welch-costas',alph) uses the Welch-
Costas method. In the Welch-Costas method, num+1 must be a prime number. alph is an
integer between 1 and num that represents a primitive element of the finite field GF(num
+1).

To use this function as an inverse of the algintrlv function, use the same inputs in
both functions, except for the data input. In that case, the two functions are inverses in
the sense that applying algintrlv followed by algdeintrlv leaves data unchanged.

Examples

The code below uses the Takeshita-Costello method of algintrlv and algdeintrlv.

num = 16; % Power of 2

ncols = 3; % Number of columns of data to interleave

data = rand(num,ncols); % Random data to interleave

 algdeintrlv

1-3

k = 3;

h = 4;

intdata = algintrlv(data,num,'takeshita-costello',k,h);

deintdata = algdeintrlv(intdata,num,'takeshita-costello',k,h);

More About
• “Interleaving”

References

[1] Heegard, Chris, and Stephen B. Wicker, Turbo Coding, Boston, Kluwer Academic
Publishers, 1999.

[2] Takeshita, O. Y., and D. J. Costello, Jr., “New Classes Of Algebraic Interleavers for
Turbo-Codes,” Proc. 1998 IEEE International Symposium on Information Theory,
Boston, Aug. 16–21, 1998. p. 419.

See Also
algintrlv

1 Functions — Alphabetical List

1-4

algintrlv

Reorder symbols using algebraically derived permutation table

Syntax

intrlvd = algintrlv(data,num,'takeshita-costello',k,h)

intrlvd = algintrlv(data,num,'welch-costas',alph)

Description

intrlvd = algintrlv(data,num,'takeshita-costello',k,h) rearranges the
elements in data using a permutation table that is algebraically derived using the
Takeshita-Costello method. num is the number of elements in data if data is a vector, or
the number of rows of data if data is a matrix with multiple columns. In the Takeshita-
Costello method, num must be a power of 2. The multiplicative factor, k, must be an odd
integer less than num, and the cyclic shift, h, must be a nonnegative integer less than
num. If data is a matrix with multiple rows and columns, the function processes the
columns independently.

intrlvd = algintrlv(data,num,'welch-costas',alph) uses the Welch-Costas
method. In the Welch-Costas method, num+1 must be a prime number. alph is an integer
between 1 and num that represents a primitive element of the finite field GF(num+1).
This means that every nonzero element of GF(num+1) can be expressed as alph raised to
some integer power.

Examples

This example illustrates how to use the Welch-Costas method of algebraic interleaving.

1 Define num and the data to interleave.

num = 10; % Integer such that num+1 is prime

ncols = 3; % Number of columns of data to interleave

data = randi([0 num-1], num, ncols); % Random data to interleave

 algintrlv

1-5

2 Find primitive polynomials of the finite field GF(num+1). The gfprimfd function
represents each primitive polynomial as a row containing the coefficients in order of
ascending powers.

pr = gfprimfd(1,'all',num+1) % Primitive polynomials of GF(num+1)

pr =

 3 1

 4 1

 5 1

 9 1

3 Notice from the output that pr has two columns and that the second column
consists solely of 1s. In other words, each primitive polynomial is a monic degree-
one polynomial. This is because num+1 is prime. As a result, to find the primitive
element that is a root of each primitive polynomial, find a root of the polynomial by
subtracting the first column of pr from num+1.

primel = (num+1)-pr(:,1) % Primitive elements of GF(num+1)

primel =

 8

 7

 6

 2

4 Now define alph as one of the elements of primel and use algintrlv.

alph = primel(1); % Choose one primitive element.

intrlvd = algintrlv(data,num,'Welch-Costas',alph); % Interleave.

More About

Algorithms

• A Takeshita-Costello interleaver uses a length-num cycle vector whose nth element
is mod(k*(n-1)*n/2, num) for integers n between 1 and num. The function creates
a permutation vector by listing, for each element of the cycle vector in ascending
order, one plus the element's successor. The interleaver's actual permutation table is
the result of shifting the elements of the permutation vector left by h. (The function
performs all computations on numbers and indices modulo num.)

1 Functions — Alphabetical List

1-6

• A Welch-Costas interleaver uses a permutation that maps an integer K to
mod(A

K
,num+1)-1.

• “Interleaving”

References

[1] Heegard, Chris, and Stephen B. Wicker, Turbo Coding, Boston, Kluwer Academic
Publishers, 1999.

[2] Takeshita, O. Y., and D. J. Costello, Jr., “New Classes Of Algebraic Interleavers for
Turbo-Codes,” Proc. 1998 IEEE International Symposium on Information Theory,
Boston, Aug. 16–21, 1998. p. 419.

See Also
algdeintrlv

 alignsignals

1-7

alignsignals
Align two signals by delaying earliest signal

Syntax

[Xa,Ya] = alignsignals(X,Y)

[Xa,Ya] = alignsignals(X,Y,maxlag)

[Xa,Ya] = alignsignals(X,Y,maxlag,'truncate')

[Xa,Ya,D] = alignsignals(___)

Description

[Xa,Ya] = alignsignals(X,Y) estimates the delay D between the two input signals,
X andY, and returns the aligned signals, Xa and Ya.

• If Y is delayed with respect to X, then D is positive, and X is delayed by D samples.
• If Y is advanced with respect to X, then D is negative, and Y is delayed by –D

samples.

Delays in X and Y can be introduced by prepending zeros.

[Xa,Ya] = alignsignals(X,Y,maxlag) uses maxlag as the maximum window size
to find the estimated delay D between the two input signals, X and Y. It returns the
aligned signals, Xa and Ya.

[Xa,Ya] = alignsignals(X,Y,maxlag,'truncate') keeps the lengths of the
aligned signals, Xa and Ya, the same as those of the input signals, X and Y, respectively.

• If the estimated delay D is positive, then D zeros are prepended to X and the last D
samples of X are truncated.

• If the estimated delay D is negative, then –D zeros are prepended to Y and the last –D
samples of Y are truncated.

Notes X and Y are row or column vectors of length LX and LY, respectively.

• If D ≥ LX, then Xa consists of LX zeros. All samples of X are lost.

1 Functions — Alphabetical List

1-8

• If –D ≥ LY, then Ya consists of LY zeros. All samples of Y are lost.

To avoid assigning a specific value to maxlag when using the 'truncate' option, set
maxlag to [].

[Xa,Ya,D] = alignsignals(___) returns the estimated delay D. This syntax can
include any of the input arguments used in previous syntaxes.

Examples
Aligning two signals where the second signal lags by two samples

Align signal X when Y is delayed with respect to X by two samples.

Create two signals, X and Y. Y is exactly the same as X, except Y has two leading zeros.
Align the two signals.

X = [1 2 3];

Y = [0 0 1 2 3];

MAXLAG = 2;

[Xa Ya D] = alignsignals(X, Y, MAXLAG)

Aligning two signals where the first signal lags by three samples

Align signal Y with respect to X by advancing it three samples.

Create two signals, X and Y. X is exactly the same as Y, except X has three leading zeros
and one additional following zero. Align the two signals.

X = [0 0 0 1 2 3 0 0]';

Y = [1 2 3 0]';

[Xa Ya] = alignsignals(X, Y)

Aligning two signals where the second signal is noisy

Align signal Y with respect to X, despite the fact that Y is a noisy signal.

Create two signals, X and Y. Y is exactly the same as X with some noise added to it. Align
the two signals.

X = [0 0 1 2 3 0];

Y = [0.02 0.12 1.08 2.21 2.95 -0.09];

[Xa Ya D] = alignsignals(X, Y)

 alignsignals

1-9

You do not need to change the input signals to produce the output signals. The delay D is
zero.

Aligning two signals where the second signal is a periodic repetition of the first signal

Align signal Y with respect to X, despite the fact that Y is a periodic repetition of X.
Return the smallest possible delay.

Create two signals, X and Y. Y is exactly the same as X with some noise added to it. Align
the two signals.

X = [0 1 2 3];

Y = [1 2 3 0 0 0 0 1 2 3 0 0];

[Xa Ya D] = alignsignals(X, Y)

Aligning two signals using the ‘truncate’ option

Invoke the 'truncate' option when calling the alignsignals function.

Create two signals, X and Y. Y is exactly the same as X, except Y has two leading zeros.
Align the two signals, applying the 'truncate' directive.

X = [1 2 3];

Y = [0 0 1 2 3];

[Xa Ya D] = alignsignals(X, Y, [], 'truncate');

Observe that the output signal Xa has a length of 3, the same length as input signal X.

In the case where using the 'truncate' option ends up truncating all the original
data of X, a warning is issued. To make alignsignals issue such a warning, run the
following example.

X = [1 2 3];

Y = [0 0 0 0 1 2 3];

[Xa Ya D] = alignsignals(X, Y, [], 'truncate')

• “Use the Find Delay and Align Signals Blocks”

Input Arguments
X — First input signal
vector of numeric values

First input signal, specified as a numeric vector of length LX.

1 Functions — Alphabetical List

1-10

Example: [1,2,3]

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64
Complex Number Support: Yes

Y — Second input signal
vector of numeric values

Second input signal, specified as a numeric vector of length LY.
Example: [0,0,1,2,3]

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64
Complex Number Support: Yes

maxlag — Maximum window size or lag
scalar integer | []

Maximum window size, or lag, specified as an integer-valued scalar. By default, maxlag
is equal to max(length(X),length(Y))-1. If maxlag is input as [], it is replaced by
the default value. If maxlag is negative, it is replaced by its absolute value. If maxlag is
not integer valued, or is complex, Inf, or NaN, then alignsignals returns an error.

Example: 2

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Output Arguments

Xa — Aligned first signal
vector of numeric values

Aligned first signal, returned as a numeric vector that is aligned with the second output
argument Ya. If input argument X is a row vector, then Xa will also be a row vector. If
input argument X is a column vector, then Xa will also be a column vector. If you specify
the 'truncate' option and the estimated delay D is positive, then Xa is equivalent to
the input signal X with D zeros prepended to it and its last D samples truncated.

Ya — Aligned second signal
vector of numeric values

 alignsignals

1-11

Aligned second signal, returned as a numeric vector that is aligned with the first output
argument Xa. If input argument Y is a row vector, then Ya is also a row vector. If input
argument Y is a column vector, then Ya is also a column vector. If you specify the
'truncate' option and the estimated delay D is negative, then Ya is equivalent to the
input signal Y with –D zeros prepended to it and its last –D samples truncated.

D — Estimated delay between input signals
scalar integer

Estimated delay between input signals, returned as a scalar integer. This integer
represents the number of samples by which the two input signals, X and Y are offset.

• If Y is delayed with respect to X, then D is positive and X is delayed by D samples.
• If Y is advanced with respect to X, then D is negative and Y is delayed by –D samples.
• If X and Y are already aligned, then D is zero and neither X nor Y are delayed.

If you specify a value for the input argument maxlag, then D must be less than or equal
to maxlag.

More About

Algorithms

• You can find the theory on delay estimation in the specification of the finddelay
function (see “Algorithms”).

• The alignsignals function uses the estimated delay D to delay the earliest signal
such that the two signals have the same starting point.

• As specified for the finddelay function, the pair of signals need not be exact delayed
copies of each other. However, the signals can be successfully aligned only if there is
sufficient correlation between them.

For more information on estimating covariance and correlation functions, see [1].
• “Delays”

References

[1] Orfanidis, S.J., Optimum Signal Processing. An Introduction. 2nd Edition, Prentice-
Hall, Englewood Cliffs, NJ, 1996.

1 Functions — Alphabetical List

1-12

See Also
biterr | finddelay | symerr

 amdemod

1-13

amdemod
Amplitude demodulation

Syntax

z = amdemod(y,Fc,Fs)

z = amdemod(y,Fc,Fs,ini_phase)

z = amdemod(y,Fc,Fs,ini_phase,carramp)

z = amdemod(y,Fc,Fs,ini_phase,carramp,num,den)

Description

z = amdemod(y,Fc,Fs) demodulates the amplitude modulated signal y from a carrier
signal with frequency Fc (Hz). The carrier signal and y have sample frequency Fs
(Hz). The modulated signal y has zero initial phase and zero carrier amplitude, so it
represents suppressed carrier modulation. The demodulation process uses the lowpass
filter specified by [num,den] = butter(5,Fc*2/Fs).

Note: The Fc and Fs arguments must satisfy Fs > 2(Fc + BW), where BW is the bandwidth
of the original signal that was modulated.

z = amdemod(y,Fc,Fs,ini_phase) specifies the initial phase of the modulated signal
in radians.

z = amdemod(y,Fc,Fs,ini_phase,carramp) demodulates a signal that was created
via transmitted carrier modulation instead of suppressed carrier modulation. carramp is
the carrier amplitude of the modulated signal.

z = amdemod(y,Fc,Fs,ini_phase,carramp,num,den) specifies the numerator and
denominator of the lowpass filter used in the demodulation.

Examples

The code below illustrates the use of a nondefault filter.

1 Functions — Alphabetical List

1-14

t = .01;

Fc = 10000; Fs = 80000;

t = [0:1/Fs:0.01]';

s = sin(2*pi*300*t)+2*sin(2*pi*600*t); % Original signal

[num,den] = butter(10,Fc*2/Fs); % Lowpass filter

y1 = ammod(s,Fc,Fs); % Modulate.

s1 = amdemod(y1,Fc,Fs,0,0,num,den); % Demodulate.

More About
• “Digital Modulation”

See Also
ammod | ssbdemod | fmdemod | pmdemod

 ammod

1-15

ammod
Amplitude modulation

Syntax

y = ammod(x,Fc,Fs)

y = ammod(x,Fc,Fs,ini_phase)

y = ammod(x,Fc,Fs,ini_phase,carramp)

Description

y = ammod(x,Fc,Fs) uses the message signal x to modulate a carrier signal with
frequency Fc (Hz) using amplitude modulation. The carrier signal and x have sample
frequency Fs (Hz). The modulated signal has zero initial phase and zero carrier
amplitude, so the result is suppressed-carrier modulation.

Note: The x, Fc, and Fs input arguments must satisfy Fs > 2(Fc + BW), where BW is the
bandwidth of the modulating signal x.

y = ammod(x,Fc,Fs,ini_phase) specifies the initial phase in the modulated signal y
in radians.

y = ammod(x,Fc,Fs,ini_phase,carramp) performs transmitted-carrier modulation
instead of suppressed-carrier modulation. The carrier amplitude is carramp.

Examples

The example below compares double-sideband and single-sideband amplitude
modulation.

% Sample the signal 100 times per second, for 2 seconds.

Fs = 100;

t = [0:2*Fs+1]'/Fs;

1 Functions — Alphabetical List

1-16

Fc = 10; % Carrier frequency

x = sin(2*pi*t); % Sinusoidal signal

% Modulate x using single- and double-sideband AM.

ydouble = ammod(x,Fc,Fs);

ysingle = ssbmod(x,Fc,Fs);

% Compute spectra of both modulated signals.

zdouble = fft(ydouble);

zdouble = abs(zdouble(1:length(zdouble)/2+1));

frqdouble = [0:length(zdouble)-1]*Fs/length(zdouble)/2;

zsingle = fft(ysingle);

zsingle = abs(zsingle(1:length(zsingle)/2+1));

frqsingle = [0:length(zsingle)-1]*Fs/length(zsingle)/2;

% Plot spectra of both modulated signals.

figure;

subplot(2,1,1); plot(frqdouble,zdouble);

title('Spectrum of double-sideband signal');

subplot(2,1,2); plot(frqsingle,zsingle);

title('Spectrum of single-sideband signal');

More About
• “Digital Modulation”

 ammod

1-17

See Also
amdemod | ssbmod | fmmod | pmmod

1 Functions — Alphabetical List

1-18

arithdeco

Decode binary code using arithmetic decoding

Syntax

dseq = arithdeco(code,counts,len)

Description

dseq = arithdeco(code,counts,len) decodes the binary arithmetic code in the
vector code to recover the corresponding sequence of len symbols. The vector counts
represents the source's statistics by listing the number of times each symbol of the
source's alphabet occurs in a test data set. This function assumes that the data in code
was produced by the arithenco function.

Examples

This example is similar to the example on the arithenco reference page, except that it
uses arithdeco to recover the original sequence.

counts = [99 1]; % A one occurs 99% of the time.

len = 1000;

seq = randsrc(1,len,[1 2; .99 .01]); % Random sequence

code = arithenco(seq,counts);

dseq = arithdeco(code,counts,length(seq)); % Decode.

isequal(seq,dseq) % Check that dseq matches the original seq.

The output is

ans =

 1

 arithdeco

1-19

More About

Algorithms

This function uses the algorithm described in [1].
• “Arithmetic Coding”

References

[1] Sayood, Khalid, Introduction to Data Compression, San Francisco, Morgan Kaufmann,
2000.

See Also
arithenco

1 Functions — Alphabetical List

1-20

arithenco

Encode sequence of symbols using arithmetic coding

Syntax

code = arithenco(seq,counts)

Description

code = arithenco(seq,counts) generates the binary arithmetic code
corresponding to the sequence of symbols specified in the vector seq. The vector counts
represents the source's statistics by listing the number of times each symbol of the
source's alphabet occurs in a test data set.

Examples

This example illustrates the compression that arithmetic coding can accomplish in some
situations. A source has a two-symbol alphabet and produces a test data set in which
99% of the symbols are 1s. Encoding 1000 symbols from this source produces a code
vector having many fewer than 1000 elements. The actual number of elements in code
varies, depending on the particular random sequence contained in seq.

counts = [99 1]; % A one occurs 99% of the time.

len = 1000;

seq = randsrc(1,len,[1 2; .99 .01]); % Random sequence

code = arithenco(seq,counts);

s = size(code) % length of code is only 8.3% of length of seq.

The output is

s =

 1 83

 arithenco

1-21

More About

Algorithms

This function uses the algorithm described in [1].
• “Arithmetic Coding”

References

[1] Sayood, Khalid, Introduction to Data Compression, San Francisco, Morgan Kaufmann,
2000.

See Also
arithdeco

1 Functions — Alphabetical List

1-22

awgn
Add white Gaussian noise to signal

Syntax

y = awgn(x,snr)

y = awgn(x,snr,sigpower)

y = awgn(x,snr,'measured')

y = awgn(x,snr,sigpower,s)

y = awgn(x,snr,'measured',state)

y = awgn(...,powertype)

Description

y = awgn(x,snr) adds white Gaussian noise to the vector signal x. The scalar snr
specifies the signal-to-noise ratio per sample, in dB. If x is complex, awgn adds complex
noise. This syntax assumes that the power of x is 0 dBW.

y = awgn(x,snr,sigpower) is the same as the syntax above, except that sigpower
is the power of x in dBW.

y = awgn(x,snr,'measured') is the same as y = awgn(x,snr), except that awgn
measures the power of x before adding noise.

y = awgn(x,snr,sigpower,s) uses s, which is a random stream handle, to generate
random noise samples with randn. If s is an integer, then resets the state of randn to
s. The latter usage is obsolete and may be removed in a future release. If you want to
generate repeateable noise samples, then provide the handle of a random stream or use
reset method on the default random stream.

y = awgn(x,snr,'measured',state) is the same as y =
awgn(x,snr,'measured'), except that awgn first resets the state of normal random
number generator randn to the integer state.

Note: This usage is deprecated and may be removed in a future release. Instead of
state, use s, as in the previous example.

 awgn

1-23

y = awgn(...,powertype) is the same as the previous syntaxes, except that the
string powertype specifies the units of snr and sigpower. Choices for powertype
are 'db' and 'linear'. If powertype is 'db', then snr is measured in dB and
sigpower is measured in dBW. If powertype is 'linear', snr is measured as a ratio
and sigpower is measured in watts.

Relationship Among SNR, Es/N0, and Eb/N0

For the relationships between SNR and other measures of the relative power of the noise,
see “AWGN Channel Noise Level”.

Examples

The commands below add white Gaussian noise to a sawtooth signal. It then plots the
original and noisy signals.

t = 0:.1:10;

x = sawtooth(t); % Create sawtooth signal.

y = awgn(x,10,'measured'); % Add white Gaussian noise.

plot(t,x,t,y) % Plot both signals.

legend('Original signal','Signal with AWGN');

The scattereyedemo also illustrates the use of the awgn function.

1 Functions — Alphabetical List

1-24

See Also
wgn | randn | bsc

 bchdec

1-25

bchdec
BCH decoder

Syntax

decoded = bchdec(code,n,k)

decoded = bchdec(...,paritypos)

[decoded,cnumerr] = bchdec(...)

[decoded,cnumerr,ccode] = bchdec(...)

Description

decoded = bchdec(code,n,k) attempts to decode the received signal in code
using an [n,k] BCH decoder with the narrow-sense generator polynomial. code is a
“Galois array” of symbols over GF(2). Each n-element row of code represents a corrupted
systematic codeword, where the parity symbols are at the end and the leftmost symbol is
the most significant symbol.

In the Galois array decoded, each row represents the attempt at decoding the
corresponding row in code. A decoding failure occurs if bchdec detects more than
t errors in a row of code, where t is the number of correctable errors as reported by
bchgenpoly. In the case of a decoding failure, bchdec forms the corresponding row of
decoded by merely removing n-k symbols from the end of the row of code.

decoded = bchdec(...,paritypos) specifies whether the parity symbols in
code were appended or prepended to the message in the coding operation. The string
paritypos can be either 'end' or 'beginning'. The default is 'end'. If paritypos
is 'beginning', then a decoding failure causes bchdec to remove n-k symbols from the
beginning rather than the end of the row.

[decoded,cnumerr] = bchdec(...) returns a column vector cnumerr, each element
of which is the number of corrected errors in the corresponding row of code. A value of
-1 in cnumerr indicates a decoding failure in that row in code.

[decoded,cnumerr,ccode] = bchdec(...) returns ccode, the corrected version of
code. The Galois array ccode has the same format as code. If a decoding failure occurs
in a certain row of code, the corresponding row in ccode contains that row unchanged.

1 Functions — Alphabetical List

1-26

Results of Error Correction

BCH decoders correct up to a certain number of errors, specified by the user. If the input
contains more errors than the decoder is meant to correct, the decoder will most likely
not output the correct codeword.

The chance of a BCH decoder decoding a corrupted input to the correct codeword depends
on the number of errors in the input and the number of errors the decoder is meant to
correct.

For example, when a single-error-correcting BCH decoder is given input with two errors,
it actually decodes it to a different codeword. When a double-error-correcting BCH
decoder is given input with three errors, then it only sometimes decodes it to a valid
codeword.

The following code illustrates this phenomenon for a single-error-correcting BCH decoder
given input with two errors.

n = 63; k = 57;

s = RandStream('swb2712', 'Seed', 9973);

msg = gf(randi(s,[0 1],1,k));

code = bchenc(msg, n, k);

% Add 2 errors

cnumerr2 = zeros(nchoosek(n,2),1);

nErrs = zeros(nchoosek(n,2),1);

cnumerrIdx = 1;

for idx1 = 1 : n-1

 sprintf('idx1 for 2 errors = %d', idx1)

 for idx2 = idx1+1 : n

 errors = zeros(1,n);

 errors(idx1) = 1;

 errors(idx2) = 1;

 erroredCode = code + gf(errors);

 [decoded2, cnumerr2(cnumerrIdx)]...

 = bchdec(erroredCode, n, k);

 % If bchdec thinks it corrected only one error,

 % then encode the decoded message. Check that

 % the re-encoded message differs from the errored

 % message in only one coordinate.

 if cnumerr2(cnumerrIdx) == 1

 code2 = bchenc(decoded2, n, k);

 bchdec

1-27

 nErrs(cnumerrIdx) = biterr(double(erroredCode.x),...

 double(code2.x));

 end

 cnumerrIdx = cnumerrIdx + 1;

 end

end

% Plot the computed number of errors, based on the difference

% between the double-errored codeword and the codeword that was

% re-encoded from the initial decoding.

plot(nErrs)

title(['Number of Actual Errors between Errored Codeword and' ...

 'Re-encoded Codeword'])

The resulting plot shows that all inputs with two errors are decoded to a codeword that
differs in exactly one position.

1 Functions — Alphabetical List

1-28

Examples

The script below encodes a (random) message, simulates the addition of noise to the code,
and then decodes the message.

m = 4; n = 2^m-1; % Codeword length

k = 5; % Message length

nwords = 10; % Number of words to encode

msg = gf(randi([0 1],nwords,k));

% Find t, the error-correction capability.

[genpoly,t] = bchgenpoly(n,k);

% Define t2, the number of errors to add in this example.

t2 = t;

% Encode the message.

code = bchenc(msg,n,k);

% Corrupt up to t2 bits in each codeword.

noisycode = code + randerr(nwords,n,1:t2);

% Decode the noisy code.

[newmsg,err,ccode] = bchdec(noisycode,n,k);

if ccode==code

 disp('All errors were corrected.')

end

if newmsg==msg

 disp('The message was recovered perfectly.')

end

In this case, all errors are corrected and the message is recovered perfectly. However, if
you change the definition of t2 to

t2 = t+1;

then some codewords will contain more than t errors. This is too many errors, and some
are not corrected.

Limitations

The maximum allowable value of n is 65535.

 bchdec

1-29

More About

Algorithms

bchdec uses the Berlekamp-Massey decoding algorithm. For information about this
algorithm, see the works listed in “References” on page 1-29.
• “Block Codes”

References

[1] Wicker, Stephen B., Error Control Systems for Digital Communication and Storage,
Upper Saddle River, NJ, Prentice Hall, 1995.

[2] Berlekamp, Elwyn R., Algebraic Coding Theory, New York, McGraw-Hill, 1968.

See Also
bchenc | bchgenpoly

1 Functions — Alphabetical List

1-30

bchenc
BCH encoder

Syntax
code = bchenc(msg,n,k)

code = bchenc(...,paritypos)

Description
code = bchenc(msg,n,k) encodes the message in msg using an [n,k] BCH encoder
with the narrow-sense generator polynomial. msg is a “Galois array” of symbols over
GF(2). Each k-element row of msg represents a message word, where the leftmost symbol
is the most significant symbol. Parity symbols are at the end of each word in the output
Galois array code.

code = bchenc(...,paritypos) specifies whether bchenc appends or prepends the
parity symbols to the input message to form code. The string paritypos can be either
'end' or 'beginning'. The default is 'end'.

The tables below list valid [n,k] pairs for small values of n, as well as the corresponding
values of the error-correction capability, t.

n k t

7 4 1

n k t

15 11 1
15 7 2
15 5 3

n k t

31 26 1
31 21 2

 bchenc

1-31

n k t

31 16 3
31 11 5
31 6 7

n k t

63 57 1
63 51 2
63 45 3
63 39 4
63 36 5
63 30 6
63 24 7
63 18 10
63 16 11
63 10 13
63 7 15

n k t

127 120 1
127 113 2
127 106 3
127 99 4
127 92 5
127 85 6
127 78 7
127 71 9
127 64 10
127 57 11
127 50 13

1 Functions — Alphabetical List

1-32

n k t

127 43 14
127 36 15
127 29 21
127 22 23
127 15 27
127 8 31

n k t

255 247 1
255 239 2
255 231 3
255 223 4
255 215 5
255 207 6
255 199 7
255 191 8
255 187 9
255 179 10
255 171 11
255 163 12
255 155 13
255 147 14
255 139 15
255 131 18
255 123 19
255 115 21
255 107 22
255 99 23

 bchenc

1-33

n k t

255 91 25
255 87 26
255 79 27
255 71 29
255 63 30
255 55 31
255 47 42
255 45 43
255 37 45
255 29 47
255 21 55
255 13 59
255 9 63

n k t

511 502 1
511 493 2
511 484 3
511 475 4
511 466 5
511 457 6
511 448 7
511 439 8
511 430 9
511 421 10
511 412 11
511 403 12
511 394 13

1 Functions — Alphabetical List

1-34

n k t

511 385 14
511 376 15
511 367 16
511 358 18
511 349 19
511 340 20
511 331 21
511 322 22
511 313 23
511 304 25
511 295 26
511 286 27
511 277 28
511 268 29
511 259 30
511 250 31
511 241 36
511 238 37
511 229 38
511 220 39
511 211 41
511 202 42
511 193 43
511 184 45
511 175 46
511 166 47
511 157 51
511 148 53

 bchenc

1-35

n k t

511 139 54
511 130 55
511 121 58
511 112 59
511 103 61
511 94 62
511 85 63
511 76 85
511 67 87
511 58 91
511 49 93
511 40 95
511 31 109
511 28 111
511 19 119
511 10 121

Examples

See the example on the reference page for the function bchdec.

Limitations

The maximum allowable value of n is 65535.

More About
• “Block Codes”

1 Functions — Alphabetical List

1-36

See Also
bchdec | bchgenpoly | bchnumerr

 bchgenpoly

1-37

bchgenpoly
Generator polynomial of BCH code

Syntax

genpoly = bchgenpoly(n,k)

genpoly = bchgenpoly(n,k,prim_poly)

genpoly = bchgenpoly(n,k,prim_poly,outputFormat)

[genpoly,t] = bchgenpoly(...)

Description

genpoly = bchgenpoly(n,k) returns the narrow-sense generator polynomial of a
BCH code with codeword length n and message length k. The codeword length n must
have the form 2m-1 for some integer m between 3 and 16. The output genpoly is a
Galois row vector that represents the coefficients of the generator polynomial in order of
descending powers. The narrow-sense generator polynomial is LCM[m_1(x), m_2(x), ...,
m_2t(x)], where:

• LCM represents the least common multiple,
• m_i(x) represents the minimum polynomial corresponding to αi, α is a root of the

default primitive polynomial for the field GF(n+1),
• and t represents the error-correcting capability of the code.

Note: Although the bchgenpoly function performs intermediate computations in GF(n
+1), the final polynomial has binary coefficients. The output from bchgenpoly is a
Galois vector in GF(2) rather than in GF(n+1).

genpoly = bchgenpoly(n,k,prim_poly) is the same as the syntax above, except
that prim_poly specifies the primitive polynomial for GF(n+1) that has Alpha as a
root. prim_poly is an integer whose binary representation indicates the coefficients
of the primitive polynomial in order of descending powers. To use the default primitive
polynomial for GF(n+1), set prim_poly to [].

1 Functions — Alphabetical List

1-38

genpoly = bchgenpoly(n,k,prim_poly,outputFormat) is the same as the
previous syntax, except that outputFormat specifies output data type. The value of
outputFormat can be ‘gf' or 'double' corresponding to Galois field and double data
types respectively. The default value of outputFormat is 'gf'.

[genpoly,t] = bchgenpoly(...) returns t, the error-correction capability of the
code.

Examples

The results below show that a [15,11] BCH code can correct one error and has a
generator polynomial X4 + X + 1.

m = 4;

n = 2^m-1; % Codeword length

k = 11; % Message length

% Get generator polynomial and error-correction capability.

[genpoly,t] = bchgenpoly(n,k)

The output is

genpoly = GF(2) array.

Array elements =

 1 0 0 1 1

t =

 1

Limitations

The maximum allowable value of n is 511.

More About
• “Block Codes”

 bchgenpoly

1-39

References

[1] Peterson, W. Wesley, and E. J. Weldon, Jr., Error-Correcting Codes, 2nd ed.,
Cambridge, MA, MIT Press, 1972.

See Also
bchenc | bchdec | bchnumerr

1 Functions — Alphabetical List

1-40

bchnumerr
Number of correctable errors for BCH code

Syntax

T = bchnumerr(N)

T = bchnumerr(N, K)

Description

T = bchnumerr(N) returns all the possible combinations of message length, K, and
number of correctable errors, T, for a BCH code of codeword length, N.

T = bchnumerr(N, K) returns the number of correctable errors, T, for an (N, K) BCH
code.

Examples

Determine Message Length Combinations for BCH Code

Calculate the possible message length combinations for a BCH code word length of 15.

T = bchnumerr(15)

T =

 15 11 1

 15 7 2

 15 5 3

Compute the Correctable Errors for BCH Code

Calculate the number of correctable errors for BCH code 15,11

T = bchnumerr(15,11)

 bchnumerr

1-41

T =

 1

Input Arguments

N — Codeword length
(default) | integer scalar

Codeword length, specified as an integer scalar. N must have the form 2m-1 for some
integer, m, between 3 and 16.
Example: 15
Data Types: single | double

K — Message length
integer scalar

Message length, specified as an integer scalar. N and K must produce a narrow-sense
“BCH code”.
Example: 11
Data Types: single | double

Output Arguments

T — Number of correctable errors
scalar or matrix

Number of correctable errors, returned as a scalar or matrix value.

bchnumerr(N) returns a matrix with three columns. The first column lists N, the second
column lists K, and the third column lists T.

bchnumerr(N, K) returns a scalar, which represents the number of correctable errors
for the BCH code.

1 Functions — Alphabetical List

1-42

More About
• “Block Codes”
• “BCH Codes”

See Also
bchdec | bchenc

 berawgn

1-43

berawgn
Bit error rate (BER) for uncoded AWGN channels

Syntax
ber = berawgn(EbNo,'pam',M)

ber = berawgn(EbNo,'qam',M)

ber = berawgn(EbNo,'psk',M,dataenc)

ber = berawgn(EbNo,'oqpsk',dataenc)

ber = berawgn(EbNo,'dpsk',M)

ber = berawgn(EbNo,'fsk',M,coherence)

ber = berawgn(EbNo,'fsk',2,coherence,rho)

ber = berawgn(EbNo,'msk',precoding)

ber = berawgn(EbNo,'msk',precoding,coherence)

berlb = berawgn(EbNo,'cpfsk',M,modindex,kmin)

[BER,SER] = berawgn(EbNo, ...)

Alternatives
As an alternative to the berawgn function, invoke the BERTool GUI (bertool), and use
the Theoretical tab.

Description

For All Syntaxes

The berawgn function returns the BER of various modulation schemes over an additive
white Gaussian noise (AWGN) channel. The first input argument, EbNo, is the ratio of
bit energy to noise power spectral density, in dB. If EbNo is a vector, the output ber is
a vector of the same size, whose elements correspond to the different Eb/N0 levels. The
supported modulation schemes, which correspond to the second input argument to the
function, are in the following table.

Modulation Scheme Second Input Argument

Phase shift keying (PSK) 'psk'

1 Functions — Alphabetical List

1-44

Modulation Scheme Second Input Argument

Offset quaternary phase shift keying
(OQPSK)

'oqpsk'

Differential phase shift keying (DPSK) 'dpsk'

Pulse amplitude modulation (PAM) 'pam'

Quadrature amplitude modulation (QAM) 'qam'

Frequency shift keying (FSK) 'fsk'

Minimum shift keying (MSK) 'msk'

Continuous phase frequency shift keying
(CPFSK)

'cpfsk'

Most syntaxes also have an M input that specifies the alphabet size for the modulation. M
must have the form 2k for some positive integer k. For all cases, the function assumes the
use of a Gray-coded signal constellation.

For Specific Syntaxes

ber = berawgn(EbNo,'pam',M) returns the BER of uncoded PAM over an AWGN
channel with coherent demodulation.

ber = berawgn(EbNo,'qam',M) returns the BER of uncoded QAM over an AWGN
channel with coherent demodulation. The alphabet size, M, must be at least 4. When

k M= log2 is odd, a rectangular constellation of size M I J= ¥ is used, where I

k

=

-

2

1

2

and J

k

=

+

2

1

2 .

ber = berawgn(EbNo,'psk',M,dataenc) returns the BER of coherently detected
uncoded PSK over an AWGN channel. dataenc is either 'diff' for differential data
encoding or 'nondiff' for nondifferential data encoding. If dataenc is 'diff', M must
be no greater than 4.

ber = berawgn(EbNo,'oqpsk',dataenc) returns the BER of coherently detected
offset-QPSK over an uncoded AWGN channel.

ber = berawgn(EbNo,'dpsk',M) returns the BER of uncoded DPSK modulation
over an AWGN channel.

 berawgn

1-45

ber = berawgn(EbNo,'fsk',M,coherence) returns the BER of orthogonal uncoded
FSK modulation over an AWGN channel. coherence is either 'coherent' for coherent
demodulation or 'noncoherent' for noncoherent demodulation. M must be no greater
than 64 for 'noncoherent'.

ber = berawgn(EbNo,'fsk',2,coherence,rho) returns the BER for binary
nonorthogonal FSK over an uncoded AWGN channel, where rho is the complex
correlation coefficient. See “Nonorthogonal 2-FSK with Coherent Detection” for the
definition of the complex correlation coefficient and how to compute it for nonorthogonal
BFSK.

ber = berawgn(EbNo,'msk',precoding) returns the BER of coherently detected
MSK modulation over an uncoded AWGN channel. Setting precoding to 'off' returns
results for conventional MSK while setting precoding to 'on' returns results for
precoded MSK.

ber = berawgn(EbNo,'msk',precoding,coherence) specifies whether the
detection is coherent or noncoherent.

berlb = berawgn(EbNo,'cpfsk',M,modindex,kmin) returns a lower bound
on the BER of uncoded CPFSK modulation over an AWGN channel. modindex is the
modulation index, a positive real number. kmin is the number of paths having the
minimum distance; if this number is unknown, you can assume a value of 1.

[BER,SER] = berawgn(EbNo, ...) returns both the BER and SER.

Examples

Generate Theoretical BER Data for AWGN Channels

This example shows how to generate theoretical bit error rate data for several
modulation schemes assuming an AWGN channel.

Create a vector of Eb/No values and set the modulation order, M.

EbNo = (0:10)';

M = 4;

Generate theoretical BER data for QPSK modulation by using the berawgn function.

1 Functions — Alphabetical List

1-46

berQ = berawgn(EbNo,'psk',M,'nondiff');

Generate equivalent data for DPSK and FSK.

berD = berawgn(EbNo,'dpsk',M);

berF = berawgn(EbNo,'fsk',M,'coherent');

Plot the results.

semilogy(EbNo,[berQ berD berF])

xlabel('Eb/No (dB)')

ylabel('BER')

legend('QPSK','DPSK','FSK')

grid

 berawgn

1-47

Limitations

The numerical accuracy of this function's output is limited by approximations related to
the numerical implementation of the expressions.

You can generally rely on the first couple of significant digits of the function's output.

More About
• “Theoretical Results”
• “Analytical Expressions Used in berawgn”

1 Functions — Alphabetical List

1-48

References

[1] Anderson, John B., Tor Aulin, and Carl-Erik Sundberg, Digital Phase Modulation,
New York, Plenum Press, 1986.

[2] Cho, K., and Yoon, D., “On the general BER expression of one- and two-dimensional
amplitude modulations”, IEEE Trans. Commun., Vol. 50, Number 7, pp.
1074-1080, 2002.

[3] Lee, P. J., “Computation of the bit error rate of coherent M-ary PSK with Gray code
bit mapping”, IEEE Trans. Commun., Vol. COM-34, Number 5, pp. 488-491,
1986.

[4] Proakis, J. G., Digital Communications, 4th ed., McGraw-Hill, 2001.

[5] Simon, M. K, Hinedi, S. M., and Lindsey, W. C., Digital Communication Techniques –
Signal Design and Detection, Prentice-Hall, 1995.

[6] Simon, M. K, “On the bit-error probability of differentially encoded QPSK and offset
QPSK in the presence of carrier synchronization”, IEEE Trans. Commun., Vol.
54, pp. 806-812, 2006.

[7] Lindsey, W. C., and Simon, M. K, Telecommunication Systems Engineering,
Englewood Cliffs, N.J., Prentice-Hall, 1973.

See Also
bercoding | bersync | berfading

 bercoding

1-49

bercoding
Bit error rate (BER) for coded AWGN channels

Syntax

berub = bercoding(EbNo,'conv',decision,coderate,dspec)

berub = bercoding(EbNo,'block','hard',n,k,dmin)

berub = bercoding(EbNo,'block','soft',n,k,dmin)

berapprox = bercoding(EbNo,'Hamming','hard',n)

berub = bercoding(EbNo,'Golay','hard',24)

berapprox = bercoding(EbNo,'RS','hard',n,k)

Alternatives

As an alternative to the bercoding function, invoke the BERTool GUI (bertool) and
use the Theoretical tab.

Description

berub = bercoding(EbNo,'conv',decision,coderate,dspec) returns an
upper bound or approximation on the BER of a binary convolutional code with coherent
phase shift keying (PSK) modulation over an additive white Gaussian noise (AWGN)
channel. EbNo is the ratio of bit energy to noise power spectral density, in dB. If EbNo is
a vector, berub is a vector of the same size, whose elements correspond to the different
Eb/N0 levels. To specify hard-decision decoding, set decision to 'hard'; to specify soft-
decision decoding, set decision to 'soft'. The convolutional code has code rate equal
to coderate. The dspec input is a structure that contains information about the code's
distance spectrum:

• dspec.dfree is the minimum free distance of the code.
• dspec.weight is the weight spectrum of the code.

To find distance spectra for some sample codes, use the distspec function or see [5] and
[3].

1 Functions — Alphabetical List

1-50

Note: The results for binary PSK and quaternary PSK modulation are the same. This
function does not support M-ary PSK when M is other than 2 or 4.

berub = bercoding(EbNo,'block','hard',n,k,dmin) returns an upper bound
on the BER of an [n,k] binary block code with hard-decision decoding and coherent BPSK
or QPSK modulation. dmin is the minimum distance of the code.

berub = bercoding(EbNo,'block','soft',n,k,dmin) returns an upper bound
on the BER of an [n,k] binary block code with soft-decision decoding and coherent BPSK
or QPSK modulation. dmin is the minimum distance of the code.

berapprox = bercoding(EbNo,'Hamming','hard',n) returns an approximation
of the BER of a Hamming code using hard-decision decoding and coherent BPSK
modulation. (For a Hamming code, if n is known, then k can be computed directly from
n.)

berub = bercoding(EbNo,'Golay','hard',24) returns an upper bound of the
BER of a Golay code using hard-decision decoding and coherent BPSK modulation.
Support for Golay currently is only for n=24. In accordance with [3], the Golay coding
upper bound assumes only the correction of 3-error patterns. Even though it is
theoretically possible to correct approximately 19% of 4-error patterns, most decoders in
practice do not have this capability.

berapprox = bercoding(EbNo,'RS','hard',n,k) returns an approximation of
the BER of (n,k) Reed-Solomon code using hard-decision decoding and coherent BPSK
modulation.

Examples

An example using this function for a convolutional code is in “Plotting Theoretical Error
Rates”.

The following example finds an upper bound on the theoretical BER of a block code. It
also uses the berfit function to perform curve fitting.

n = 23; k = 12; % Lengths of codewords and messages

dmin = 7; % Minimum distance

EbNo = 1:10;

ber_block = bercoding(EbNo,'block','hard',n,k,dmin);

 bercoding

1-51

berfit(EbNo,ber_block) % Plot BER points and fitted curve.

ylabel('Bit Error Probability');

title('BER Upper Bound vs. Eb/No, with Best Curve Fit');

Limitations

The numerical accuracy of this function's output is limited by

• Approximations in the analysis leading to the closed-form expressions that the
function uses

• Approximations related to the numerical implementation of the expressions

You can generally rely on the first couple of significant digits of the function's output.

More About
• “Theoretical Performance Results”
• “Analytical Expressions Used in bercoding and BERTool”

1 Functions — Alphabetical List

1-52

References

[1] Proakis, J. G., Digital Communications, 4th ed., New York, McGraw-Hill, 2001.

[2] Frenger, P., P. Orten, and T. Ottosson, “Convolutional Codes with Optimum Distance
Spectrum,” IEEE Communications Letters, Vol. 3, No. 11, Nov. 1999, pp. 317–
319.

[3] Odenwalder, J. P., Error Control Coding Handbook, Final Report, LINKABIT
Corporation, San Diego, CA, 1976.

[4] Sklar, B., Digital Communications, 2nd ed., Prentice Hall, 2001.

[5] Ziemer, R. E., and R. L., Peterson, Introduction to Digital Communication, 2nd ed.,
Prentice Hall, 2001.

See Also
berawgn | berfading | bersync | distspec

 berconfint

1-53

berconfint
Bit error rate (BER) and confidence interval of Monte Carlo simulation

Syntax

[ber,interval] = berconfint(nerrs,ntrials)

[ber,interval] = berconfint(nerrs,ntrials,level)

Description

[ber,interval] = berconfint(nerrs,ntrials) returns the error probability
estimate ber and the 95% confidence interval interval for a Monte Carlo simulation
of ntrials trials with nerrs errors. interval is a two-element vector that lists
the endpoints of the interval. If the errors and trials are measured in bits, the error
probability is the bit error rate (BER); if the errors and trials are measured in symbols,
the error probability is the symbol error rate (SER).

[ber,interval] = berconfint(nerrs,ntrials,level) specifies the confidence
level as a real number between 0 and 1.

Examples

If a simulation of a communication system results in 100 bit errors in 106 trials, the BER
(bit error rate) for that simulation is the quotient 10-4. The command below finds the 95%
confidence interval for the BER of the system.

nerrs = 100; % Number of bit errors in simulation

ntrials = 10^6; % Number of trials in simulation

level = 0.95; % Confidence level

[ber,interval] = berconfint(nerrs,ntrials,level)

The output below shows that, with 95% confidence, the BER for the system is between
0.0000814 and 0.0001216.

ber =

1 Functions — Alphabetical List

1-54

 1.0000e-004

interval =

 1.0e-003 *

 0.0814 0.1216

For an example that uses the output of berconfint to plot error bars on a BER plot, see
“Example: Curve Fitting for an Error Rate Plot”

References

[1] Jeruchim, Michel C., Philip Balaban, and K. Sam Shanmugan, Simulation of
Communication Systems, Second Edition, New York, Kluwer Academic/Plenum,
2000.

See Also
mle | binofit

 berfading

1-55

berfading
Bit error rate (BER) for Rayleigh and Rician fading channels

Syntax

ber = berfading(EbNo,'pam',M,divorder)

ber = berfading(EbNo,'qam',M,divorder)

ber = berfading(EbNo,'psk',M,divorder)

ber = berfading(EbNo,'depsk',M,divorder)

ber = berfading(EbNo,'oqpsk',divorder)

ber = berfading(EbNo,'dpsk',M,divorder)

ber = berfading(EbNo,'fsk',M,divorder,coherence)

ber = berfading(EbNo,'fsk',2,divorder,coherence,rho)

ber = berfading(EbNo,...,K)

ber = berfading(EbNo,'psk',2,1,K,phaserr)

[BER,SER] = berfading(EbNo, ...)

Alternatives

As an alternative to the berfading function, invoke the BERTool GUI (bertool), and
use the Theoretical tab.

Description

For All Syntaxes

The first input argument, EbNo, is the ratio of bit energy to noise power spectral density,
in dB. If EbNo is a vector, the output ber is a vector of the same size, whose elements
correspond to the different Eb/N0 levels.

Most syntaxes also have an M input that specifies the alphabet size for the modulation. M
must have the form 2k for some positive integer k.

berfading uses expressions that assume Gray coding. If you use binary coding, the
results may differ.

1 Functions — Alphabetical List

1-56

For cases where diversity is used, the Eb/N0 on each diversity branch is EbNo/divorder,
where divorder is the diversity order (the number of diversity branches) and is a
positive integer.

For Specific Syntaxes

ber = berfading(EbNo,'pam',M,divorder) returns the BER for PAM over an
uncoded Rayleigh fading channel with coherent demodulation.

ber = berfading(EbNo,'qam',M,divorder) returns the BER for QAM over an
uncoded Rayleigh fading channel with coherent demodulation. The alphabet size, M, must
be at least 4. When k M= log2 is odd, a rectangular constellation of size M I J= ¥ is

used, where I

k

=

-

2

1

2 and J

k

=

+

2

1

2 .

ber = berfading(EbNo,'psk',M,divorder) returns the BER for coherently
detected PSK over an uncoded Rayleigh fading channel.

ber = berfading(EbNo,'depsk',M,divorder) returns the BER for coherently
detected PSK with differential data encoding over an uncoded Rayleigh fading channel.
Only M = 2 is currently supported.

ber = berfading(EbNo,'oqpsk',divorder) returns the BER of coherently detected
offset-QPSK over an uncoded Rayleigh fading channel.

ber = berfading(EbNo,'dpsk',M,divorder) returns the BER for DPSK over
an uncoded Rayleigh fading channel. For DPSK, it is assumed that the fading is slow
enough that two consecutive symbols are affected by the same fading coefficient.

ber = berfading(EbNo,'fsk',M,divorder,coherence) returns the BER for
orthogonal FSK over an uncoded Rayleigh fading channel. coherence should be
'coherent' for coherent detection, or 'noncoherent' for noncoherent detection.

ber = berfading(EbNo,'fsk',2,divorder,coherence,rho) returns the BER for
binary nonorthogonal FSK over an uncoded Rayleigh fading channel. rho is the complex
correlation coefficient. See “Nonorthogonal 2-FSK with Coherent Detection” for the
definition of the complex correlation coefficient and how to compute it for nonorthogonal
BFSK.

 berfading

1-57

ber = berfading(EbNo,...,K) returns the BER over an uncoded Rician fading
channel, where K is the ratio of specular to diffuse energy in linear scale. For the case of
'fsk', rho must be specified before K.

ber = berfading(EbNo,'psk',2,1,K,phaserr) returns the BER of BPSK over an
uncoded Rician fading channel with imperfect phase synchronization. phaserr is the
standard deviation of the reference carrier phase error in radians.

[BER,SER] = berfading(EbNo, ...) returns both the BER and SER.

Examples

The following example computes and plots the BER for uncoded DQPSK (differential
quaternary phase shift keying) modulation over a flat Rayleigh fading channel for several
diversity order values.

EbNo = 8:2:20;

M = 16; % Use 16 QAM

L = 1; % Start without diversity

ber = berfading(EbNo,'qam',M,L);

semilogy(EbNo,ber);

text(18.5, 0.02, sprintf('L=%d', L))

hold on

% Loop over diversity order, L, 2 to 20

for L=2:20

 ber = berfading(EbNo,'qam',M,L);

 semilogy(EbNo,ber);

end

text(18.5, 1e-11, sprintf('L=%d', L))

title('QAM over fading channel with diversity order 1 to 20')

xlabel('E_b/N_o (dB)')

ylabel('BER')

grid on

1 Functions — Alphabetical List

1-58

Limitations

The numerical accuracy of this function's output is limited by approximations related to
the numerical implementation of the expressions

You can generally rely on the first couple of significant digits of the function's output.

More About
• “Theoretical Performance Results”
• “Analytical Expressions Used in berfading”

References

[1] Proakis, John G., Digital Communications, 4th ed., New York, McGraw-Hill, 2001.

 berfading

1-59

[2] Modestino, James W., and Mui, Shou Y., Convolutional code performance in the
Rician fading channel, IEEE Trans. Commun., 1976.

[3] Cho, K., and Yoon, D., “On the general BER expression of one- and two-dimensional
amplitude modulations”, IEEE Trans. Commun., Vol. 50, Number 7, pp.
1074-1080, 2002.

[4] Lee, P. J., “Computation of the bit error rate of coherent M-ary PSK with Gray code
bit mapping”, IEEE Trans. Commun., Vol. COM-34, Number 5, pp. 488-491,
1986.

[5] Lindsey, W. C., “Error probabilities for Rician fading multichannel reception of binary
and N-ary signals”, IEEE Trans. Inform. Theory, Vol. IT-10, pp. 339-350, 1964.

[6] Simon, M. K , Hinedi, S. M., and Lindsey, W. C., Digital Communication Techniques –
Signal Design and Detection, Prentice-Hall, 1995.

[7] Simon, M. K., and Alouini, M. S., Digital Communication over Fading Channels – A
Unified Approach to Performance Analysis, 1st ed., Wiley, 2000.

[8] Simon, M. K , “On the bit-error probability of differentially encoded QPSK and offset
QPSK in the presence of carrier synchronization”, IEEE Trans. Commun., Vol.
54, pp. 806-812, 2006.

See Also
berawgn | bercoding | bersync

1 Functions — Alphabetical List

1-60

berfit
Fit curve to nonsmooth empirical bit error rate (BER) data

Syntax

fitber = berfit(empEbNo,empber)

fitber = berfit(empEbNo,empber,fitEbNo)

fitber = berfit(empEbNo,empber,fitEbNo,options)

fitber = berfit(empEbNo,empber,fitEbNo,options,fittype)

[fitber,fitprops] = berfit(...)

berfit(...)

berfit(empEbNo,empber,fitEbNo,options,'all')

Description

fitber = berfit(empEbNo,empber) fits a curve to the empirical BER data in the
vector empber and returns a vector of fitted bit error rate (BER) points. The values in
empber and fitber correspond to the Eb/N0 values, in dB, given by empEbNo. The vector
empEbNo must be in ascending order and must have at least four elements.

Note: The berfit function is intended for curve fitting or interpolation, not
extrapolation. Extrapolating BER data beyond an order of magnitude below the smallest
empirical BER value is inherently unreliable.

fitber = berfit(empEbNo,empber,fitEbNo) fits a curve to the empirical BER
data in the vector empber corresponding to the Eb/N0 values, in dB, given by empEbNo.
The function then evaluates the curve at the Eb/N0 values, in dB, given by fitEbNo
and returns the fitted BER points. The length of fitEbNo must equal or exceed that of
empEbNo.

fitber = berfit(empEbNo,empber,fitEbNo,options) uses the structure
options to override the default options used for optimization. These options are the
ones used by the fminsearch function. You can create the options structure using the
optimset function. Particularly relevant fields are described in the table below.

 berfit

1-61

Field Description

options.Display Level of display: 'off' (default) displays
no output; 'iter' displays output at each
iteration; 'final' displays only the final
output; 'notify' displays output only if
the function does not converge.

options.MaxFunEvals Maximum number of function evaluations
before optimization ceases. The default is
104.

options.MaxIter Maximum number of iterations before
optimization ceases. The default is 104.

options.TolFun Termination tolerance on the closed-form
function used to generate the fit. The
default is 10-4.

options.TolX Termination tolerance on the coefficient
values of the closed-form function used to
generate the fit. The default is 10-4.

fitber = berfit(empEbNo,empber,fitEbNo,options,fittype) specifies
which closed-form function berfit uses to fit the empirical data, from the possible fits
listed in “Algorithms” on page 1-65 below. fittype can be 'exp', 'exp+const',
'polyRatio', or 'doubleExp+const'. To avoid overriding default optimization
options, use options = [].

[fitber,fitprops] = berfit(...) returns the MATLAB structure fitprops,
which describes the results of the curve fit. Its fields are described in the table below.

Field Description

fitprops.fitType The closed-form function type used to
generate the fit: 'exp', 'exp+const',
'polyRatio', or 'doubleExp+const'.

fitprops.coeffs The coefficients used to generate the fit.
If the function cannot find a valid fit,
fitprops.coeffs is an empty vector.

1 Functions — Alphabetical List

1-62

Field Description

fitprops.sumSqErr The sum squared error between the log of
the fitted BER points and the log of the
empirical BER points.

fitprops.exitState The exit condition of berfit: 'The
curve fit converged to a

solution.', 'The maximum number
of function evaluations was

exceeded.', or 'No desirable fit
was found'.

fitprops.funcCount The number of function evaluations used
in minimizing the sum squared error
function.

fitprops.iterations The number of iterations taken in
minimizing the sum squared error
function. This is not necessarily equal to
the number of function evaluations.

berfit(...) plots the empirical and fitted BER data.

berfit(empEbNo,empber,fitEbNo,options,'all') plots the empirical and fitted
BER data from all the possible fits, listed in the “Algorithms” on page 1-65 below,
that return a valid fit. To avoid overriding default options, use options = [].

Note: A valid fit must be

• real-valued

• monotonically decreasing
• greater than or equal to 0 and less than or equal to 0.5
If a fit does not confirm to this criteria, it is rejected.

Examples
The examples below illustrate the syntax of the function, but they use hard-coded or
theoretical BER data for simplicity. For an example that uses empirical BER data from a
simulation, see “Example: Curve Fitting for an Error Rate Plot”.

 berfit

1-63

The code below plots the best fit for a sample set of data.
EbNo = 0:13;

berdata = [.2 .15 .13 .12 .08 .09 .08 .07 .06 .04 .03 .02 .01 .004];

berfit(EbNo,berdata); % Plot the best fit.

The curve connects the points created by evaluating the fit expression at the values in
EbNo. To make the curve look smoother, use a syntax like berfit(EbNo,berdata,
[0:0.2:13]). This alternative syntax uses more points when plotting the curve, but it
does not change the fit expression.

The next example demonstrates a fit for a BER curve with an error floor. We generate
the empirical BER array by simulating a channel with a null (ch = [0.5 0.47]) with
BPSK modulation and linear MMSE equalizer at the receiver. We run the berfit with the
'all' option. The 'doubleExp+const' fit does not provide a valid fit, and the 'exp'
fit type does not work well for this data. The 'exp+const' and 'polyRatio' fits closely
match the simulated data.
EbNo = -10:3:15;

empBER = [0.3361 0.3076 0.2470 0.1878 0.1212 0.0845 0.0650 0.0540 0.0474];

figure; berfit(EbNo, empBER, [], [], 'all');

1 Functions — Alphabetical List

1-64

The following code illustrates the use of the options input structure as well as the
fitprops output structure. The 'notify' value for the display level causes the
function to produce output when one of the attempted fits does not converge. The
exitState field of the output structure also indicates which fit converges and which fit
does not.

M = 8; EbNo = 3:10;

berdata = berfading(EbNo,'psk',M,2); % Compute theoretical BER.

noisydata = berdata.*[.93 .92 1 .59 .08 .15 .01 .01];

% Say when fit fails to converge.

options = optimset('display','notify');

disp('*** Trying exponential fit.') % Poor fit

[fitber1,fitprops1] = berfit(EbNo,noisydata,EbNo,...

 options,'exp')

disp('*** Trying polynomial ratio fit.') % Good fit

[fitber2,fitprops2] = berfit(EbNo,noisydata,EbNo,...

 options,'polyRatio')

 berfit

1-65

More About

Algorithms

The berfit function fits the BER data using unconstrained nonlinear optimization via
the fminsearch function. The closed-form functions that berfit considers are listed
in the table below, where x is the Eb/N0 in linear terms (not dB) and f is the estimated
BER. These functions were empirically found to provide close fits in a wide variety of
situations, including exponentially decaying BERs, linearly varying BERs, and BER
curves with error rate floors.

Value of fittype Functional Expression

'exp'

f x a
x a

a

a

() exp=
- -()È

Î

Í
Í

˘

˚

˙
˙1

2

4

3

'exp+const'

f x a
x a

a
a

a

() exp
()

=
- -È

Î

Í
Í

˘

˚

˙
˙

+1
2

4
5

3

'polyRatio'

f x
a x a x a

x a x a x a
() =

+ +

+ + +

1
2

2 3
3

4
2

5 6

'doubleExp+const'

a

x a

a

a

x a

a

a

a

a

1
2

4

5
6

8
9

3

7

exp

exp

- -()È

Î

Í
Í

˘

˚

˙
˙

+
- -()È

Î

Í
Í

˘

˚

˙
˙

+

The sum squared error function that fminsearch attempts to minimize is

F = -Â[log() log()]empirical BER fitted BER 2

where the fitted BER points are the values in fitber and the sum is over the Eb/N0
points given in empEbNo. It is important to use the log of the BER values rather than

1 Functions — Alphabetical List

1-66

the BER values themselves so that the high-BER regions do not dominate the objective
function inappropriately.

References

For a general description of unconstrained nonlinear optimization, see the following
work.

[1] Chapra, Steven C., and Raymond P. Canale, Numerical Methods for Engineers,
Fourth Edition, New York, McGraw-Hill, 2002.

See Also
optimset | fminsearch

 bersync

1-67

bersync
Bit error rate (BER) for imperfect synchronization

Syntax

ber = bersync(EbNo,timerr,'timing')

ber = bersync(EbNo,phaserr,'carrier')

Alternatives

As an alternative to the bersync function, invoke the BERTool GUI (bertool) and use
the Theoretical tab.

Description

ber = bersync(EbNo,timerr,'timing') returns the BER of uncoded coherent
binary phase shift keying (BPSK) modulation over an additive white Gaussian noise
(AWGN) channel with imperfect timing. The normalized timing error is assumed to have
a Gaussian distribution. EbNo is the ratio of bit energy to noise power spectral density,
in dB. If EbNo is a vector, the output ber is a vector of the same size, whose elements
correspond to the different Eb/N0 levels. timerr is the standard deviation of the timing
error, normalized to the symbol interval. timerr must be between 0 and 0.5.

ber = bersync(EbNo,phaserr,'carrier') returns the BER of uncoded BPSK
modulation over an AWGN channel with a noisy phase reference. The phase error is
assumed to have a Gaussian distribution. phaserr is the standard deviation of the error
in the reference carrier phase, in radians.

Examples

The code below computes the BER of coherent BPSK modulation over an AWGN channel
with imperfect timing. The example varies both EbNo and timerr. (When timerr
assumes the final value of zero, the bersync command produces the same result as
berawgn(EbNo,'psk',2).)

1 Functions — Alphabetical List

1-68

EbNo = [4 8 12];

timerr = [0.2 0.07 0];

ber = zeros(length(timerr), length(EbNo));

for ii = 1:length(timerr)

 ber(ii,:) = bersync(EbNo, timerr(ii),'timerr');

end

% Display result using scientific notation.

format short e; ber

format; % Switch back to default notation format.

The output is below, where each row corresponds to a different value of timerr and each
column corresponds to a different value of EbNo.

ber =

 5.2073e-002 2.0536e-002 1.1160e-002

 1.8948e-002 7.9757e-004 4.9008e-006

 1.2501e-002 1.9091e-004 9.0060e-009

Limitations

The numerical accuracy of this function's output is limited by

• Approximations in the analysis leading to the closed-form expressions that the
function uses

• Approximations related to the numerical implementation of the expressions

You can generally rely on the first couple of significant digits of the function's output.

Limitations Related to Extreme Values of Input Arguments

Inherent limitations in numerical precision force the function to assume perfect
synchronization if the value of timerr or phaserr is very small. The table below
indicates how the function behaves under these conditions.

Condition Behavior of Function

timerr < eps bersync(EbNo,timerr,'timing') defined as
berawgn(EbNo,'psk',2)

phaserr < eps bersync(EbNo,phaserr,'carrier') defined as
berawgn(EbNo,'psk',2)

 bersync

1-69

More About

Algorithms

This function uses formulas from [3].

When the last input is 'timing', the function computes

1

4 2 2

1

2 2 2

2

2

2

2 1 2

2

ps
x

s
x

px
exp() exp() exp()

()
- - + -

-•

•

-

•
Ú Ú

x
dxd

x
dx

R 22R

•
Ú

where σ is the timerr input and R is the value of EbNo converted from dB to a linear
scale.

When the last input is 'carrier', the function computes

1

2 2

2

20

2

2ps
f

s
f

f
exp() exp()

cos
- -

• •
Ú Ú

y
dyd

R

where σ is the phaserr input and R is the value of EbNo converted from dB to a linear
scale.
• “Theoretical Results”

References

[1] Jeruchim, Michel C., Philip Balaban, and K. Sam Shanmugan, Simulation of
Communication Systems, Second Edition, New York, Kluwer Academic/Plenum,
2000.

[2] Sklar, Bernard, Digital Communications: Fundamentals and Applications, Second
Edition, Upper Saddle River, NJ, Prentice-Hall, 2001.

[3] Stiffler, J. J., Theory of Synchronous Communications, Englewood Cliffs, NJ,
Prentice-Hall, 1971.

See Also
berawgn | bercoding | berfading

1 Functions — Alphabetical List

1-70

bertool
Open bit error rate analysis GUI (BERTool)

Syntax

bertool

Description

bertool launches the Bit Error Rate Analysis Tool (BERTool). The BERTool application
enables you to analyze the bit error rate (BER) performance of communications
systems. BERTool computes the BER as a function of signal-to-noise ratio. It analyzes
performance either with Monte-Carlo simulations of MATLAB functions and Simulink
models or with theoretical closed-form expressions for selected types of communication
systems. See “BERTool” to learn more.

 bi2de

1-71

bi2de

Convert binary vectors to decimal numbers

Syntax

d = bi2de(b)

d = bi2de(b,flg)

d = bi2de(b,p)

d = bi2de(b,p,flg)

Description

d = bi2de(b) converts a binary row vector b to a nonnegative decimal integer. If
b is a matrix, each row is interpreted separately as a binary number. In this case, the
output d is a column vector, each element of which is the decimal representation of the
corresponding row of b.

Note: By default, bi2de interprets the first column of b as the lowest-order digit.

d = bi2de(b,flg) is the same as the syntax above, except that flg is a string that
determines whether the first column of b contains the lowest-order or highest-order
digits. Possible values for flg are 'right-msb' and 'left-msb'. The value 'right-
msb' produces the default behavior.

d = bi2de(b,p) converts a base-p row vector b to a nonnegative decimal integer ,
where p is an integer greater than or equal to 2. The first column of b is the lowest base-p
digit. If b is a matrix, the output d is a nonnegative decimal vector, each row of which is
the decimal form of the corresponding row of b.

d = bi2de(b,p,flg) is the same as the syntax above, except that flg is a string
that determines whether the first column of b contains the lowest-order or highest-order
digits. Possible values for flg are 'right-msb' and 'left-msb'. The value 'right-
msb' produces the default behavior.

1 Functions — Alphabetical List

1-72

Examples

Generate a matrix that contains binary representations of five random numbers between
0 and 15, and then convert all five numbers to decimal integers.

b = randi([0 1],5,4); % Generate a 5-by-4 random binary matrix.

de = bi2de(b);

disp(' Dec Binary')

disp(' ----- -------------------')

disp([de, b])

Sample output is below. Your results might vary because the numbers are random.

 Dec Binary

 ----- -------------------

 13 1 0 1 1

 7 1 1 1 0

 15 1 1 1 1

 4 0 0 1 0

 9 1 0 0 1

Convert a base-five number into its decimal counterpart, using the leftmost base-five
digit (4 in this case) as the most significant digit. This example reflects the fact that
4(53) + 2(52) +50 = 551.

d = bi2de([4 2 0 1],5,'left-msb')

The output is

d =

 551

See Also
de2bi

 bin2gray

1-73

bin2gray
Convert positive integers into corresponding Gray-encoded integers

Syntax

y = bin2gray(x,modulation,M)

[y,map] = bin2gray(x,modulation,M)

Description

y = bin2gray(x,modulation,M) generates a Gray-encoded vector or matrix output y
with the same dimensions as its input parameter x. x can be a scalar, vector, or matrix.
modulation is the modulation type and must be a string equal to 'qam', 'pam', 'fsk',
'dpsk', or 'psk'. M is the modulation order that can be an integer power of 2.

[y,map] = bin2gray(x,modulation,M) generates a Gray-encoded output y with its
respective Gray-encoded constellation map, map.

You can use map output to label a Gray-encoded constellation. The map output gives the
Gray encoded labels for the corresponding modulation. See the example below.

Note: If you are converting binary coded data to Gray-coded data and modulating the
result immediately afterwards, you should use the appropriate modulation object or
function with the 'Gray' option, instead of BIN2GRAY.

Examples

Binary to Gray Symbol Mapping

This example shows how to use the bin2gray and gray2bin functions to map integer
inputs from a natural binary order symbol mapping to a Gray coded signal constellation
and vice versa, assuming 16-QAM modulation. In addition, a visual representation of the
difference between Gray and binary coded symbol mappings is shown.

Create a complete vector of 16-QAM integers.

1 Functions — Alphabetical List

1-74

x = (0:15)';

Convert the input vector from a natural binary order to a Gray encoded vector using
bin2gray.

y = bin2gray(x,'qam',16);

Convert the Gray encoded symbols, y, back to a binary ordering using gray2bin.

z = gray2bin(y,'qam',16);

Verify that the original data, x, and the final output vector, z are identical.

isequal(x,z)

ans =

 1

To create a constellation plot showing the different symbol mappings, construct a 16-
QAM modulator System object and use its associated constellation function to find
the complex symbol values.

hMod = comm.RectangularQAMModulator;

symbols = constellation(hMod);

Plot the constellation symbols and label them using the Gray, y, and binary, z, output
vectors. The binary representation of the Gray coded symbols is shown in black while the
binary representation of the naturally ordered symbols is shown in red. Set the axes so
that all points are displayed.

scatterplot(symbols,1,0,'b*');

for k = 1:16

 text(real(symbols(k))-0.3,imag(symbols(k))+0.3,...

 dec2base(y(k),2,4));

 text(real(symbols(k))-0.3,imag(symbols(k))-0.3,...

 dec2base(z(k),2,4),'Color',[1 0 0]);

end

axis([-4 4 -4 4])

 bin2gray

1-75

1 Functions — Alphabetical List

1-76

Observe that only a single bit differs between adjacent constellation points when using
Gray coding.

More About
• “Gray Encoding a Modulated Signal”

See Also
gray2bin

 biterr

1-77

biterr

Compute number of bit errors and bit error rate (BER)

Syntax

[number,ratio] = biterr(x,y)

[number,ratio] = biterr(x,y,k)

[number,ratio] = biterr(x,y,k,flg)

[number,ratio,individual] = biterr(...)

Description

For All Syntaxes

The biterr function compares unsigned binary representations of elements in x with
those in y. The schematics below illustrate how the shapes of x and y determine which
elements biterr compares.

(a) Compares x1 with y1,
 x2 with y2, and so on.

(b) Compares column vector y with
 each column of matrix x

(c) Compares row vector y with
 each row of matrix x

x1 x4

x2 x5

x3 x6

y1 y4

y2 y5 x y

y3 y6

x

y

Each element of x and y must be a nonnegative decimal integer; biterr converts each
element into its natural unsigned binary representation. number is a scalar or vector
that indicates the number of bits that differ. ratio is number divided by the total
number of bits. The total number of bits, the size of number, and the elements that
biterr compares are determined by the dimensions of x and y and by the optional
parameters.

1 Functions — Alphabetical List

1-78

For Specific Syntaxes

[number,ratio] = biterr(x,y) compares the elements in x and y. If the largest
among all elements of x and y has exactly k bits in its simplest binary representation,
the total number of bits is k times the number of entries in the smaller input. The sizes of
x and y determine which elements are compared:

• If x and y are matrices of the same dimensions, then biterr compares x and y
element by element. number is a scalar. See schematic (a) in the preceding figure.

• If one is a row (respectively, column) vector and the other is a two-dimensional
matrix, then biterr compares the vector element by element with each row (resp.,
column) of the matrix. The length of the vector must equal the number of columns
(resp., rows) in the matrix. number is a column (resp., row) vector whose mth entry
indicates the number of bits that differ when comparing the vector with the mth row
(resp., column) of the matrix. See schematics (b) and (c) in the figure.

[number,ratio] = biterr(x,y,k) is the same as the first syntax, except that it
considers each entry in x and y to have k bits. The total number of bits is k times the
number of entries of the smaller of x and y. An error occurs if the binary representation
of an element of x or y would require more than k digits.

[number,ratio] = biterr(x,y,k,flg) is similar to the previous syntaxes,
except that flg can override the defaults that govern which elements biterr compares
and how biterr computes the outputs. The possible values of flg are 'row-wise',
'column-wise', and 'overall'. The table below describes the differences that result
from various combinations of inputs. As always, ratio is number divided by the total
number of bits. If you do not provide k as an input argument, the function defines it
internally as the number of bits in the simplest binary representation of the largest
among all elements of x and y.

Comparing a Two-Dimensional Matrix x with Another Input y

Shape of y flg Type of Comparison number Total Number of
Bits

'overall'

(default)
Element by
element

Total
number of
bit errors

k times number
of entries of y

2-D matrix

'row-wise' mth row of x vs.
mth row of y

Column
vector whose

k times number
of entries of y

 biterr

1-79

Shape of y flg Type of Comparison number Total Number of
Bits

entries count
bit errors in
each row

'column-wise' mth column of x
vs. mth column of
y

Row vector
whose
entries count
bit errors in
each column

k times number
of entries of y

'overall' y vs. each row of x Total
number of
bit errors

k times number
of entries of x

Row vector

'row-wise'

(default)
y vs. each row of x Column

vector whose
entries count
bit errors in
each row of x

k times size of
y

'overall' y vs. each column
of x

Total
number of
bit errors

k times number
of entries of x

Column vector

'column-wise'

(default)
y vs. each column
of x

Row vector
whose
entries count
bit errors in
each column
of x

k times size of
y

[number,ratio,individual] = biterr(...) returns a matrix individual whose
dimensions are those of the larger of x and y. Each entry of individual corresponds to
a comparison between a pair of elements of x and y, and specifies the number of bits by
which the elements in the pair differ.

1 Functions — Alphabetical List

1-80

Examples

Example 1

The commands below compare the column vector [0; 0; 0] to each column of a random
binary matrix. The output is the number, proportion, and locations of 1s in the matrix. In
this case, individual is the same as the random matrix.

format rat;

[number,ratio,individual] = biterr([0;0;0],randi([0 1],3,5))

The output is

number =

 2 0 0 3 1

ratio =

 2/3 0 0 1 1/3

individual =

 1 0 0 1 0

 1 0 0 1 0

 0 0 0 1 1

Example 2

The commands below illustrate the use of flg to override the default row-by-row
comparison. number and ratio are scalars, and individual has the same dimensions
as the larger of the first two arguments of biterr.

format rat;

[number2,ratio2,individual2] = biterr([1 2; 3 4],[1 3],3,'overall')

The output is

number2 =

 biterr

1-81

 5

ratio2 =

 5/12

individual2 =

 0 1

 1 3

Example 3

The script below adds errors to 10% of the elements in a matrix. Each entry in the matrix
is a two-bit number in decimal form. The script computes the bit error rate using biterr
and the symbol error rate using symerr.

x = randi([0 3],100); % Original signal

% Create errors to add to ten percent of the elements of x.

% Errors can be either 1, 2, or 3 (not zero).

errorplace = (rand(100,100) > .9); % Where to put errors

errorvalue = randi(3,100); % Value of the errors

errors = errorplace.*errorvalue;

y = rem(x+errors,4); % Signal with errors added, mod 4

format short

[num_bit,ratio_bit] = biterr(x,y,2)

[num_sym,ratio_sym] = symerr(x,y)

Sample output is below. ratio_sym is close to the target value of 0.10. Your results
might vary because the example uses random numbers.

num_bit =

 1304

ratio_bit =

 0.0652

num_sym =

1 Functions — Alphabetical List

1-82

 981

ratio_sym =

 0.0981

Example 4

The following example uses logical input arguments.

SNR = 3; frameLen = 100;

x = randi([0 1], frameLen, 1);

y = awgn(2*x-1, SNR);

z = y > 0;

biterr(x, z)

Example 5

The following example uses logical input arguments.

SNR = 5; frameLen = 100;

x = rand(100, 1) > 0.5;

y = awgn(2*x-1, SNR);

z = y > 0;

biterr(x, z)

See Also
alignsignals | symerr | finddelay

 bsc

1-83

bsc
Model binary symmetric channel

Syntax

ndata = bsc(data,p)

ndata = bsc(data,p,s)

ndata = bsc(data,p,state)

[ndata,err] = bsc(...)

Description

ndata = bsc(data,p) passes the binary input signal data through a binary
symmetric channel with error probability p. The channel introduces a bit error with
probability p, processing each element of data independently. data must be an array of
binary numbers or a Galois array in GF(2). p must be a scalar between 0 and 1.ndata =
bsc(data,p,s) causes rand to use the random stream s. s is any valid random stream.
See RandStream for more details.

ndata = bsc(data,p,state) resets the state of the uniform random number
generator rand to the integer state.

Note: This usage is deprecated and may be removed in a future release. Instead of
state, use s, as in the previous example.

[ndata,err] = bsc(...) returns an array, err, containing the channel errors.

This function uses, by default, the Mersenne Twister algorithm by Nishimura and
Matsumoto.

Note: Using the state parameter causes this function to switch random generators to
use the 'state' algorithm of the rand function.

See rand for details on the generator algorithm.

1 Functions — Alphabetical List

1-84

Examples

To introduce bit errors in the bits in a random matrix with probability 0.15, use the bsc
function:
z = randi([0 1],100,100); % Random matrix

nz = bsc(z,.15); % Binary symmetric channel

[numerrs, pcterrs] = biterr(z,nz) % Number and percentage of errors

The output below is typical. The percentage of bit errors is not exactly 15% in most trials,
but it is close to 15% if the size of the matrix z is large.

numerrs =

 1509

pcterrs =

 0.1509

Another example using this function is in “Design a Rate 2/3 Feedforward Encoder Using
Simulink”.

See Also
rand | awgn

 cma

1-85

cma

Construct constant modulus algorithm (CMA) object

Syntax

alg = cma(stepsize)

alg = cma(stepsize,leakagefactor)

Description

The cma function creates an adaptive algorithm object that you can use with the
lineareq function or dfe function to create an equalizer object. You can then use the
equalizer object with the equalize function to equalize a signal. To learn more about
the process for equalizing a signal, see “Adaptive Algorithms”.

Note: After you use either lineareq or dfe to create a CMA equalizer object, you should
initialize the equalizer object's Weights property with a nonzero vector. Typically, CMA
is used with differential modulation; otherwise, the initial weights are very important. A
typical vector of initial weights has a 1 corresponding to the center tap and 0s elsewhere.

alg = cma(stepsize) constructs an adaptive algorithm object based on the constant
modulus algorithm (CMA) with a step size of stepsize.

alg = cma(stepsize,leakagefactor) sets the leakage factor of the CMA.
leakagefactor must be between 0 and 1. A value of 1 corresponds to a conventional
weight update algorithm, while a value of 0 corresponds to a memoryless update
algorithm.

Properties

The table below describes the properties of the CMA adaptive algorithm object. To learn
how to view or change the values of an adaptive algorithm object, see “Access Properties
of an Adaptive Algorithm”.

1 Functions — Alphabetical List

1-86

Property Description

AlgType Fixed value, 'Constant Modulus'
StepSize CMA step size parameter, a nonnegative

real number
LeakageFactor CMA leakage factor, a real number

between 0 and 1

Examples

Create a Linear Equalizer using CMA

This example shows how to use the constant modulus algorithm (CMA) to create an
adaptive equalizer object.

Set the the number of weights and the step size for the equalizer.

nWeights = 1;

stepSize = 0.1;

Create an adaptive algorithm object using the cma function.

alg = cma(stepSize);

Construct a linear equalizer using the algorithm object.

eqObj = lineareq(nWeights,alg)

eqObj =

 EqType: 'Linear Equalizer'

 AlgType: 'Constant Modulus'

 nWeights: 1

 nSampPerSym: 1

 SigConst: [-1 1]

 StepSize: 0.1000

 LeakageFactor: 1

 Weights: 0

 WeightInputs: 0

 ResetBeforeFiltering: 1

 NumSamplesProcessed: 0

 cma

1-87

More About

Algorithms

Referring to the schematics in “Equalizer Structure”, define w as the vector of all weights
wi and define u as the vector of all inputs ui. Based on the current set of weights, w, this
adaptive algorithm creates the new set of weights given by
(LeakageFactor) w + (StepSize) u*e

where the * operator denotes the complex conjugate.
• “Equalization”

References

[1] Haykin, Simon, Adaptive Filter Theory, Third Ed., Upper Saddle River, NJ, Prentice-
Hall, 1996.

[2] Johnson, Richard C., Jr., Philip Schniter, Thomas. J. Endres, et al., “Blind
Equalization Using the Constant Modulus Criterion: A Review,” Proceedings of
the IEEE, Vol. 86, October 1998, pp. 1927–1950.

See Also
lms | signlms | normlms | varlms | rls | lineareq | dfe | equalize

1 Functions — Alphabetical List

1-88

comm_links
Library link information for Communications System Toolbox blocks

Syntax

comm_links

comm_links(sys)

comm_links(sys,color)

Description

comm_links returns a structure with two elements. Each element contains a cell
array of strings containing names of library blocks in the current system. The blocks are
grouped into two categories: obsolete and current. Blocks at all levels of the model are
analyzed.

comm_links(sys) works as above on the named system sys, instead of the current
system.

comm_links(sys,color) additionally colors all obsolete blocks according to the
specified color. color is one of the following strings: 'blue', 'green', 'red', 'cyan',
'magenta', 'yellow', or 'black'.

Obsolete blocks are blocks that are no longer supported. They might or might not work
properly.

Current blocks are supported and represent the latest block functionality.

See Also
liblinks | commliblist

 commlib

1-89

commlib
Open main Communications System Toolbox block library

Syntax

commlib

Description

commlib opens the latest version of the Communications System Toolbox™ block
library.

See Also
dsplib

1 Functions — Alphabetical List

1-90

commscope
Package of communications scope classes

Syntax

h = commscope.<type>(...)

Description

h = commscope.<type>(...) returns a communications scope object h of type type.

Type help commscope to get a complete list of available types.

Each type of communications scope object is equipped with functions for simulation and
visualization. Type help commscope.<type> to get the complete help on a specific
communications scope object (e.g., help commscope.eyediagram).

See Also
commscope.eyediagram

 commscope.eyediagram

1-91

commscope.eyediagram

Eye diagram analysis

Syntax

h = commscope.eyediagram

h = commscope.eyediagram(property1,value1,...)

Description

h = commscope.eyediagram constructs an eye diagram object, h, with default
properties. This syntax is equivalent to:

H = commscope.eyediagram('SamplingFrequency', 10000, ...

 'SamplesPerSymbol', 100, ...

 'SymbolsPerTrace', 2, ...

 'MinimumAmplitude', -1, ...

 'MaximumAmplitude', 1, ...

 'AmplitudeResolution', 0.0100, ...

 'MeasurementDelay', 0, ...

 'PlotType', '2D Color', ...

 'PlotTimeOffset', 0, ...

 'PlotPDFRange', [0 1], ...

 'ColorScale', 'linear', ...

 'RefreshPlot', 'on');

h = commscope.eyediagram(property1,value1,...) constructs an eye diagram
object, h, with properties as specified by property/value pairs.

The eye diagram object creates a series of vertical histograms from zero to T seconds,
at Ts second intervals, where T is a multiple of the symbol duration of the input signal
and Ts is the sampling time. A vertical histogram is defined as the histogram of the
amplitude of the input signal at a given time. The histogram information is used to
obtain an approximation to the probability density function (PDF) of the input amplitude
distribution. The histogram data is used to generate '2D Color' plots, where the color
indicates the value of the PDF, and '3D Color' plots. The '2D Line' plot is obtained

1 Functions — Alphabetical List

1-92

by constructing an eye diagram from the last n traces stored in the object, where a trace
is defined as the segment of the input signal for a T second interval.

You can change the plot type by setting the PlotType property. The following plots are
examples of each type.

2D-Color Eye Diagram

 commscope.eyediagram

1-93

3D-Color Eye Diagram

1 Functions — Alphabetical List

1-94

2D-Line Eye Diagram

To see a detailed demonstration of this object's use, type showdemo scattereyedemo;
at the command line.

Properties

An eye diagram scope object has the properties shown on the following table. All
properties are writable except for the ones explicitly noted otherwise.

Property Description

Type Type of scope object ('Eye Diagram'). This
property is not writable.

SamplingFrequency Sampling frequency of the input signal in hertz.

 commscope.eyediagram

1-95

Property Description

SamplesPerSymbol Number of samples used to represent a symbol.
An increase in SamplesPerSymbol improves the
resolution of an eye diagram.

SymbolRate The symbol rate of the input signal. This property
is not writable and is automatically computed based
on SamplingFrequency and SamplesPerSymbol.

SymbolsPerTrace The number of symbols spanned on the time axis of
the eye diagram scope.

MinimumAmplitude Minimum amplitude of the input signal. Signal
values less than this value are ignored both for
plotting and for measurement computation.

MaximumAmplitude Maximum amplitude of the input signal. Signal
values greater than this value are ignored both for
plotting and for measurement computation.

AmplitudeResolution The resolution of the amplitude axis. The amplitude
axis is created from MinimumAmplitude to
MaximumAmplitude with AmplitudeResolution
steps.

MeasurementDelay The time in seconds the scope waits before starting
to collect data.

PlotType Type of the eye diagram plot. The choices are '2D
Color' (two dimensional eye diagram, where
color intensity represents the probability density
function values), '3D Color' (three dimensional
eye diagram, where the z-axis represents the
probability density function values), and '2D Line'
(two dimensional eye diagram, where each trace is
represented by a line).

NumberOfStoredTraces The number of traces stored to display the eye
diagram in '2D Line' mode.

1 Functions — Alphabetical List

1-96

Property Description

PlotTimeOffset The plot time offset input values must reside in the
closed interval [-Tsym Tsym], where Tsym is the
symbol duration. Since the eye diagram is periodic,
if the value you enter is out of range, it wraps to a
position on the eye diagram that is within range.

RefreshPlot The switch that controls the plot refresh style. The
choices are 'on' (the eye diagram plot is refreshed
every time the update method is called) and 'off'
(the eye diagram plot is not refreshed when the
update method is called).

PlotPDFRange The range of the PDF values that will be displayed
in the '2D Color' mode. The PDF values outside
the range are set to a constant mask color.

ColorScale The scale used to represent the color, the z-axis, or
both. The choices are 'linear' (linear scale) and
'log' (base ten logarithmic scale).

SamplesProcessed The number of samples processed by the eye
diagram object. This value does not include the
discarded samples during the MeasurementDelay
period. This property is not writable.

OperationMode When the operation mode is complex signal, the eye
diagram collects and plots data on both the in-phase
component and the quadrature component. When
the operation mode is real signal, the eye diagram
collects and plots real signal data.

Measurements An eye diagram can display various types of
measurements. All measurements are done on
both the in-phase and quadrature signal, unless
otherwise stated. For more information, see the
Measurements section.

The resolution of the eye diagram in '2D Color' and '3D Color' modes can be
increased by increasing SamplingFrequency, decreasing AmplitudeResolution, or
both.

 commscope.eyediagram

1-97

Changing MinimumAmplitude, MaximumAmplitude, AmplitudeResolution,
SamplesPerSymbol, SymbolsPerTrace, and MeasurementDelay resets the
measurements and updates the eye diagram.

Methods

An eye diagram object is equipped with seven methods for inspection, object
management, and visualization.

update

This method updates the eye diagram object data.

update(h,x) updates the collected data of the eye diagram object h with the input x.

If the RefreshPlot property is set to 'on', the update method also refreshes the eye
diagram figure.

The following example shows this method's use:

% Create an eye diagram scope object

h = commscope.eyediagram('RefreshPlot', 'off')

% Prepare a noisy sinusoidal as input

hChan = comm.AWGNChannel('NoiseMethod', 'Signal to noise ratio (SNR)',...

 'SNR', 20);

x = step(hChan,0.5*sin(2*pi*(0:1/100:10))+j*cos(2*pi*(0:1/100:10)));

% update the eyediagram

update(h, x);

% Check the number of proccessed samples

h.SamplesProcessed

plot

This method displays the eye diagram figure.

The plot method has three usage cases:

plot(h) plots the eye diagram for the eye diagram object h with the current colormap or
the default linespec.

1 Functions — Alphabetical List

1-98

plot(h,cmap), when used with the plottype set to '2D Color' or '3D Color', plots
the eye diagram for the object h, and sets the colormap to cmap.

plot(h,linespec), when used with the plottype set to '2D Line', plots the eye
diagram for the object h using linespec as the line specification. See the help for plot
for valid linespecs.

The following example shows this method's use:

% Create an eye diagram scope object

h = commscope.eyediagram;

% Prepare a noisy sinusoid as input

hChan = comm.AWGNChannel('NoiseMethod', 'Signal to noise ratio (SNR)',...

 'SNR', 20);

x = step(hChan, 0.5*sin(2*pi*(0:1/100:10))+ j*0.5*cos(2*pi*(0:1/100:10)));

% Update the eye diagram

update(h, x);

% Display the eye diagram figure

plot(h)

% Display the eye diagram figure with jet colormap

plot(h, jet(64))

% Display 2D Line eye diagram with red dashed lines

h.PlotType = '2D Line';

plot(h, 'r--')

exportdata

This method exports the eye diagram data.

[VERHIST EYEL HORHISTX HORHISTRF] = EXPORTDATA(H) Exports the eye diagram
data collected by the eyediagram object H.

VERHIST is a matrix that holds the vertical histogram, which is also used to plot '2D
Color' and '3D Color' eye diagrams.

EYEL is a matrix that holds the data used to plot 2D Line eye diagram. Each row of the
EYEC holds one trace of the input signal.

HORHISTX is a matrix that holds the crossing point histogram data collected for the
values defined by the CrossingAmplitudes property of the MeasurementSetup object.
HORHISTX(i, :) represents the histogram for CrossingAmplitudes(i).

 commscope.eyediagram

1-99

HORHISTRF is a matrix that holds the crossing point histograms for rise and fall time
levels. HORHISTRF(i,:) represents the histogram for AmplitudeThreshold(i).

The following example shows this method's use:

% Create an eye diagram scope object

h = commscope.eyediagram('RefreshPlot', 'off');

% Prepare a noisy sinusoidal as input

hChan = comm.AWGNChannel('NoiseMethod', 'Signal to noise ratio (SNR)',...

 'SNR', 20);

x = step(hChan, 0.5*sin(2*pi*(0:1/100:10))+ j*0.5*cos(2*pi*(0:1/100:10)));

% Update the eyediagram

update(h, x);

% Export the data

[eyec eyel horhistx horhistrf] = exportdata(h);

% Plot line data

t=0:1/h.SamplingFrequency:h.SymbolsPerTrace/h.SymbolRate;

plot(t, real(eyel)); xlabel('time (s)');...

 ylabel('Amplitude (AU)'); grid on;

% Plot 2D Color data

t=0:1/h.SamplingFrequency:h.SymbolsPerTrace/h.SymbolRate;

a=h.MinimumAmplitude:h.AmplitudeResolution:h.MaximumAmplitude;

imagesc(t,a,eyec); xlabel('time (s)'); ylabel('Amplitude (AU)');

reset

This method resets the eye diagram object.

reset(h) resets the eye diagram object h. Resetting h clears all the collected data.

The following example shows this method's use:

% Create an eye diagram scope object

h = commscope.eyediagram('RefreshPlot', 'off');

% Prepare a noisy sinusoidal as input

hChan = comm.AWGNChannel('NoiseMethod', 'Signal to noise ratio (SNR)',...

 'SNR', 20);

x = step(hChan, 0.5*sin(2*pi*(0:1/100:10))+ j*0.5*cos(2*pi*(0:1/100:10)));

update(h, x); % update the eyediagram

h.SamplesProcessed % Check the number of proccessed samples

reset(h); % reset the object

h.SamplesProcessed % Check the number of proccessed samples

1 Functions — Alphabetical List

1-100

copy

This method copies the eye diagram object.

h = copy(ref_obj) creates a new eye diagram object h and copies the properties of
object h from properties of ref_obj.

The following example shows this method's use:

% Create an eye diagram scope object

h = commscope.eyediagram('MinimumAmplitude', -3, ...

 'MaximumAmplitude', 3);

disp(h); % display object properties

h1 = copy(h)

disp

This method displays properties of the eye diagram object.

disp(h) displays relevant properties of eye diagram object h.

If a property is not relevant to the object's configuration, it is not displayed. For example,
for a commscope.eyediagram object, the ColorScale property is not relevant when
PlotType property is set to '2D Line'. In this case the ColorScale property is not
displayed.

The following is an example of its use:

% Create an eye diagram scope object

h = commscope.eyediagram;

% Display object properties

disp(h);

h = commscope.eyediagram('PlotType', '2D Line')

close

This method closes the eye diagram object figure.

close(h) closes the figure of the eye diagram object h.

The following example shows this method's use:

 commscope.eyediagram

1-101

% Create an eye diagram scope object

h = commscope.eyediagram;

% Call the plot method to display the scope

plot(h);

% Wait for 1 seconds

pause(1)

% Close the scope

close(h)

analyze

This methods executes eye diagram measurements. analyze(h) executes the eye diagram
measurements on the collected data of the eye diagram scope object h. The results of the
measurements are stored in the Measurements property of h. See “Measurements” on
page 1-101 for more information.

In some cases, the analyze method cannot determine a measurement value. If this
problem occurs, verify that your settings for measurement setup values or the eye
diagram are valid.

Measurements

You can obtain the following measurements on an eye diagram:

• Amplitude Measurements

• Eye Amplitude
• Eye Crossing Amplitude
• Eye Crossing Percentage
• Eye Height
• Eye Level
• Eye SNR
• Quality Factor
• Vertical Eye Opening

• Time Measurements

• Deterministic Jitter

1 Functions — Alphabetical List

1-102

• Eye Crossing Time
• Eye Delay
• Eye Fall Time
• Eye Rise Time
• Eye Width
• Horizontal Eye Opening
• Peak-to-Peak Jitter
• Random Jitter
• RMS Jitter
• Total Jitter

Measurements assume that the eye diagram object has valid data. A valid eye diagram
has two distinct eye crossing points and two distinct eye levels.

The deterministic jitter, horizontal eye opening, quality factor, random jitter, and vertical
eye opening measurements utilize a dual-Driac algorithm. Jitter is the deviation of
a signal’s timing event from its intended (ideal) occurrence in time [1]. Jitter can be
represented with a dual-Driac model. A dual-Driac model assumes that the jitter has two
components: deterministic jitter (DJ) and random jitter (RJ). The DJ PDF comprises two
delta functions, one at m L and one at m R. The RJ PDF is assumed to be Gaussian with
zero mean and variance σ.

The Total Jitter (TJ) PDF is the convolution of these two PDFs, which is composed of two
Gaussian curves with variance s and mean values m L and m R. See the following figure.

 commscope.eyediagram

1-103

The dual-Dirac model is described in [5] in more detail. The amplitude of the two Dirac
functions may not be the same. In such a case, the analyze method estimates these
amplitudes, r L and r R.

Amplitude Measurements

You can use the vertical histogram to obtain a variety of amplitude measurements.
For complex signals, measurements are done on both in-phase and the quadrature
components, unless otherwise specified.

Note: For amplitude measurements, at least one bin per vertical histogram must reach
10 hits before the measurement is taken, ensuring higher accuracy.

1 Functions — Alphabetical List

1-104

Eye Amplitude (EyeAmplitude)

Eye Amplitude, measured in Amplitude Units (AU), is defined as the distance between
two neighboring eye levels. For an NRZ signal, there are only two levels: the high level
(level 1 in figure) and the low level (level 0 in figure). The eye amplitude is the difference
of these two values, as shown in figure [3].

Eye Crossing Amplitude (EyeCrossingLevel)

Eye crossing amplitudes are the amplitude levels at which the eye crossings occur,
measured in Amplitude Units (AU). The analyze method calculates this value using the
mean value of the vertical histogram at the crossing times [3]. See the following figure.

 commscope.eyediagram

1-105

The next figure shows the vertical histogram at the first eye crossing time.

Eye Crossing Percentage (EyeOpeningVer)

Eye Crossing Percentage is the location of the eye crossing levels as a percentage of the
eye amplitude.

Eye Height (EyeHeight)

Eye Height, measured in Amplitude Units (AU), is defined as the 3σ distance between
two neighboring eye levels.

1 Functions — Alphabetical List

1-106

For an NRZ signal, there are only two levels: the high level (level 1 in figure) and the low
level (level 0 in figure). The eye height is the difference of the two 3σ points, as shown
in the next figure. The 3σ point is defined as the point that is three standard deviations
away from the mean value of a PDF.

Eye Level (EyeLevel)

Eye Level is the amplitude level used to represent data bits, measured in Amplitude
Units (AU).

For an ideal NRZ signal, there are two eye levels: +A and –A. The analyze method
calculates eye levels by estimating the mean value of the vertical histogram in a window
around the EyeDelay, which is also the 50% point between eye crossing times [3].
The width of this window is determined by the EyeLevelBoundary property of the
eyemeasurementsetup object, shown in the next figure.

 commscope.eyediagram

1-107

The analyze method calculates the mean value of all the vertical histograms within
the eye level boundaries. The mean vertical histogram appears in the following figure.
There are two distinct PDFs, one for each eye level. The mean values of the individual
histograms are the eye levels as shown in this figure.

Eye SNR (EyeSNR)

Eye signal-to-noise ratio is defined as the ratio of the eye amplitude to the sum of the
standard deviations of the two eye levels. It can be expressed as:

SNR = L L1 0

1 0

-

+s s

1 Functions — Alphabetical List

1-108

where L1 and L0 represent eye level 1 and 0, respectively, and s 1 and s 2 are the
standard deviation of eye level 1 and 0, respectively.

For an NRZ signal, eye level 1 corresponds to the high level, and the eye level 0
corresponds to low level.

Quality Factor (QualityFactor)

The analyze method calculates Quality Factor the same way as the eye SNR. However,
instead of using the mean and standard deviation values of the vertical histogram for
L1 and s 1, the analyze method uses the mean and standard deviation values estimated
using the dual-Dirac method. [2] See dual-Dirac section for more detail.

Vertical Eye Opening (EyeOpeningVer)

Vertial Eye Opening is defined as the vertical distance between two points on the vertical
histogram at EyeDelay that corresponds to the BER value defined by the BERThreshold
property of the eyemeasurementsetup object. The analyze method calculates this
measurement taking into account the random and deterministic components using
a dual-Dirac model [5] (see the Dual Dirac Section). A typical BER value for the eye
opening measurements is 10-12, which approximately corresponds to the 7σ point
assuming a Gaussian distribution.

Time Measurements

You can use the horizontal histogram of an eye diagram to obtain a variety of timing
measurements.

Note: For time measurements, at least one bin per horizontal histogram must reach 10
hits before the measurement is taken.

Deterministic Jitter (JitterDeterministic)

Deterministic Jitter is the deterministic component of the jitter. You calculate it using the
tail mean value, which is estimated using the dual-Dirac method as follows [5]:

DJ = m L — m R

 commscope.eyediagram

1-109

where m L and m R are the mean values returned by the dual-Dirac algorithm.

Eye Crossing Time (EyeCrossingTime)

Eye crossing times are calculated as the mean of the horizontal histogram for each
crossing point, around the reference amplitude level. This value is measured in seconds.
The mean value of all the horizontal PDFs is calculated in a region defined by the
CrossingBandWith property of the eyemeasurementsetup object.

The region is from -Atotal* BW to +Atotal* BW, where Atotal is the total amplitude range of
the eye diagram (i.e., A total = A max — Amin) and BW is the crossing band width, shown in
the following figure.

The following figure shows the average PDF in this region. Because this example
assumes two symbols per trace, there are two crossing points.

1 Functions — Alphabetical List

1-110

Note: When an eye crossing time measurement falls within the [-0.5/Fs, 0) seconds
interval, the time measurement wraps to the end of the eye diagram, i.e., the
measurement wraps by 2*Ts seconds (where Ts is the symbol time). For a complex signal
case, the analyze method issues a warning if the crossing time measurement of the in-
phase branch wraps while that of the quadrature branch does not (or vice versa).

To avoid the time-wrapping or a warning, add a half-symbol duration delay to the
current value in the MeasurementDelay property of the eye diagram object. This
additional delay repositions the eye in the approximate center of the scope.

Eye Delay (EyeDelay)

Eye Delay is the distance from the midpoint of the eye to the time origin, measured in
seconds. The analyze method calculates this distance using the crossing time. For a
symmetric signal, EyeDelay is also the best sampling point.

 commscope.eyediagram

1-111

Eye Fall Time (EyeFallTime)

Eye Fall Time is the mean time between the high and low threshold values defined by the
AmplitudeThreshold property of the eyemeasurementsetup object. The previous figure
shows the fall time calculated from 10% to 90% of the eye amplitude.

Eye Rise Time (EyeRiseTime)

Eye Rise Time is the mean time between the low and high threshold values defined by
the AmplitudeThreshold property of the eyemeasurementsetup object. The following
figure shows the rise time calculated from 10% to 90% of the eye amplitude.

1 Functions — Alphabetical List

1-112

Eye Width (EyeWidth)

Eye Width is the horizontal distance between two points that are three standard
deviations (3σ) from the mean eye crossing times, towards the center of the eye. The
value for Eye Width measurements is seconds.

 commscope.eyediagram

1-113

Horizontal Eye Opening (EyeOpeningHor)

Horizontal Eye Opening is the horizontal distance between two points on the horizontal
histogram that correspond to the BER value defined by the BERThreshold property
of the eyemeasurementsetup object. The measurement is take at the amplitude value
defined by the ReferenceAmplitude property of the eyemeasurementsetup object. It is
calculated taking into account the random and deterministic components using a dual-
Dirac model [5] (see the Dual Dirac Section).

A typical BER value for the eye opening measurements is 10-12, which approximately
corresponds to the 7 s point assuming a Gaussian distribution.

Peak-to-Peak Jitter (JitterP2P)

Peak-To-Peak Jitter is the difference between the extreme data points of the histogram.

Random Jitter (JitterRandom)

Random Jitter is defined as the Gaussian unbounded component of the jitter. The
analyze method calculates it using the tail standard deviation estimated using the dual-
Dirac method as follows [5]:

1 Functions — Alphabetical List

1-114

RJ = (QL + QR) * s

where

Q erfc
BER

L
L

=
Ê

Ë
Á

ˆ

¯
˜

-
2

21
*

*

r

and

Q erfc
BER

R
R

=
Ê

Ë
Á

ˆ

¯
˜

-
2

21
*

*

r

BER is the bit error ratio at which the random jitter is calculated. It is defined with the
BERThreshold property of the eyemeasuremensetup object.

RMS Jitter (JitterRMS)

RMS Jitter is the standard deviation of the jitter calculated from the horizontal
histogram.

Total Jitter (JitterTotal)

Total Jitter is the sum of the random jitter and the deterministic jitter [5].

Measurement Setup Parameters

A number of set-up parameters control eye diagram measurements. This section
describes these set-up parameters and the measurements they affect.

Eye Level Boundaries

Eye Level Boundaries are defined as a percentage of the symbol duration. The analyze
method calculates the eye levels by averaging the vertical histogram within a given
time interval defined by the eye level boundaries. A common value you can use for NRZ
signals is 40% to 60%. For RZ signals, a narrower band of 5% is more appropriate. The
default setting for Eye level Boundaries is a 2-by-1 vector where the first element is
the lower boundary and the second element is the upper boundary. When the eye level
boundary changes, the object recalculates this value.

 commscope.eyediagram

1-115

Reference Amplitude

Reference Amplitude is the boundary value at which point the signal crosses from one
signal level to another. Reference amplitude represents the decision boundary of the
modulation scheme. This value is used to perform jitter measurements. The default
setting for Reference Amplitude is a 2-by-1 double vector where the first element is the
lower boundary and the second element is the upper boundary. Setting the reference
amplitude resets the eye diagram.

The crossing instants of the input signal are detected and recorded as crossing times. A
common value you can use for NRZ signals is 0. For RZ signals, you can use the mean
value of 1 and 0 levels. Reference amplitude is stored in a 2-by-N matrix, where the first
row is the in-phase values and second row is the quadrature values. See Eye Crossing
Time for more information.

Crossing Bandwidth

Crossing Bandwidth is the amplitude band used to measure the crossing times of the eye
diagram. Crossing Bandwidth represents a percentage of the amplitude span of the eye
diagram, typically 5%. See Eye Crossing Time for more information. The default setting
for Crossing Bandwidth is 0.0500.

Bit Error Rate Threshold

The eye opening measurements, random, and total jitter measurements are performed
at a given BER value. This BER value defines the BER threshold. A typical value is
1e-12. The default setting for Bit Error Threshold is 1.0000e-12. When the bit error rate
threshold changes, the object recalculates this value.

Amplitude Threshold

The rise time of the signal is defined as the time required for the signal to travel from
the lower amplitude threshold to the upper amplitude threshold. The fall time, measured
from the upper amplitude threshold to the lower amplitude threshold, is defined as a
percentage of the eye amplitude. The default setting is 10% for the lower threshold and
90% for the upper threshold. Setting the amplitude threshold resets the eye diagram. See
Eye Rise Time and Eye Fall Time for more information.

1 Functions — Alphabetical List

1-116

Jitter Hysteresis

You can use the JitterHysteresis property of the eyemeasurementsetup object to
remove the effect of noise from the horizontal histogram estimation. The default value for
Jitter Hysteresis is zero. Setting the jitter hysteresis value resets the eye diagram.

If channel noise impairs the signal being tested, as shown in the following figure, the
signal may seem like it crosses the reference amplitude level multiple times during a
single 0-1 or 1-0 transition.

See the zoomed—in image for more detail.

 commscope.eyediagram

1-117

To eliminate the effect of noise, define a hysteresis region between two threshold values:
Aref + ΔA and Aref - ΔA, where Aref is the reference amplitude value and ΔA is the jitter
hysteresis value. If the signal crosses both threshold values, level crossing is declared.
Then, linear interpolation calculates the crossing point in the horizontal histogram
estimation.

Examples

% Construct an eye diagram object for signals in the range

% of [-3 3]

h = commscope.eyediagram('MinimumAmplitude', -3, ...

 'MaximumAmplitude', 3)

% Construct an eye diagram object for a signal with

% 1e-3 seconds of transient time

h = commscope.eyediagram('MeasurementDelay', 1e-3)

% Construct an eye diagram object for '2D Line' plot type

% with 100 traces to display

h = commscope.eyediagram('PlotType', '2D Line', ...

 'NumberOfStoredTraces', 100)

1 Functions — Alphabetical List

1-118

References

[1] Nelson Ou, et al, Models for the Design and Test of Gbps-Speed Serial
Interconnects,IEEE Design & Test of Computers, pp. 302-313, July-August 2004.

[2] HP E4543A Q Factor and Eye Contours Application Software, Operating Manual,
http://agilent.com

[3] Agilent 71501D Eye-Diagram Analysis, User’s Guide, http://www.agilent.com

[4] 4] Guy Foster, Measurement Brief: Examining Sampling Scope Jitter Histograms,
White Paper, SyntheSys Research, Inc., July 2005.

[5] Jitter Analysis: The dual-Dirac Model, RJ/DJ, and Q-Scale, White Paper, Agilent
Technologies, December 2004, http://www.agilent.com

See Also
commscope

 commscope.ScatterPlot

1-119

commscope.ScatterPlot
Create Scatter Plot scope

Syntax

h = commscope.ScatterPlot

h = commscope.ScatterPlot('PropertyName',PropertyValue,...)

Description

commscope.ScatterPlot collects data and displays results in a Figure window. You
can create a scatter plot using a default configuration or by defining properties.

h = commscope.ScatterPlot returns a scatter plot scope, h.

h = commscope.ScatterPlot('PropertyName',PropertyValue,...) returns a
scatter plot scope, h, with property values set to PropertyValues. See the Properties
section of this help page for valid PropertyNames.

Properties

A ScatterPlot object has the properties shown on the following table. All properties are
writable except for the ones explicitly noted otherwise.

Property Description

Type 'Scatter Plot'. This is a read-only property.
SamplingFrequency Sampling frequency of the input signal in

Hz.
SamplesPerSymbol Number of samples used to represent a

symbol.
SymbolRate The symbol rate of the input signal. This

property is read-only and is automatically
computed based on SamplingFrequency
and SamplesPerSymbol.

1 Functions — Alphabetical List

1-120

Property Description

MeasurementDelay The time in seconds the scope will wait
before starting to collect data.

SamplingOffset The number of samples skipped at
each sampling point relative to the
MeasurementDelay.

Constellation Expected constellation of the input signal.
RefreshPlot The switch that controls the plot refresh

style. The choices are:

• 'on' - The scatter plot refreshes every
time the update method is called.

• 'off' - The scatter plot does not refresh
when the update method is called.

SamplesProcessed The number of samples processed by
the scope. This value does not include
the discarded samples during the
MeasurementDelay period. This property
is read-only.

PlotSettings Plot settings control the scatter plot figure.

• SymbolStyle - Line style of symbols
• SignalTrajectory - The switch to control

the visibility of the signal trajectory.
The choices are 'on' or 'off”.

• SignalTrajectoryStyle - Line style of
signal trajectory

• Constellation - The switch to control the
visibility of the constellation points. The
choices are 'on' or 'off”.

• ConstellationStyle - Line style of signal
trajectory

• Grid - The switch to control the
visibility of the grid. The choices are 'on'
or 'off”.

 commscope.ScatterPlot

1-121

Methods

A Scatter Plot has the following methods.

autoscale

This method automatically scales the plot figure so its entire contents displays.

close

This method closes the scatter plot figure.

disp

This method displays the scatter plot properties.

plot

This method creates a scatter plot figure. If a figure exists, this method updates the
figure's contents.

plot(h) plots a scatter plot figure using default settings.

reset

This method resets the collected data of the scatter plot object.

reset(h) resets the collected data of the scatter plot object h. Resetting h also clears the
plot and NumberOfSymbols.

update

This method updates the collected data of the scatter plot.

update(h, r) updates the collected data of the scatter plot, where h is the handle of the
scatter plot object and r is the complex input data under test. This method updates the
collected data and the plot (if RefreshPlot is true).

1 Functions — Alphabetical List

1-122

More About
• “Scatter Plots and Constellation Diagrams”

 commsrc.pattern

1-123

commsrc.pattern
Construct pattern generator object

Syntax

h = commsrc.pattern

Description

h = commsrc.pattern constructs a pattern generator object, h. This syntax is
equivalent to:

h = commsrc.pattern('SamplingFrequency', 10000, ...

 'SamplesPerSymbol', 100, ...

 'PulseType', 'NRZ', ...

 'OutputLevels', [-1 1], ...

 'RiseTime', 0, ...

 'FallTime', 0, ...

 'DataPattern', 'PRBS7', ...

 'Jitter', commsrc.combinedjitter)

The pattern generator object produces modulated data patterns. This object can also
inject jitter into the modulated signal.

Properties

A pattern generator object has the properties shown on the following table. You can edit
all properties, except those explicitly noted otherwise.

Property Description

Type Type of pattern generator object ('Pattern
Generator'). This property is not writable.

SamplingFrequency Sampling frequency of the input signal in hertz.
SymbolRate The symbol rate of the input signal. This property

depends upon the SamplingFequency and

1 Functions — Alphabetical List

1-124

Property Description

SamplesPerSymbol properties. This property is not
writable.

SamplesPerSymbol The number of samples representing a symbol.
SamplesPerSymbol must be an integer. This
property affects SymbolRate.

PulseType The type of pulse the object generates. Pulse types
available: return-to-zero (RZ) and nonreturn-to-zero
(NRZ). The initial condition for an NRZ pulse is 0.

OutputLevels Amplitude levels that correspond to the symbol
indices. For an NRZ pulse, this is a 1-by-2 vector.
The first element of the 1-by-2 vector corresponds
to the 0th symbol (data bit value 0). The second
element corresponds to the 1st symbol (data bit
value 1). For an RZ pulse, this is a scalar and the
value corresponds to the data bit value 1.

DutyCycle The duty cycle of the pulse the object generates.
Displays calculated duty cycle based on pulse
parameters. This property is not writable.

RiseTime Specifies 10% to 90% rise time of the pulse in
seconds.

PulseDuration Pulse duration in seconds defined by IEEE STD
181 standard. (See the Return-to-Zero (RZ) Signal
Conversion: Ideal Pulse to STD–181 figure in the
Methods section.) Setting PulseType to return-to-
zero enables this property.

FallTime Specifies 10% to 90% fall time of the pulse in
seconds.

DataPattern The bit sequence the object uses. The following
patterns are available: PRBS5 to PRBS15, PRBS23,
PRBS31, and User Defined.

UserDataPattern User-defined bit pattern consisting of a vector
of ones and zeroes. Setting data pattern to user
defined enables this property.

 commsrc.pattern

1-125

Property Description

Jitter Specifies jitter characteristics. Use this property to
configure Random, Periodic and Dual Dirac Jitter.

Methods

A pattern generator object has five methods, as described in this section.

generate

This method outputs a frame worth of modulated and interpolated symbols. It has one
input argument, which is the number of symbols in a frame. Its output is a double-
column vector. You can call this method using the following syntax

x = generate(h, N)

where h is the handle to the object, N is the number of output symbols, and x is a double-
column vector.

reset

This method resets the pattern generator to its default state. The property values do not
reset unless they relate to the state of the object. This method has no input arguments.

idealtostd181

This method converts the ideal pulse specifications to IEEE STD-181 specifications: 0%
to 100% rise time (TR) and fall time (TF) convert to 10% to 90% rise and fall times with
a 50% pulse width duration, as shown in the following figure. This method also sets the
appropriate properties.

idealtostd181(tR, tF, PW)

1 Functions — Alphabetical List

1-126

90%

Reference level

tR tF

Pulse duration

Tsym

50%

10%

IEEE STD-181 Return-to-Zero (RZ) Signal Parameters

std181toideal

This method converts the IEEE STD-181 pulse specifications, stored in the pattern
generator, to ideal pulse specifications. This method converts the 10% to 90% rise and
fall times to 0% to 100% rise and fall times (TR and TF). It also converts the 50% pulse
duration to pulse width (as shown in the following figure). Use the property values for
IEEE STD-181 specifications

[tr tf pw] = stdstd181toideal(h)

where h is the pattern generator object handle and tR is 0 to 100% rise time.

 commsrc.pattern

1-127

Symbol

boundary

level

PW+

PW-

tR tF

Tsym Tsym

Ideal Pulse Non-Return-to-Zero (NRZ) Signal Parameters

computedcd

Computes the duty cycle distortion, DCD, of the pulse defined by the pattern generator
object h.

DCD represents the ratio of the pulse on duration to the pulse off duration. For an NRZ
pulse, on duration is the duration the pulse spends above the symbol boundary level. Off
duration is the duration the pulse spends below zero.

dcd = computedcd(h)

The software calculates DCD given tR, tF, Tsym. This formula assumes that the symbol
boundary level is zero.

Th = (Ah-Al) * t

A

R

l

 + (Ah-Al) * t

A

F

l

 + PW+

Tl = (Ah-Al) *
t

A

R

l

 + (Ah-Al) *
t

A

F

l

 + PW-

DCD = T

T

h

l

Where Th is the duration of the high signal, Tl is the duration of the low signal, and DCD
represents the ratio of the duration of the high signal to the low signal.

1 Functions — Alphabetical List

1-128

commsrc.pn
Create PN sequence generator package

Syntax
h = commsrc.pn

h = commsrc.pn(property1,value1,...)

Description
h = commsrc.pn creates a default PN sequence generator object h, and is equivalent to
the following:

H = COMMSRC.PN('GenPoly', [1 0 0 0 0 1 1], ...

 'InitialStates', [0 0 0 0 0 1], ...

 'CurrentStates', [0 0 0 0 0 1], ...

 'Mask', [0 0 0 0 0 1], ...

 'NumBitsOut', 1)

or

H = COMMSRC.PN('GenPoly', [1 0 0 0 0 1 1], ...

 'InitialStates', [0 0 0 0 0 1], ...

 'CurrentStates', [0 0 0 0 0 1], ...

 'Shift', 0, ...

 'NumBitsOut', 1)

h = commsrc.pn(property1,value1,...) creates a PN sequence generator object,
h, with properties you specify as property/value pairs.

Properties
A PN sequence generator has the properties shown on the following table. All properties
are writable except for the ones explicitly noted otherwise.

Property Description

GenPoly Generator polynomial vector array of bits;
must be descending order

 commsrc.pn

1-129

Property Description

InitialStates Vector array (with length of the generator
polynomial order) of initial shift register
values (in bits)

CurrentStates Vector array (with length of the generator
polynomial order) of present shift register
values (in bits)

NumBitsOut Number of bits to output at each generate
method invocation

Mask or Shift A mask vector of binary 0 and 1 values is
used to specify which shift register state
bits are XORed to produce the resulting
output bit value.

Alternatively, a scalar shift value may be
used to specify an equivalent shift (either a
delay or advance) in the output sequence.

The 'GenPoly' property values specify the shift register connections. Enter these values
as either a binary vector or a vector of exponents of the nonzero terms of the generator
polynomial in descending order of powers. For the binary vector representation, the
first and last elements of the vector must be 1. For the descending-ordered polynomial
representation, the last element of the vector must be 0. For more information and
examples, see the LFSR SSRG Details section of this page.

Methods

A PN sequence generator is equipped with the following methods.

generate

Generate [NumBitsOut x 1] PN sequence generator values

reset

Set the CurrentStates values to the InitialStates values

1 Functions — Alphabetical List

1-130

getshift

Get the actual or equivalent Shift property value

getmask

Get the actual or equivalent Mask property value

copy

Make an independent copy of a commsrc.pn object

disp

Display PN sequence generator object properties

Side Effects of Setting Certain Properties

Setting the GenPoly Property

Every time this property is set, it will reset the entire object. In addition to changing
the polynomial values, 'CurrentStates', 'InitialStates', and 'Mask' will be set
to their default values ('NumBitsOut' will remain the same), and no warnings will be
issued.

Setting the InitialStates Property

Every time this property is set, it will also set 'CurrentStates' to the new
'InitialStates' setting.

LFSR SSRG Details

The generate method produces a pseudorandom noise (PN) sequence using a linear
feedback shift register (LFSR). The LFSR is implemented using a simple shift register
generator (SSRG, or Fibonacci) configuration, as shown below.

 commsrc.pn

1-131

gr-1

r-1 r-2 0

gr gr-2

mr-1 mr-2 m0

g1 g0

Output

XOR addition

All r registers in the generator update their values at each time step according to the
value of the incoming arrow to the shift register. The adders perform addition modulo 2.
The shift register is described by the 'GenPoly' property (generator polynomial), which
is a primitive binary polynomial in z, grzr+gr-1zr-1+gr-2zr-2+...+g0. The coefficient gk is 1 if
there is a connection from the kth register, as labeled in the preceding diagram, to the
adder. The leading term gr and the constant term g0 of the 'GenPoly' property must be
1 because the polynomial must be primitive.

You can specify the Generator polynomial parameter using either of these formats:

• A vector that lists the coefficients of the polynomial in descending order of powers.
The first and last entries must be 1. Note that the length of this vector is one more
than the degree of the generator polynomial.

• A vector containing the exponents of z for the nonzero terms of the polynomial in
descending order of powers. The last entry must be 0.

For example, [1 0 0 0 0 0 1 0 1] and [8 2 0] represent the same polynomial, p(z)
= z8 + z2 + 1.

The Initial states parameter is a vector specifying the initial values of the registers. The
Initial states parameter must satisfy these criteria:

1 Functions — Alphabetical List

1-132

• All elements of the Initial states vector must be binary numbers.
• The length of the Initial states vector must equal the degree of the generator

polynomial.

Note At least one element of the Initial states vector must be nonzero in order for
the block to generate a nonzero sequence. That is, the initial state of at least one of
the registers must be nonzero.

For example, the following table indicates two sets of parameter values that correspond
to a generator polynomial of p(z) = z8 + z2 + 1.

Quantity Example 1 Example 2

Generator
polynomial

g1 = [1 0 0 0 0 0 1 0 1] g2 = [8 2 0]

Degree of
generator
polynomial

8, which is length(g1)-1 8

Initial states [1 0 0 0 0 0 1 0] [1 0 0 0 0 0 1 0]

Output mask vector (or scalar shift value) shifts the starting point of the output
sequence. With the default setting for this parameter, the only connection is along the
arrow labeled m0, which corresponds to a shift of 0. The parameter is described in greater
detail below.

You can shift the starting point of the PN sequence with Output mask vector (or
scalar shift value). You can specify the parameter in either of two ways:

• An integer representing the length of the shift
• A binary vector, called the mask vector, whose length is equal to the degree of the

generator polynomial

The difference between the block's output when you set Output mask vector (or scalar
shift value) to 0, versus a positive integer d, is shown in the following table.

 T = 0 T = 1 T = 2 ... T = d T = d+1

Shift = 0 x0 x1 x2 ... xd xd+1

Shift = d xd xd+1 xd+2 ... x2d x2d+1

 commsrc.pn

1-133

Alternatively, you can set Output mask vector (or scalar shift value) to a binary
vector, corresponding to a polynomial in z, mr-1zr-1 + mr-2zr-2 + ... + m1z + m0, of degree at
most r-1. The mask vector corresponding to a shift of d is the vector that represents m(z)
= zd modulo g(z), where g(z) is the generator polynomial. For example, if the degree of the
generator polynomial is 4, then the mask vector corresponding to d = 2 is [0 1 0 0],
which represents the polynomial m(z) = z2. The preceding schematic diagram shows how
Output mask vector (or scalar shift value) is implemented when you specify it as a
mask vector. The default setting for Output mask vector (or scalar shift value) is 0.
You can calculate the mask vector using the Communications System Toolbox function
shift2mask.

Sequences of Maximum Length

If you want to generate a sequence of the maximum possible length for a fixed degree,
r, of the generator polynomial, you can set Generator polynomial to a value from the
following table. See Proakis, John G., Digital Communications, Third edition, New York,
McGraw Hill, 1995 for more information about the shift-register configurations that
these polynomials represent.

r Generator Polynomial r Generator Polynomial

2 [2 1 0] 21 [21 19 0]

3 [3 2 0] 22 [22 21 0]

4 [4 3 0] 23 [23 18 0]

5 [5 3 0] 24 [24 23 22 17 0]

6 [6 5 0] 25 [25 22 0]

7 [7 6 0] 26 [26 25 24 20 0]

8 [8 6 5 4 0] 27 [27 26 25 22 0]

9 [9 5 0] 28 [28 25 0]

10 [10 7 0] 29 [29 27 0]

11 [11 9 0] 30 [30 29 28 7 0]

12 [12 11 8 6 0] 31 [31 28 0]

13 [13 12 10 9 0] 32 [32 31 30 10 0]

14 [14 13 8 4 0] 33 [33 20 0]

15 [15 14 0] 34 [34 15 14 1 0]

1 Functions — Alphabetical List

1-134

r Generator Polynomial r Generator Polynomial

16 [16 15 13 4 0] 35 [35 2 0]

17 [17 14 0] 36 [36 11 0]

18 [18 11 0] 37 [37 12 10 2 0]
19 [19 18 17 14 0] 38 [38 6 5 1 0]
20 [20 17 0] 39 [39 8 0]
40 [40 5 4 3 0] 47 [47 14 0]
41 [41 3 0] 48 [48 28 27 1 0]
42 [42 23 22 1 0] 49 [49 9 0]
43 [43 6 4 3 0] 50 [50 4 3 2 0]
44 [44 6 5 2 0] 51 [51 6 3 1 0]
45 [45 4 3 1 0] 52 [52 3 0]
46 [46 21 10 1 0] 53 [53 6 2 1 0]

Examples

Setting up the PN sequence generator

This figure defines a PN sequence generator with a generator polynomial p(z) = z 6 + z
+ 1. You can set up the PN sequence generator by typing the following at the MATLAB
command line:

 commsrc.pn

1-135

h1 = commsrc.pn('GenPoly', [1 0 0 0 0 1 1], 'Mask', [1 1 0 1 0 1]);

h2 = commsrc.pn('GenPoly', [1 0 0 0 0 1 1], 'Shift', 22);

mask2shift ([1 0 0 0 0 1 1],[1 1 0 1 0 1])

The output of the example is given below:

ans =

 22

Alternatively, you can input GenPoly as the exponents of z for the nonzero terms of the
polynomial in descending order of powers:

h = commsrc.pn('GenPoly', [6 1 0], 'Mask', [1 1 0 1 0 1])

General Use of commsrc.pn

The following is an example of typical usage:

% Construct a PN object

h = commsrc.pn('Shift', 0);

% Output 10 PN bits

set(h, 'NumBitsOut', 10);

generate(h)

% Output 10 more PN bits

generate(h)

% Reset (to the initial shift register state values)

reset(h);

% Output 4 PN bits

set(h, 'NumBitsOut', 4);

generate(h)

Behavior of a Copied commsrc.pn Object

When a commsrc.pn object is copied, its states are also copied. The subsequent outputs,
therefore, from the copied object are likely to be different from the initial outputs from
the original object. The following code illustrates this behavior:

h = commsrc.pn('Shift', 0);

1 Functions — Alphabetical List

1-136

set(h, 'NumBitsOut', 5);

generate(h)

h generates the sequence:

 1

 0

 0

 0

 0

However, if h is copied to g, and g is made to generate a sequence:

g=copy(h);

generate(g)

the generated sequence is different from that initially generated from h:

 0

 1

 0

 0

 0

This difference occurs because the state of h having generated 5 bits was copied to g. If g
is reset:

reset(g);

generate(g)

then it generates the same sequence that h did:

 1

 0

 0

 0

 0

See Also
mask2shift | shift2mask

 commstartup

1-137

commstartup
Default Simulink model settings for Communications System Toolbox software

Syntax

commstartup

Description

commstartup changes the default Simulink model settings to values more appropriate
for the simulation of communication systems. The changes apply to new models that you
create later in the MATLAB® session, but not to previously created models.

Note The DSP System Toolbox™ application includes a similar dspstartup script, which
assigns different model settings. For modeling communication systems, you should use
commstartup alone.

To install the communications-related model settings each time you start MATLAB,
invoke commstartup from your startup.m file.

To be more specific, the settings in commstartup cause models to:

• Use the variable-step discrete solver in single-tasking mode
• Use starting and ending times of 0 and Inf, respectively
• Avoid producing a warning or error message for inherited sample times in source

blocks
• Set the Simulink Boolean logic signals parameter to Off
• Avoid saving output or time information to the workspace
• Produce an error upon detecting an algebraic loop
• Inline parameters if you use the Model Reference feature of Simulink

If your communications model does not work well with these default settings, you can
change each of the individual settings as the model requires.

1 Functions — Alphabetical List

1-138

See Also
startup

 commtest.ErrorRate

1-139

commtest.ErrorRate

Create error rate test console

Syntax

h = commtest.ErrorRate

h = commtest.ErrorRate(sys)

h = commtest.ErrorRate(sys,'PropertyName',PropertyValue,...)

h = commtest.ErrorRate('PropertyName',PropertyValue,...)

Description

h = commtest.ErrorRate returns an error rate test console, h. The error rate test
console runs simulations of a system under test to obtain error rates.

h = commtest.ErrorRate(sys) returns an error rate test console, error rate test
console, h, with each specified property set to the h, with an attached system under test,
SYS.

h = commtest.ErrorRate(sys,'PropertyName',PropertyValue,...) returns
an error rate test console, h, with an attached system under test, sys. Each specified
property, 'PropertyName', is set to the specified value, PropertyValue.

h = commtest.ErrorRate('PropertyName',PropertyValue,...) returns
an error rate test console, h, with each specified property 'PropertyName', set to the
specified value, PropertyValue.

Properties

The error rate test console object has the properties in the following table. Setting any
property resets the object. A property that is irrelevant is one that you can set, but its
value does not affect measurements. Similarly, you cannot display irrelevant properties
using the disp method. You can write to all properties, except for the ones explicitly
noted otherwise.

1 Functions — Alphabetical List

1-140

Property Description

Description 'Error Rate Test Console'. Read-only.
SystemUnderTestName System under test name. Read-only.
FrameLength Specify the length of the transmission frame at each iteration.

This property becomes relevant only when the system under test
registers a valid test input.

• If the system under test registers a NumTransmissions
test input and calls its getInput method, the error rate test
console returns the value stored in FrameLength. Using an
internal data source, the system under test uses this value to
generate a transmission frame of the specified length.

• If the system under test registers a DiscreteRandomSource
test input and calls its getInput method, the test console
generates and returns a frame of symbols. The length of the
frame of symbols matches the FrameLength property. This
property defaults to 500.

 commtest.ErrorRate

1-141

Property Description

IterationMode Specify how the object determines simulation points.

• If set to Combinatorial, the object performs simulations for
all possible combinations of registered test parameter sweep
values.

• If set to Indexed, the object performs simulations for all
indexed sweep value sets. The ith sweep value set consists of
the ith element of every sweep value vector for each registered
test parameter. All sweep value vectors must have equal
length, except for values that are unit length.

Note that for the following sweep parameter settings:

• Parameter1 = [a1 a2]
• Parameter2 = [b1 b2]
• Parameter3 = [c1]

In Indexed Mode, the test console performs simulations for the
following sweep parameter sets:
(a1, b1, c1)
(a2, b2, c1)
In Combinatorial Mode, the test console performs simulations
for the following sweep parameter sets:
(a1, b1, c1)
(a1, b2, c1)
(a2, b1, c1)
(a2, b2, c1)

SystemResetMode Specify the stage of a simulation run at which the system resets.

• Setting to Reset at new simulation point resets the
system under test at the beginning of a new simulation point.

• Setting to Reset at every iteration resets the system
under test at every iteration.

1 Functions — Alphabetical List

1-142

Property Description

SimulationLimitOption Specify how to stop the simulation for each sweep parameter
point.

• If set to Number of transmissions the simulation
for a sweep parameter point stops when the number of
transmissions equals the value for MaxNumTransmissions.

• Set TransmissionCountTestPoint to the name of the
registered test point containing the transmission count
you are comparing to MaxNumTransmissions.

• If set to Number of errors the simulation for a sweep
parameter point stops when the number of errors equals the
value for MinNumErrors.

• Set the ErrorCountTestPoint to the name of the
registered test point containing the error count you are
comparing to the MinNumErrors.

• Setting to Number of errors or transmissions stops
the simulation for a sweep parameter point when meeting
one of two conditions.

• The simulation stops when the number of transmissions
equals the value for MaxNumTransmissions.

• The simulation stops when obtaining the number of errors
matching NumErrors.

• Setting this property to Number of errors and
transmissions stops the simulation for a sweep parameter
point when meeting the following condition.

• The simulation stops when the number of transmissions
and the number errors have at least reached the values in
MinNumTransmissions and MinNumErrors.

Set TransmissionCountTestPoint to the name of the
registered test point that contains the transmission count you
are comparing to the MaxNumTransmissions property.

 commtest.ErrorRate

1-143

Property Description

To control the simulation length, set ErrorCountTestPoint to
the name of the registered test point containing the error count
you are comparing to MinNumErrors.

Call the info method of the error rate test console to see the
valid registered test point names.

MaxNumTransmissions Specify the maximum number of transmissions the
object counts before stopping the simulation for a sweep
parameter point. This property becomes relevant only when
SimulationLimitOption is Number of transmissions or
Number of errors or transmissions.

• When setting SimulationLimitOption to Number of
transmissions the simulation for each sweep parameter
point stops when reaching the number of transmissions
MaxNumTransmissions specifies.

• Setting SimulationLimitOption to Number of errors
or transmissions stops the simulation for each sweep
parameter point for one of two conditions.

• The simulation stops when completing the number of
transmissions MaxNumTransmissions specifies.

• The simulation stops when obtaining the number of errors
MinNumErrors specifies.

The TransmissionCountTestPoint property supplies
the name of a registered test point containing the count
transmission type. Calling the info method of the error rate
test console displays the valid registered test points. If this
property contains registered test points, the test console runs
iterations equal to the value for MaxNumTransmissions for
each sweep parameter point. If this property has no registered
test parameters, the test console runs the number of iterations
equal to the value for MaxNumTransmissions and stops. The
value defaults to 1000.

1 Functions — Alphabetical List

1-144

Property Description

MinNumErrors Specify the minimum number of errors the object counts
before stopping the simulation for a sweep parameter point.
This property becomes relevant only when setting the
SimulationLimitOption to Number of errors or Number
of errors or transmissions.

• When setting SimulationLimitOption to Number of
errors the simulation for each parameter point stops
when reaching the number of errors you specify for the
MinNumErrors property.

• When setting the SimulationLimitOption property to
Number of errors or transmissions the simulation for
each sweep parameter point stops for one of two conditions.

• The simulation stops when reaching the number of errors
you specify for the MaxNumTransmissions property.

• The simulation stops when reaching the number of errors
you specify for the MinNumErrors property.

Specify the type of errors the error count uses by setting the
ErrorCountTestPoint property to the name of a registered
test point containing the count. Call the info method of the
error rate test console to see the valid registered test point
names. This value defaults to 100.

TransmissionCountTestPoint Specify and register a test point containing the transmission
count that controls the test console simulation stop
mechanism. This property becomes relevant only when setting
SimulationLimitOption to Number of transmissions,
Number of errors or transmissions, or Number of
errors and transmissions. In this scenario, if you register
a test point, and TransmissionCountTestPoint equals Not
set, the value of this property automatically updates to that of
the registered test point name. Call the info method to see the
valid test point names.

 commtest.ErrorRate

1-145

Property Description

ErrorCountTestPoint Specify and register the name of a test point containing
the error count that controls the simulation stop
mechanism. This property is only relevant when setting the
SimulationLimitOption property to Number of errors,
Number of errors or transmissions, or Number of
errors and transmissions. In this scenario, if you register
a test point, and ErrorCountTestPoint equals Not set,
the value of this property automatically updates to that of the
registered test point name. Call the info method to see the
valid test point names.

Methods

The error rate test console object has the following methods:

run

Runs a simulation.

Runs the number of error rate simulations you specify for a system under test with a
specified set of parameter values. If a Parallel Computing Toolbox™ license is available
and a parpool is open, then the object distributes the iterations among the number of
workers available.

getResults

Returns the simulation results.

r = getResults(h) returns the simulation results, r, for the test console, h. r is an object of
the type you specify using testconsole.Results. It contains the simulation data for all the
registered test points and methods to parse the data and plot it.

info

Returns a report of the current test console settings.

1 Functions — Alphabetical List

1-146

info(h) displays the current test console settings, such as registered test parameters and
registered test points.

reset

Resets the error rate test console.

reset(h) resets test parameters and test probes and then clears all simulation results of
test console, h.

attachSystem

Attaches a system to test console.

attachSystem(ho,sys) attaches a valid user-defined system, sys, to the test console, h.

detachSystem

Detaches the system from the test console.

detachSystem(h) detaches a system from the test console, h. This method also clears the
registered test inputs, test parameters, test probes, and test points.

setTestParameterSweepValues

Sets test parameter sweep values.

setTestParameterSweepValues(h,name,sweep) specifies a set of sweep values, 'sweep',
for the registered test parameter, 'name', in the test console, h. You only specify sweep
values for registered test parameters. sweep must have values within the specified range
of the test parameter. It can be a row vector of numeric values, or a cell array of char
values. Display the valid ranges using the getTestParameterValidRanges method.

setTestParameterSweepValues(h,name1,sweep1,name2,sweep2...) simultaneously
specifies sweep values for multiple registered test parameters.

getTestParameterSweepValues

Returns test parameter sweep values.

 commtest.ErrorRate

1-147

getTestParameterSweepValues(h,name) gets the sweep values currently specified for the
registered test parameter, name, in the test console, h.

getTestParameterValidRanges

Returns the test parameter valid ranges.

getTestParameterValidRanges(h,name) gets the valid ranges for a registered test
parameter, name, in the test console, h.

registerTestPoint

Registers a test point.

registerTestPoint(h, name, actprobe,expprobe) registers a new test point object, name, to
the error rate test console, h. The test point must contain a pair of registered test probes,
actprobe, and expprobe. actprobe contains actual data, and expprobe contains expected
data. The object compares the data from these probes and obtains error rate values. The
error rate calculation uses a default error rate calculator function that simply performs
one-to-one comparisons of the data vectors available in the probes.

registerTestPoint(h, name, actprobe,expprobe, handle) adds the handle, handle, to a
user-defined error calculation function that compares the data in the probes and then
obtains error rate results.

The user-defined error calculation function must comply with the following syntax: [ecnt
tcnt] = functionName(act, exp, udata) where

• ecnt output corresponds to the error count
• tcnt output is the number of transmissions used to obtain the error count
• act and exp correspond to actual and expected data

The error rate test console sets the inputs to the data available in the pair of test point
probes, actprobe, and expprobe.

udata is a data input that the system under test passes to the test console at run time,
using the setUserData method. udata contains the data necessary to compute errors,
such as delays and data buffers.

The error rate test console passes the data that the system under test logs to the error
calculation functions for all the registered test points. Calling the info method returns

1 Functions — Alphabetical List

1-148

the names of the registered test points and the error rate calculator functions associated
with them. It also returns the names of the registered test probes.

unregisterTestPoint

Unregister a test point.

unregisterTestPoint(h,name) removes the test point, name, from the test console, h.

Examples
% Obtain bit error rate and symbol error rate of an M-PSK system

% for different modulation orders and EbNo values.

% Instantiate an ErrorRate test console. The default error rate

% test console has an M-PSK system attached.

 h = commtest.ErrorRate;

% Set sweep values for simulation test parameters

setTestParameterSweepValues(h,'M',2.^[1 2 3 4])

setTestParameterSweepValues(h,'EbNo',(-5:5))

% Register test points

registerTestPoint(h,'SymbolErrorRate','TxInputSymbols',...,

'RxOutputSymbols')

registerTestPoint(h,'BitErrorRate','TxInputBits','RxOutputBits')

% Set simulation stop criteria.

h.TransmissionCountTestPoint = 'SymbolErrorRate';

% Get information about the simulation settings

info(h)

% Run the MPSK simulations

run(h)

% Get the results

R = getResults(h);

% Plot EbNo versus bit error rate for different values of modulation

% order M

R.TestParameter2 = 'M';

 commtest.ErrorRate

1-149

plot(R)

This example generates a figure similar to the following:

More About
• “Running Simulations Using the Error Rate Test Console”
• “Error Rate Test Console”

See Also
testconsole.Results

1 Functions — Alphabetical List

1-150

compand

Source code mu-law or A-law compressor or expander

Syntax

out = compand(in,param,v)

out = compand(in,Mu,v,'mu/compressor')

out = compand(in,Mu,v,'mu/expander')

out = compand(in,A,v,'A/compressor')

out = compand(in,A,v,'A/expander')

Description

out = compand(in,param,v) implements a µ-law compressor for the input vector
in. Mu specifies µ, and v is the input signal's maximum magnitude. out has the same
dimensions and maximum magnitude as in.

out = compand(in,Mu,v,'mu/compressor') is the same as the syntax above.

out = compand(in,Mu,v,'mu/expander') implements a µ-law expander for the
input vector in. Mu specifies µ and v is the input signal's maximum magnitude. out has
the same dimensions and maximum magnitude as in.

out = compand(in,A,v,'A/compressor') implements an A-law compressor for
the input vector in. The scalar A is the A-law parameter, and v is the input signal's
maximum magnitude. out is a vector of the same length and maximum magnitude as in.

out = compand(in,A,v,'A/expander') implements an A-law expander for
the input vector in. The scalar A is the A-law parameter, and v is the input signal's
maximum magnitude. out is a vector of the same length and maximum magnitude as in.

Note: The prevailing parameters used in practice are µ= 255 and A = 87.6.

 compand

1-151

Examples

The examples below illustrate the fact that compressors and expanders perform inverse
operations.

compressed = compand(1:5,87.6,5,'a/compressor')

expanded = compand(compressed,87.6,5,'a/expander')

The output is

compressed =

 3.5296 4.1629 4.5333 4.7961 5.0000

expanded =

 1.0000 2.0000 3.0000 4.0000 5.0000

More About

Algorithms

For a given signal x, the output of the µ-law compressor is

y
V x V

x=
+

+

log(/)

log()
sgn()

1

1

m

m

where V is the maximum value of the signal x, µ is the µ-law parameter of the
compander, log is the natural logarithm, and sgn is the signum function (sign in
MATLAB).

The output of the A-law compressor is

y

A x

A
x

V A x V

A
x

x
V

A

V

A

=
+

+

+

£ £
1

1

1

0
log

sgn()

(log(/))

log
sgn()

for

for << £

Ï

Ì

Ô
Ô

Ó

Ô
Ô

x V

1 Functions — Alphabetical List

1-152

where A is the A-law parameter of the compander and the other elements are as in the µ-
law case.
• “Compand a Signal”

References

[1] Sklar, Bernard, Digital Communications: Fundamentals and Applications, Englewood
Cliffs, NJ, Prentice-Hall, 1988.

See Also
quantiz | dpcmenco | dpcmdeco

 convdeintrlv

1-153

convdeintrlv

Restore ordering of symbols using shift registers

Syntax

deintrlved = convdeintrlv(data,nrows,slope)

[deintrlved,state] = convdeintrlv(data,nrows,slope)

[deintrlved,state] = convdeintrlv(data,nrows,slope,init_state)

Description

deintrlved = convdeintrlv(data,nrows,slope) restores the ordering of elements
in data by using a set of nrows internal shift registers. The delay value of the kth shift
register is (nrows-k)*slope, where k = 1, 2, 3,..., nrows. Before the function begins to
process data, it initializes all shift registers with zeros. If data is a matrix with multiple
rows and columns, the function processes the columns independently.

[deintrlved,state] = convdeintrlv(data,nrows,slope) returns a structure
that holds the final state of the shift registers. state.value stores any unshifted
symbols. state.index is the index of the next register to be shifted.

[deintrlved,state] = convdeintrlv(data,nrows,slope,init_state)

initializes the shift registers with the symbols contained in init_state.value and
directs the first input symbol to the shift register referenced by init_state.index. The
structure init_state is typically the state output from a previous call to this same
function, and is unrelated to the corresponding interleaver.

Using an Interleaver-Deinterleaver Pair

To use this function as an inverse of the convintrlv function, use the same nrows and
slope inputs in both functions. In that case, the two functions are inverses in the sense
that applying convintrlv followed by convdeintrlv leaves data unchanged, after
you take their combined delay of nrows*(nrows-1)*slope into account. To learn more
about delays of convolutional interleavers, see “Delays of Convolutional Interleavers”.

1 Functions — Alphabetical List

1-154

Examples

The example in “Effect of Delays on Recovery of Convolutionally Interleaved Data Using
MATLAB” uses convdeintrlv and illustrates how you can handle the delay of the
interleaver/deinterleaver pair when recovering data.

The example on the reference page for muxdeintrlv illustrates how to use the state
output and init_state input with that function; the process is analogous for this
function.

More About
• “Interleaving”

References

[1] Heegard, Chris, and Stephen B. Wicker, Turbo Coding, Boston, Kluwer Academic
Publishers, 1999.

See Also
convintrlv | muxdeintrlv

 convenc

1-155

convenc
Convolutionally encode binary data

Syntax

code = convenc(msg,trellis)

code = convenc(msg,trellis,puncpat)

code = convenc(msg,trellis,...,init_state)

[code,final_state] = convenc(...)

Description

code = convenc(msg,trellis) encodes the binary vector msg using the
convolutional encoder whose MATLAB trellis structure is trellis. For details about
MATLAB trellis structures, see “Trellis Description of a Convolutional Code”. Each
symbol in msg consists of log2(trellis.numInputSymbols) bits. The vector msg
contains one or more symbols. The output vector code contains one or more symbols,
each of which consists of log2(trellis.numOutputSymbols) bits.

code = convenc(msg,trellis,puncpat) is the same as the syntax above, except
that it specifies a puncture pattern, puncpat, to allow higher rate encoding. puncpat
must be a vector of 1s and 0s, where the 0s indicate the punctured bits. puncpat must
have a length of at least log2(trellis.numOutputSymbols) bits.

code = convenc(msg,trellis,...,init_state) allows the encoder registers to
start at a state specified by init_state. init_state is an integer between 0 and
trellis.numStates-1 and must be the last input parameter.

[code,final_state] = convenc(...) encodes the input message and also
returns the encoder's state in final_state. final_state has the same format as
init_state.

Examples

Encodes five two-bit symbols using a rate 2/3 convolutional code. A schematic of this
encoder is on the poly2trellis reference page.

1 Functions — Alphabetical List

1-156

s = RandStream.create('mt19937ar', 'seed',123);

prevStream = RandStream.setGlobalStream(s); % Set stream for repeatability

code1 = convenc(randi([0 1],10,1),...

poly2trellis([5 4],[23 35 0; 0 5 13]));

RandStream.setGlobalStream(prevStream); % Restore default stream

The following syntax defines the encoder's trellis structure explicitly and then uses
convenc to encode 10 one-bit symbols. A schematic of this encoder is in “Trellis
Description of a Convolutional Code”.

trel = struct('numInputSymbols',2,'numOutputSymbols',4,...

'numStates',4,'nextStates',[0 2;0 2;1 3;1 3],...

'outputs',[0 3;1 2;3 0;2 1]);

code2 = convenc(randi([0 1],10,1),trel);

The following syntax illustrates how to use the final state and initial state arguments
when invoking convenc repeatedly. Notice that [code3; code4] is the same as the
earlier example's output, code1.

s = RandStream.create('mt19937ar', 'seed',123);

prevStream = RandStream.setGlobalStream(s); % Set stream for repeatability

trel = poly2trellis([5 4],[23 35 0; 0 5 13]);

msg = randi([0 1],10,1);

% Encode part of msg, recording final state for later use.

[code3,fstate] = convenc(msg(1:6),trel);

% Encode the rest of msg, using state as an input argument.

code4 = convenc(msg(7:10),trel,fstate);

RandStream.setGlobalStream(prevStream); % Restore default stream

Examples

For some commonly used puncture patterns for specific rates and polynomials, see the
last three references.

More About
• “Convolutional Codes”

 convenc

1-157

References

[1] Clark, G. C. Jr. and J. Bibb Cain., Error-Correction Coding for Digital
Communications, New York, Plenum Press, 1981.

[2] Gitlin, Richard D., Jeremiah F. Hayes, and Stephen B. Weinstein, Data
Communications Principles, New York, Plenum, 1992.

[3] Yasuda, Y., et. al., “High rate punctured convolutional codes for soft decision Viterbi
decoding,” IEEE Transactions on Communications, vol. COM-32, No. 3, pp 315–
319, Mar. 1984.

[4] Haccoun, D., and G. Begin, “High-rate punctured convolutional codes for Viterbi and
sequential decoding,” IEEE Transactions on Communications, vol. 37, No. 11, pp
1113–1125, Nov. 1989.

[5] Begin, G., et.al., “Further results on high-rate punctured convolutional codes for
Viterbi and sequential decoding,” IEEE Transactions on Communications, vol. 38,
No. 11, pp 1922–1928, Nov. 1990.

See Also
distspec | vitdec | poly2trellis | istrellis

1 Functions — Alphabetical List

1-158

convintrlv
Permute symbols using shift registers

Syntax

intrlved = convintrlv(data,nrows,slope)

[intrlved,state] = convintrlv(data,nrows,slope)

[intrlved,state] = convintrlv(data,nrows,slope,init_state)

Description

intrlved = convintrlv(data,nrows,slope) permutes the elements in data by
using a set of nrows internal shift registers. The delay value of the kth shift register is
(k-1)*slope, where k = 1, 2, 3,... nrows. Before the function begins to process data,
it initializes all shift registers with zeros. If data is a matrix with multiple rows and
columns, the function processes the columns independently.

[intrlved,state] = convintrlv(data,nrows,slope) returns a structure that
holds the final state of the shift registers. state.value stores any unshifted symbols.
state.index is the index of the next register to be shifted.

[intrlved,state] = convintrlv(data,nrows,slope,init_state) initializes
the shift registers with the symbols contained in init_state.value and directs the
first input symbol to the shift register referenced by init_state.index. The structure
init_state is typically the state output from a previous call to this same function,
and is unrelated to the corresponding deinterleaver.

Examples

The example below shows that convintrlv is a special case of the more general function
muxintrlv. Both functions yield the same numerical results.

x = randi([0 1],100,1); % Original data

nrows = 5; % Use 5 shift registers

slope = 3; % Delays are 0, 3, 6, 9, and 12.

 convintrlv

1-159

y = convintrlv(x,nrows,slope); % Interleaving using convintrlv.

delay = [0:3:12]; % Another way to express set of delays

y1 = muxintrlv(x,delay); % Interleave using muxintrlv.

isequal(y,y1)

The output below shows that y, obtained using convintrlv, and y1, obtained using
muxintrlv, are the same.

ans =

 1

Another example using this function is in “Effect of Delays on Recovery of
Convolutionally Interleaved Data Using MATLAB”.

The example on the muxdeintrlv reference page illustrates how to use the state
output and init_state input with that function; the process is analogous for this
function.

More About
• “Interleaving”

References

[1] Heegard, Chris, and Stephen B. Wicker, Turbo Coding, Boston, Kluwer Academic
Publishers, 1999.

See Also
convdeintrlv | muxintrlv | helintrlv

1 Functions — Alphabetical List

1-160

convmtx
Convolution matrix of Galois field vector

Syntax

A = convmtx(c,n)

Description

A convolution matrix is a matrix, formed from a vector, whose inner product with another
vector is the convolution of the two vectors.

A = convmtx(c,n) returns a convolution matrix for the Galois vector c. The output A
is a Galois array that represents convolution with c in the sense that conv(c,x) equals

• A*x, if c is a column vector and x is any Galois column vector of length n. In this case,
A has n columns and m+n-1 rows.

• x*A, if c is a row vector and x is any Galois row vector of length n. In this case, A has
n rows and m+n-1 columns.

Examples

The code below illustrates the equivalence between using the conv function and
multiplying by the output of convmtx.

m = 4;

c = gf([1; 9; 3],m); % Column vector

n = 6;

x = gf(randi([0 2^m-1],n,1),m);

ck1 = isequal(conv(c,x), convmtx(c,n)*x) % True

ck2 = isequal(conv(c',x'),x'*convmtx(c',n)) % True

The output is

ck1 =

 convmtx

1-161

 1

ck2 =

 1

More About
• “Signal Processing Operations in Galois Fields”

See Also
conv

1 Functions — Alphabetical List

1-162

cosets
Produce cyclotomic cosets for Galois field

Syntax

cst = cosets(m)

Description

cst = cosets(m) produces cyclotomic cosets mod 2^m-1. Each element of the cell
array cst is a Galois array that represents one cyclotomic coset.

A cyclotomic coset is a set of elements that share the same minimal polynomial.
Together, the cyclotomic cosets mod 2^m-1 form a partition of the group of nonzero
elements of GF(2^m). For more details on cyclotomic cosets, see the works listed in
“References” on page 1-163.

Examples

The commands below find and display the cyclotomic cosets for GF(8). As an example of
interpreting the results, c{2} indicates that A, A2, and A2 + A share the same minimal
polynomial, where A is a primitive element for GF(8).

c = cosets(3);

c{1}'

c{2}'

c{3}'

The output is below.

ans = GF(2^3) array. Primitive polynomial = D^3+D+1 (11 decimal)

Array elements =

 1

 cosets

1-163

ans = GF(2^3) array. Primitive polynomial = D^3+D+1 (11 decimal)

Array elements =

 2 4 6

ans = GF(2^3) array. Primitive polynomial = D^3+D+1 (11 decimal)

Array elements =

 3 5 7

References

[1] Blahut, Richard E., Theory and Practice of Error Control Codes, Reading, MA,
Addison-Wesley, 1983, p. 105.

[2] Lin, Shu, and Daniel J. Costello, Jr., Error Control Coding: Fundamentals and
Applications, Englewood Cliffs, NJ, Prentice-Hall, 1983.

See Also
minpol

1 Functions — Alphabetical List

1-164

crc.detector
Construct CRC detector object

Syntax
h= crc.detector(polynomial)

h= crc.detector(generatorObj)

h= crc.detector(‘Polynomial’, polynomial, ‘param1’, val1, etc.)

h= crc.detector

Description
h= crc.detector(polynomial) constructs a CRC detector object H defined by the
generator polynomial POLYNOMIAL

h= crc.detector(generatorObj) constructs a CRC detector object H defined by the
parameters found in the CRC generator object GENERATOROBJ

h= crc.detector(‘property1’, val1, ...) constructs a CRC detector object H
with properties as specified by PROPERTY/VALUE pairs.

h= crc.detector constructs a CRC detector object H with default properties. It
constructs a CRC-CCITT detector, and is equivalent to:

h= crc.detector('Polynomial', '0x1021', 'InitialState', '0xFFFF',

'ReflectInput', ...

false, 'ReflectRemainder', false, 'FinalXOR', '0x0000')

Properties

The following table describes the properties of a CRC detector object. All properties are
writable, except Type.

Property Description

Type Specifies the object as a 'CRC Detector'.

 crc.detector

1-165

Property Description

Polynomial The generator polynomial that defines
connections for a linear feedback shift
register. This property can be specified as
a binary vector representing descending
powers of the polynomial. In this case,
the leading '1' of the polynomial must
be included. It can also be specified
as a string, prefaced by '0x', that is
a hexadecimal representation of the
descending powers of the polynomial. In
this case, the leading '1' of the polynomial
is omitted.

InitialState The initial contents of the shift register.
This property can be specified as a binary
scalar, a binary vector, or as a string,
prefaced by '0x', that is a hexadecimal
representation of the binary vector. As
a binary vector, its length must be one
less than the length of the binary vector
representation of the Polynomial.

ReflectInput A Boolean quantity that specifies whether
the input data should be flipped on a
bytewise basis prior to entering the shift
register.

ReflectRemainder A Boolean quantity that specifies whether
the binary output CRC checksum should
be flipped around its center after the
input data is completely through the shift
register.

1 Functions — Alphabetical List

1-166

Property Description

FinalXOR The value with which the CRC checksum
is to be XORed just prior to detecting the
input data. This property can be specified
as a binary scalar, a binary vector or
as a string, prefaced by '0x', that is a
hexadecimal representation of the binary
vector. As a binary vector, its length must
be one less than the length of the binary
vector representation of the Polynomial.

A detect method is used with the object to detect errors in digital transmission.

CRC Generation Algorithm

For information pertaining to the CRC generation algorithm, see “ ” in the
Communications System Toolbox User's Guide.

Detector Method

[OUTDATA ERROR] = DETECT(H, INDATA) detects transmission errors in the encoded
input message INDATA by regenerating a CRC checksum using the CRC detector object
H. The detector then compares the regenerated checksum with the checksum appended
to INDATA. The binary-valued INDATA can be either a column vector or a matrix. If it
is a matrix, each column is considered to be a separate channel. OUTDATA is identical to
the input message INDATA, except that it has the CRC checksum stripped off. ERROR is
a 1xC logical vector indicating if the encoded message INDATA has errors, where C is the
number of channels in INDATA. An ERROR value of 0 indicates no errors, and a value of
1 indicates errors.

Examples

The following three examples demonstrate the use of constructing an object. The fourth
example demonstrates use of the detect method.

% Construct a CRC detector with a polynomial

% defined by x^4+x^3+x^2+x+1:

h = crc.detector([1 1 1 1 1])

 crc.detector

1-167

This example generates the following output:

h =

 Type: CRC Detector

 Polynomial: 0xF

 InitialState: 0x0

 ReflectInput: false

 ReflectRemainder: false

 FinalXOR: 0x0

% Construct a CRC detector with a polynomial

% defined by x^3+x+1, with

% zero initial states, and with an all-ones

% final XOR value:

h = crc.detector('Polynomial', [1 0 1 1], ...

'InitialState', [0 0 0], 'FinalXOR', [1 1 1])

This example generates the following output:

h =

 Type: CRC Detector

 Polynomial: [1 0 1 1]

 InitialState: [0 0 0]

 ReflectInput: false

 ReflectRemainder: false

 FinalXOR: [1 1 1]

% Construct a CRC detector with a polynomial

% defined by x^4+x^3+x^2+x+1,

% all-ones initial states, reflected input, and all-zeros

% final XOR value:

 h = crc.detector('Polynomial', '0xF', 'InitialState', ...

 '0xF', 'ReflectInput', true, 'FinalXOR', '0x0')

This example generates the following output:

h =

 Type: CRC Detector

 Polynomial: 0xF

 InitialState: 0xF

 ReflectInput: true

 ReflectRemainder: false

1 Functions — Alphabetical List

1-168

 FinalXOR: 0x0

% Create a CRC-16 CRC generator, then use it to generate

% a checksum for the

% binary vector represented by the

% ASCII sequence '123456789'.

% Introduce an error, then detect it

% using a CRC-16 CRC detector.

gen = crc.generator('Polynomial', '0x8005', 'ReflectInput', ...

true, 'ReflectRemainder', true);

det = crc.detector('Polynomial', '0x8005', 'ReflectInput', ...

true, 'ReflectRemainder', true);

% The message below is an ASCII representation

% of the digits 1-9

msg = reshape(de2bi(49:57, 8, 'left-msb')', 72, 1);

encoded = generate(gen, msg);

encoded(1) = ~encoded(1); % Introduce an error

[outdata error] = detect(det, encoded); % Detect the error

noErrors = isequal(msg, outdata) % Should be 0

error % Should be 1

This example generates the following output:

noErrors =

 0

error =

 1

See Also
crc.generator

 crc.generator

1-169

crc.generator
Construct CRC generator object

Syntax

h = crc.generator(polynomial)

h = crc.generator(detectorObj)

h = crc.generator(‘Polynomial’, polynomial, ‘param1’, val1, etc.)

h = crc.generator

Description

h = crc.generator(polynomial) constructs a CRC generator object H defined by
the generator polynomial POLYNOMIAL.

h = crc.generator(detectorObj) constructs a CRC generator object H defined by
the parameters found in the CRC detector object DETECTOROBJ.

h = crc.generator(‘property1', val1, ...) constructs a CRC generator object
H with properties as specified by the PROPERTY/VALUE pairs.

h = crc.generator constructs a CRC generator object H with default properties. It
constructs a CRC-CCITT generator, and is equivalent to: h = crc.generator('Polynomial',
'0x1021', 'InitialState', '0xFFFF', ...

'ReflectInput', false, 'ReflectRemainder', false, 'FinalXOR', '0x0000').

Properties

The following table describes the properties of a CRC generator object. All properties are
writable, except Polynomial.

Property Description

Polynomial The generator polynomial that defines
connections for a linear feedback shift

1 Functions — Alphabetical List

1-170

Property Description

register. This property can be specified as
a binary vector representing descending
powers of the polynomial. In this case,
the leading '1' of the polynomial must
be included. It can also be specified
as a string, prefaced by '0x', that is
a hexadecimal representation of the
descending powers of the polynomial. In
this case, the leading '1' of the polynomial
is omitted.

InitialState The initial contents of the shift register.
This property can be specified as a binary
scalar, a binary vector, or as a string,
prefaced by '0x', that is a hexadecimal
representation of the binary vector. As
a binary vector, its length must be one
less than the length of the binary vector
representation of the Polynomial.

ReflectInput A Boolean quantity that specifies whether
the input data should be flipped on a
bytewise basis prior to entering the shift
register.

ReflectRemainder A Boolean quantity that specifies whether
the binary output CRC checksum should
be flipped around its center after the
input data is completely through the shift
register.

FinalXOR The value with which the CRC checksum is
to be XORed just prior to being appended
to the input data. This property can be
specified as a binary scalar, a binary
vector, or as a string, prefaced by '0x',
that is a hexadecimal representation of
the binary vector. As a binary vector, its
length must be one less than the length
of the binary vector representation of the
Polynomial.

 crc.generator

1-171

CRC Generation Algorithm

For information pertaining to the CRC generation algorithm, refer to the “CRC Non-
Direct Algorithm” section of the Communications System Toolbox User's Guide.

Generator Method

encoded = generate(h, msg) generates a CRC checksum for an input message using the
CRC generator object H. It appends the checksum to the end of MSG. The binary-valued
MSG can be either a column vector or a matrix. If it is a matrix, then each column is
considered to be a separate channel.

Usage Example

The following examples demonstrate the use of this object.

% Construct a CRC generator with a polynomial defined

% by x^4+x^3+x^2+x+1:

h = crc.generator([1 1 1 1 1])

% Construct a CRC generator with a polynomial defined

% by x^4+x^3+x^2+x+1, all-ones initial states, reflected

% input, and all-zeros final XOR value:

h = crc.generator('Polynomial', '0xF', 'InitialState', ...

'0xF', 'ReflectInput', true, 'FinalXOR', '0x0')

% Create a CRC-16 CRC generator, then use it to generate

% a checksum for the

% binary vector represented by the ASCII sequence '123456789'.

gen = crc.generator('Polynomial', '0x8005', ...

'ReflectInput', true, 'ReflectRemainder', true);

% The message below is an ASCII representation of ...

% the digits 1-9

msg = reshape(de2bi(49:57, 8, 'left-msb')', 72, 1);

encoded = generate(gen, msg);

% Construct a CRC generator with a polynomial defined

% by x^3+x+1, with zero initial states,

% and with an all-ones final XOR value:

h = crc.generator('Polynomial', [1 0 1 1], ...

 'InitialState', [0 0 0], ...

 'FinalXOR', [1 1 1])

1 Functions — Alphabetical List

1-172

See Also
crc.detector

 cyclgen

1-173

cyclgen
Produce parity-check and generator matrices for cyclic code

Syntax

h = cyclgen(n,pol)

h = cyclgen(n,pol,opt)

[h,g] = cyclgen(...)

[h,g,k] = cyclgen(...)

Description

For all syntaxes, the codeword length is n and the message length is k. A polynomial
can generate a cyclic code with codeword length n and message length k if and only if
the polynomial is a degree-(n-k) divisor of x^n-1. (Over the binary field GF(2), x^n-1
is the same as x^n+1.) This implies that k equals n minus the degree of the generator
polynomial.

h = cyclgen(n,pol) produces an (n-k)-by-n parity-check matrix for a systematic
binary cyclic code having codeword length n. The row vector pol gives the binary
coefficients, in order of ascending powers, of the degree-(n-k) generator polynomial.

h = cyclgen(n,pol,opt) is the same as the syntax above, except that the argument
opt determines whether the matrix should be associated with a systematic or
nonsystematic code. The values for opt are 'system' and 'nonsys'.

[h,g] = cyclgen(...) is the same as h = cyclgen(...), except that it also
produces the k-by-n generator matrix g that corresponds to the parity-check matrix h.

[h,g,k] = cyclgen(...) is the same as [h,g] = cyclgen(...), except that it also
returns the message length k.

Examples

The code below produces parity-check and generator matrices for a binary cyclic code
with codeword length 7 and message length 4.

1 Functions — Alphabetical List

1-174

pol = cyclpoly(7,4);

[parmat,genmat,k] = cyclgen(7,pol)

The output is

parmat =

 1 0 0 1 1 1 0

 0 1 0 0 1 1 1

 0 0 1 1 1 0 1

genmat =

 1 0 1 1 0 0 0

 1 1 1 0 1 0 0

 1 1 0 0 0 1 0

 0 1 1 0 0 0 1

k =

 4

In the output below, notice that the parity-check matrix is different from parmat above,
because it corresponds to a nonsystematic cyclic code. In particular, parmatn does not
have a 3-by-3 identity matrix in its leftmost three columns, as parmat does.

parmatn = cyclgen(7,cyclpoly(7,4),'nonsys')

parmatn =

 1 1 1 0 1 0 0

 0 1 1 1 0 1 0

 0 0 1 1 1 0 1

More About
• “Block Codes”

See Also
encode | decode | bchgenpoly | cyclpoly

 cyclpoly

1-175

cyclpoly

Produce generator polynomials for cyclic code

Syntax

pol = cyclpoly(n,k)

pol = cyclpoly(n,k,opt)

Description

For all syntaxes, a polynomial is represented as a row containing the coefficients in order
of ascending powers.

pol = cyclpoly(n,k) returns the row vector representing one nontrivial generator
polynomial for a cyclic code having codeword length n and message length k.

pol = cyclpoly(n,k,opt) searches for one or more nontrivial generator
polynomials for cyclic codes having codeword length n and message length k. The output
pol depends on the argument opt as shown in the table below.

opt Significance of pol Format of pol

'min' One generator polynomial
having the smallest possible
weight

Row vector representing the
polynomial

'max' One generator polynomial
having the greatest possible
weight

Row vector representing the
polynomial

'all' All generator polynomials M Matrix, each row of which
represents one such
polynomial

a positive integer, L All generator polynomials
having weight L

Matrix, each row of which
represents one such
polynomial

1 Functions — Alphabetical List

1-176

The weight of a binary polynomial is the number of nonzero terms it has. If no generator
polynomial satisfies the given conditions, the output pol is empty and a warning
message is displayed.

Examples

The first command below produces representations of three generator polynomials for a
[15,4] cyclic code. The second command shows that 1 + x + x2 + x3+ x5+ x7+ x8+ x11 is one
such polynomial having the largest number of nonzero terms.

c1 = cyclpoly(15,4,'all')

c2 = cyclpoly(15,4,'max')

The output is

c1 =

 Columns 1 through 10

 1 1 0 0 0 1 1 0 0 0

 1 0 0 1 1 0 1 0 1 1

 1 1 1 1 0 1 0 1 1 0

 Columns 11 through 12

 1 1

 1 1

 0 1

c2 =

 Columns 1 through 10

 1 1 1 1 0 1 0 1 1 0

 Columns 11 through 12

 0 1

This command shows that no generator polynomial for a [15,4] cyclic code has exactly
three nonzero terms.

 cyclpoly

1-177

c3 = cyclpoly(15,4,3)

Warning: No cyclic generator polynomial satisfies the given constraints.

> In cyclpoly at 131

c3 =

 []

More About

Algorithms

If opt is 'min', 'max', or omitted, polynomials are constructed by converting decimal
integers to base p. Based on the decimal ordering, gfprimfd returns the first polynomial
it finds that satisfies the appropriate conditions. This algorithm is similar to the one used
in gfprimfd.
• “Block Codes”

See Also
cyclgen | encode

1 Functions — Alphabetical List

1-178

de2bi

Convert decimal numbers to binary vectors

Syntax

b = de2bi(d)

b = de2bi(d,n)

b = de2bi(d,n,p)

b = de2bi(d,[],p)

b = de2bi(d,...,flg)

Description

b = de2bi(d) converts a nonnegative decimal integer d to a binary row vector.
If d is a vector, the output b is a matrix, each row of which is the binary form of the
corresponding element in d. If d is a matrix, de2bi treats it like the vector d(:).

Note: By default, de2bi uses the first column of b as the lowest-order digit.

b = de2bi(d,n) is the same as b = de2bi(d), except that its output has n columns,
where n is a positive integer. An error occurs if the binary representations would require
more than n digits. If necessary, the binary representation of d is padded with extra
zeros.

b = de2bi(d,n,p) converts a nonnegative decimal integer d to a base-p row vector,
where p is an integer greater than or equal to 2. The first column of b is the lowest base-p
digit. b is padded with extra zeros if necessary, so that it has n columns, where n is a
positive integer. An error occurs if the base-p representations would require more than n
digits. If d is a nonnegative decimal vector, the output b is a matrix, each row of which is
the (possibly zero-padded) base-p form of the corresponding element in d. If d is a matrix,
de2bi treats it like the vector d(:).

b = de2bi(d,[],p) specifies the base p but not the number of columns.

 de2bi

1-179

b = de2bi(d,...,flg) uses the string flg to determine whether the first column of
b contains the lowest-order or highest-order digits. Values for flg are 'right-msb' and
'left-msb'. The value 'right-msb' produces the default behavior.

Examples

The code below counts to 10 in decimal and binary.

d = (1:10)';

b = de2bi(d);

disp(' Dec Binary ')

disp(' ----- -------------------')

disp([d, b])

The output is below.

 Dec Binary

 ----- -------------------

 1 1 0 0 0

 2 0 1 0 0

 3 1 1 0 0

 4 0 0 1 0

 5 1 0 1 0

 6 0 1 1 0

 7 1 1 1 0

 8 0 0 0 1

 9 1 0 0 1

 10 0 1 0 1

The command below shows how de2bi pads its output with zeros.

bb = de2bi([3 9],5) % Zero-padding the output

bb =

 1 1 0 0 0

 1 0 0 1 0

The commands below show how to convert a decimal integer to base three without
specifying the number of columns in the output matrix. They also show how to place the
most significant digit on the left instead of on the right.

t = de2bi(12,[],3) % Convert 12 to base 3.

1 Functions — Alphabetical List

1-180

tleft = de2bi(12,[],3,'left-msb') % Significant digit on left

The output is

t =

 0 1 1

tleft =

 1 1 0

See Also
bi2de

 decode

1-181

decode
Block decoder

Syntax

msg = decode(code,n,k,'hamming/fmt',prim_poly)

msg = decode(code,n,k,'linear/fmt',genmat,trt)

msg = decode(code,n,k,'cyclic/fmt',genpoly,trt)

msg = decode(code,n,k)

[msg,err] = decode(...)

[msg,err,ccode] = decode(...)

[msg,err,ccode,cerr] = decode(...)

Optional Inputs

Input Default Value

fmt binary

prim_poly gfprimdf(m) where n = 2^m-1
genpoly cyclpoly(n,k)

trt Uses syndtable to create the syndrome
decoding table associated with the method's
parity-check matrix

Description

For All Syntaxes

The decode function aims to recover messages that were encoded using an error-
correction coding technique. The technique and the defining parameters must match
those that were used to encode the original signal.

The “For All Syntaxes” on page 1-248 section on the encode reference page explains
the meanings of n and k, the possible values of fmt, and the possible formats for code

1 Functions — Alphabetical List

1-182

and msg. You should be familiar with the conventions described there before reading the
rest of this section. Using the decode function with an input argument code that was
not created by the encode function might cause errors.

For Specific Syntaxes

msg = decode(code,n,k,'hamming/fmt',prim_poly) decodes code using the
Hamming method. For this syntax, n must have the form 2m-1 for some integer m greater
than or equal to 3, and k must equal n-m. prim_poly is a row vector that gives the
binary coefficients, in order of ascending powers, of the primitive polynomial for GF(2m)
that is used in the encoding process. The default value of prim_poly is gfprimdf(m).
The decoding table that the function uses to correct a single error in each codeword is
syndtable(hammgen(m)).

msg = decode(code,n,k,'linear/fmt',genmat,trt) decodes code, which is a
linear block code determined by the k-by-n generator matrix genmat. genmat is required
as input. decode tries to correct errors using the decoding table trt, where trt is a
2^(n-k)-by-n matrix.

msg = decode(code,n,k,'cyclic/fmt',genpoly,trt) decodes the cyclic code
code and tries to correct errors using the decoding table trt, where trt is a 2^(n-k)-
by-n matrix. genpoly is a row vector that gives the coefficients, in order of ascending
powers, of the binary generator polynomial of the code. The default value of genpoly is
cyclpoly(n,k). By definition, the generator polynomial for an [n, k] cyclic code must
have degree n-k and must divide xn-1.

msg = decode(code,n,k) is the same as msg = decode(code,n,k,'hamming/
binary').

[msg,err] = decode(...) returns a column vector err that gives information about
error correction. If the code is a convolutional code, err contains the metric calculations
used in the decoding decision process. For other types of codes, a nonnegative integer
in the rth row of err indicates the number of errors corrected in the rth message word;
a negative integer indicates that there are more errors in the rth word than can be
corrected.

[msg,err,ccode] = decode(...) returns the corrected code in ccode.

[msg,err,ccode,cerr] = decode(...) returns a column vector cerr whose
meaning depends on the format of code:

 decode

1-183

• If code is a binary vector, a nonnegative integer in the rth row of vec2matcerr
indicates the number of errors corrected in the rth codeword; a negative integer
indicates that there are more errors in the rth codeword than can be corrected.

• If code is not a binary vector, cerr = err.

Examples

On the reference page for encode, some of the example code illustrates the use of the
decode function.

The example below illustrates the use of err and cerr when the coding method is
not convolutional code and the code is a binary vector. The script encodes two five-bit
messages using a cyclic code. Each codeword has 15 bits. Errors are added to the first
two bits of the first codeword and the first bit of the second codeword. Then decode is
used to recover the original message. As a result, the errors are corrected. err reflects
the fact that the first message was recovered after correcting two errors, while the
second message was recovered after correcting one error. cerr reflects the fact that the
first codeword was decoded after correcting two errors, while the second codeword was
decoded after correcting one error.

m = 4; n = 2^m-1; % Codeword length is 15.

k = 5; % Message length

msg = ones(10,1); % Two messages, five bits each

code = encode(msg,n,k,'cyclic'); % Encode the message.

% Now place two errors in first word and one error

% in the second word. Create errors by reversing bits.

noisycode = code;

noisycode(1:2) = bitxor(noisycode(1:2),[1 1]');

noisycode(16) = bitxor(noisycode(16),1);

% Decode and try to correct the errors.

[newmsg,err,ccode,cerr] = decode(noisycode,n,k,'cyclic');

disp('Transpose of err is'); disp(err')

disp('Transpose of cerr is'); disp(cerr')

The output is below.

Single-error patterns loaded in decoding table.

 1008 rows remaining.

2-error patterns loaded. 918 rows remaining.

3-error patterns loaded. 648 rows remaining.

4-error patterns loaded. 243 rows remaining.

1 Functions — Alphabetical List

1-184

5-error patterns loaded. 0 rows remaining.

Transpose of err is

 2 1

Transpose of cerr is

 2 1

More About

Algorithms

Depending on the decoding method, decode relies on such lower-level functions as
hammgen, syndtable, and cyclgen.
• “Block Codes”

See Also
encode | cyclpoly | syndtable | gen2par

 deintrlv

1-185

deintrlv
Restore ordering of symbols

Syntax
deintrlvd = deintrlv(data,elements)

Description
deintrlvd = deintrlv(data,elements) restores the original ordering of the
elements of data by acting as an inverse of intrlv. If data is a length-N vector or an
N-row matrix, elements is a length-N vector that permutes the integers from 1 to N.
To use this function as an inverse of the intrlv function, use the same elements input
in both functions. In that case, the two functions are inverses in the sense that applying
intrlv followed by deintrlv leaves data unchanged.

Examples
The code below illustrates the inverse relationship between intrlv and deintrlv.

p = randperm(10); % Permutation vector

a = intrlv(10:10:100,p); % Rearrange [10 20 30 ... 100].

b = deintrlv(a,p) % Deinterleave a to restore ordering.

The output is

b =

 10 20 30 40 50 60 70 80 90 100

More About
• “Interleaving”

See Also
intrlv

1 Functions — Alphabetical List

1-186

dfe
Construct decision-feedback equalizer object

Syntax

eqobj = dfe(nfwdweights,nfbkweights,alg)

eqobj = dfe(nfwdweights,nfbkweights,alg,sigconst)

eqobj = dfe(nfwdweights,nfbkweights,alg,sigconst,nsamp)

Description

The dfe function creates an equalizer object that you can use with the equalize
function to equalize a signal. To learn more about the process for equalizing a signal, see
“Adaptive Algorithms”.

eqobj = dfe(nfwdweights,nfbkweights,alg) constructs a decision feedback
equalizer object. The equalizer's feedforward and feedback filters have nfwdweights
and nfbkweights symbol-spaced complex weights, respectively, which are initially all
zeros. alg describes the adaptive algorithm that the equalizer uses; you should create
alg using any of these functions: lms, signlms, normlms, varlms, rls, or cma. The
signal constellation of the desired output is [-1 1], which corresponds to binary phase
shift keying (BPSK).

eqobj = dfe(nfwdweights,nfbkweights,alg,sigconst) specifies the signal
constellation vector of the desired output.

eqobj = dfe(nfwdweights,nfbkweights,alg,sigconst,nsamp) constructs a
DFE with a fractionally spaced forward filter. The forward filter has nfwdweights
complex weights spaced at T/nsamp, where T is the symbol period and nsamp is a
positive integer. nsamp = 1 corresponds to a symbol-spaced forward filter.

Properties

The table below describes the properties of the decision feedback equalizer object. To
learn how to view or change the values of a decision feedback equalizer object, see
“Accessing Properties of an Equalizer”.

 dfe

1-187

Note: To initialize or reset the equalizer object eqobj, enter reset(eqobj).

Property Description

EqType Fixed value, 'Decision Feedback
Equalizer'

AlgType Name of the adaptive algorithm
represented by alg

nWeights Number of weights in the forward filter
and the feedback filter, in the format
[nfwdweights, nfbkweights]. The
number of weights in the forward filter
must be at least 1.

nSampPerSym Number of input samples per symbol
(equivalent to nsamp input argument).
This value relates to both the equalizer
structure (see the use of K in “Decision-
Feedback Equalizers”) and an assumption
about the signal to be equalized.

RefTap (except for CMA equalizers) Reference tap index, between 1 and
nfwdweights. Setting this to a value
greater than 1 effectively delays the
reference signal with respect to the
equalizer's input signal.

SigConst Signal constellation, a vector whose length
is typically a power of 2.

Weights Vector that concatenates the complex
coefficients from the forward filter and the
feedback filter. This is the set of wi values
in the schematic in “Decision-Feedback
Equalizers”.

WeightInputs Vector that concatenates the tap weight
inputs for the forward filter and the
feedback filter. This is the set of ui values
in the schematic in “Decision-Feedback
Equalizers”.

1 Functions — Alphabetical List

1-188

Property Description

ResetBeforeFiltering If 1, each call to equalize resets the
state of eqobj before equalizing. If 0, the
equalization process maintains continuity
from one call to the next.

NumSamplesProcessed Number of samples the equalizer processed
since the last reset. When you create or
reset eqobj, this property value is 0.

Properties specific to the adaptive
algorithm represented by alg

See reference page for the adaptive
algorithm function that created alg: lms,
signlms, normlms, varlms, rls, or cma.

Relationships Among Properties

If you change nWeights, MATLAB maintains consistency in the equalizer object by
adjusting the values of the properties listed below.

Property Adjusted Value

Weights zeros(1,sum(nWeights))

WeightInputs zeros(1,sum(nWeights))

StepSize (Variable-step-size LMS
equalizers)

InitStep*ones(1,sum(nWeights))

InvCorrMatrix (RLS equalizers) InvCorrInit*eye(sum(nWeights))

An example illustrating relationships among properties is in “Linked Properties of an
Equalizer Object”.

Examples

Apply a Decision Feedback Equalizer (DFE) to An 8-PSK Modulated Signal

Apply a decision feedback equalizer (DFE) to an 8-PSK modulated signal impaired by a
frequency selective channel. The DFE uses 600 training symbols.

Create a PSK modulator System object™ and set the modulation order to 8.

 dfe

1-189

hMod = comm.PSKModulator('ModulationOrder',8);

Create a column vector of 8-ary random integer symbols.

data = randi([0 7],5000,1);

Modulate the random data by calling the step function of the comm.PSKModulator
System object.

modData = step(hMod,data);

Create a Rayleigh channel System object to define a static frequency selective channel
with four taps. Use the step function to pass the modulated data through the channel
object.

hChan = comm.RayleighChannel('SampleRate',1000, ...

 'PathDelays',[0 0.002 0.004 0.008],'AveragePathGains',[0 -3 -6 -9]);

rxSig = step(hChan,modData);

Create a DFE equalizer that has 10 feed forward taps and five feedback taps. The
equalizer uses the LMS update method with a step size of 0.01.

numFFTaps = 10;

numFBTaps = 5;

equalizerDFE = dfe(numFFTaps,numFBTaps,lms(0.01));

Set the SigConst property of the DFE equalizer to match the 8-PSK modulator
reference constellation. The reference constellation is determined by using the
constellation method. For decision directed operation, the DFE must use the same
signal constellation as the transmission scheme.

equalizerDFE.SigConst = constellation(hMod).';

Equalize the signal to remove the effects of channel distortion. Use the first 600 symbols
to train the equalizer.

trainlen = 600;

[eqSig,detectedSig] = equalize(equalizerDFE,rxSig, ...

 modData(1:trainlen));

Plot the received signal, equalizer output after training, and the ideal signal
constellation.

h = scatterplot(rxSig,1,trainlen,'bx');

hold on

1 Functions — Alphabetical List

1-190

scatterplot(eqSig,1,trainlen,'g.',h);

scatterplot(equalizerDFE.SigConst,1,0,'m*',h);

legend('Received signal','Equalized signal',...

 'Ideal signal constellation');

hold off

 dfe

1-191

Create a PSK demodulator System object to demodulate the received signal before and
after equalization. Use the step function to demodulate the signals.

hDemod = comm.PSKDemodulator('ModulationOrder',8);

demodSig = step(hDemod,rxSig);

demodEqualizedSig = step(hDemod,detectedSig);

Compute the error rates for the two demodulated signals and compare the results.

hErrorCalc = comm.ErrorRate;

nonEqualizedSER = step(hErrorCalc,data(trainlen+1:end), ...

 demodSig(trainlen+1:end));

reset(hErrorCalc)

equalizedSER = step(hErrorCalc, data(trainlen+1:end), ...

 demodEqualizedSig(trainlen+1:end));

disp('Symbol error rates with and without equalizer:')

disp([equalizedSER(1) nonEqualizedSER(1)])

Symbol error rates with and without equalizer:

 0 0.8909

The equalizer helps eliminate the distortion introduced by the frequency selective
channel and reduces the error rate.

More About
• “Equalization”

See Also
lms | signlms | normlms | varlms | rls | cma | lineareq | equalize

1 Functions — Alphabetical List

1-192

dftmtx
Discrete Fourier transform matrix in Galois field

Syntax

dm = dftmtx(alph)

Description

dm = dftmtx(alph) returns a Galois array that represents the discrete Fourier
transform operation on a Galois vector, with respect to the Galois scalar alph. The
element alph is a primitive nth root of unity in the Galois field GF(2m) = GF(n+1); that
is, n must be the smallest positive value of k for which alph^k equals 1. The discrete
Fourier transform has size n and dm is an n-by-n array. The array dm represents the
transform in the sense that dm times any length-n Galois column vector yields the
transform of that vector.

Note: The inverse discrete Fourier transform matrix is dftmtx(1/alph).

Examples

The example below illustrates the discrete Fourier transform and its inverse, with
respect to the element gf(3,4). The example examines the first n powers of that
element to make sure that only the nth power equals one. Afterward, the example
transforms a random Galois vector, undoes the transform, and checks the result.

m = 4;

n = 2^m-1;

a = 3;

alph = gf(a,m);

mp = minpol(alph);

if (mp(1)==1 && isprimitive(mp)) % Check that alph has order n.

 disp('alph is a primitive nth root of unity.')

 dm = dftmtx(alph);

 idm = dftmtx(1/alph);

 dftmtx

1-193

 x = gf(randi([0 2^m-1],n,1),m);

 y = dm*x; % Transform x.

 z = idm*y; % Recover x.

 ck = isequal(x,z)

end

The output is

alph is a primitive nth root of unity.

ck =

 1

Limitations

The Galois field over which this function works must have 256 or fewer elements. In
other words, alph must be a primitive nth root of unity in the Galois field GF(2m), where
m is an integer between 1 and 8.

More About

Algorithms

The element dm(a,b) equals alph^((a-1)*(b-1)).
• “Signal Processing Operations in Galois Fields”

See Also
fft | ifft

1 Functions — Alphabetical List

1-194

distspec
Compute distance spectrum of convolutional code

Syntax
spect = distspec(trellis,n)

spect = distspec(trellis)

Description
spect = distspec(trellis,n) computes the free distance and the first n
components of the weight and distance spectra of a linear convolutional code. Because
convolutional codes do not have block boundaries, the weight spectrum and distance
spectrum are semi-infinite and are most often approximated by the first few components.
The input trellis is a valid MATLAB trellis structure, as described in “Trellis
Description of a Convolutional Code”. The output, spect, is a structure with these fields:

Field Meaning

spect.dfree Free distance of the code. This is the
minimum number of errors in the encoded
sequence required to create an error event.

spect.weight A length-n vector that lists the total
number of information bit errors in the
error events enumerated in spect.event.

spect.event A length-n vector that lists the number
of error events for each distance between
spect.dfree and spect.dfree
+n-1. The vector represents the first n
components of the distance spectrum.

spect = distspec(trellis) is the same as spect = distspec(trellis,1).

Examples
The example below performs these tasks:

 distspec

1-195

• Computes the distance spectrum for the rate 2/3 convolutional code that is depicted on
the reference page for the poly2trellis function

• Uses the output of distspec as an input to the bercoding function, to find a
theoretical upper bound on the bit error rate for a system that uses this code with
coherent BPSK modulation

• Plots the upper bound using the berfit function

trellis = poly2trellis([5 4],[23 35 0; 0 5 13])

spect = distspec(trellis,4)

berub = bercoding(1:10,'conv','hard',2/3,spect); % BER bound

berfit(1:10,berub); ylabel('Upper Bound on BER'); % Plot.

The output and plot are below.

trellis =

 numInputSymbols: 4

 numOutputSymbols: 8

 numStates: 128

 nextStates: [128x4 double]

 outputs: [128x4 double]

spect =

 dfree: 5

 weight: [1 6 28 142]

 event: [1 2 8 25]

1 Functions — Alphabetical List

1-196

More About
Algorithms

The function uses a tree search algorithm implemented with a stack, as described in [2].

References

[1] Bocharova, I. E., and B. D. Kudryashov, “Rational Rate Punctured Convolutional
Codes for Soft-Decision Viterbi Decoding,” IEEE Transactions on Information
Theory, Vol. 43, No. 4, July 1997, pp. 1305–1313.

[2] Cedervall, M., and R. Johannesson, “A Fast Algorithm for Computing Distance
Spectrum of Convolutional Codes,” IEEE Transactions on Information Theory,
Vol. 35, No. 6, Nov. 1989, pp. 1146–1159.

[3] Chang, J., D. Hwang, and M. Lin, “Some Extended Results on the Search for Good
Convolutional Codes,” IEEE Transactions on Information Theory, Vol. 43, No. 5,
Sep. 1997, pp. 1682–1697.

 distspec

1-197

[4] Frenger, P., P. Orten, and T. Ottosson, “Comments and Additions to Recent Papers on
New Convolutional Codes,” IEEE Transactions on Information Theory, Vol. 47,
No. 3, March 2001, pp. 1199–1201.

See Also
bercoding | iscatastrophic | istrellis | poly2trellis

1 Functions — Alphabetical List

1-198

doppler
Construct Doppler spectrum structure

Syntax

s = doppler(specType)

s = doppler(specType, fieldValue)

s = doppler('BiGaussian', Name,Value)

Description

s = doppler(specType) constructs a Doppler spectrum structure of type specType
for use with a fading channel System object. The returned structure, s, has default
values for its dependent fields.

s = doppler(specType, fieldValue) constructs a Doppler spectrum structure of
type specType for use with a fading channel System object. The returned structure, s,
has its dependent field specified to fieldValue.

s = doppler('BiGaussian', Name,Value) constructs a BiGaussian Doppler
spectrum structure for use with a fading channel System object. The returned structure,
s, has dependent fields specified by Name,Value pair arguments.

Examples

Construct a Flat Doppler Spectrum Structure

Construct a flat Doppler structure variable for use with channel objects such as
comm.RayleighChannel.

Invoke the doppler function to create a flat Doppler structure variable.

s = doppler('Flat')

s =

 doppler

1-199

 SpectrumType: 'Flat'

Create a Bell Doppler Structure Variable

Use the doppler function to create a Doppler structure variable having the Bell
spectrum.

s = doppler('Bell')

s =

 SpectrumType: 'Bell'

 Coefficient: 9

Construct a Rounded Doppler Spectrum Structure with Specified Polynomial

Specify the coefficients of the Doppler spectrum structure variable.

Construct a Rounded Doppler spectrum structure with coefficients a0, a2, and a4 set to
2, 6, and 1, respectively.

s = doppler('Rounded', [2, 6, 1])

s =

 SpectrumType: 'Rounded'

 Polynomial: [2 6 1]

Construct a BiGaussian Doppler Spectrum Structure with Specified Field Values

Use the doppler function to create a Doppler spectrum structure with the parameters
specified for a BiGaussian spectrum.

s = doppler('BiGaussian','NormalizedCenterFrequencies', ...

 [.1 .85],'PowerGains',[1 2])

s =

 SpectrumType: 'BiGaussian'

1 Functions — Alphabetical List

1-200

 NormalizedStandardDeviations: [0.7071 0.7071]

 NormalizedCenterFrequencies: [0.1000 0.8500]

 PowerGains: [1 2]

The NormalizedStandardDeviations field is set to the default value. The
NormalizedCenterFrequencies, and PowerGains fields are set to the values
specified from the input arguments.

Input Arguments

specType — Spectrum type of Doppler spectrum structure for use with fading channel System
object
'Jakes' | 'Flat' | 'Rounded' | 'Bell' | 'Asymmetric Jakes' | 'Restricted
Jakes' | 'Gaussian' | 'BiGaussian'

The spectrum type of a Doppler spectrum structure for use with a fading channel System
object. Specify this value as a string.

The analytical expression for each Doppler spectrum type is described in the section.
Data Types: char

fieldValue — Value of dependent field of Doppler spectrum structure
scalar | vector

The value of the dependent field of the Doppler spectrum structure, specified as a scalar
or vector of built-in data type. If you do not specify fieldValue , the dependent fields of
the spectrum type use the default values.

Spectrum Type Dependent Field Description Default Value

Jakes — — —
Flat — — —

Rounded Polynomial

1-by-3 vector of
real finite values,
representing
the polynomial
coefficients, a0, a2
and a4

[1 -1.72 0.785]

 doppler

1-201

Spectrum Type Dependent Field Description Default Value

Bell Coefficient

Nonnegative,
finite, real scalar
representing the
Bell spectrum
coefficient

9

Asymmetric Jakes NormalizedFrequencyInterval

1-by-2 vector of real
values between –
1 and 1, inclusive,
representing
the minimum
and maximum
normalized Doppler
shifts

[0 1]

Restricted Jakes NormalizedFrequencyInterval

1-by-2 vector of real
values between 0
and 1, inclusive,
representing
the minimum
and maximum
normalized Doppler
shifts

[0 1]

Gaussian NormalizedStandardDeviation

Normalized
standard deviation
of the Gaussian
Doppler spectrum,
specified as a
positive, finite, real
scalar

1/sqrt(2)

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

1 Functions — Alphabetical List

1-202

quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: s=doppler('BiGaussian', 'NormalizedStandardDeviations',
[.8 .75], 'NormalizedCenterFrequencies', [-.8 0], 'PowerGains',

[.6 .6])

'NormalizedStandardDeviations' — Normalized standard deviations of first and
second Gaussian functions
[1/sqrt(2) 1/sqrt(2)] (default) | 1-by-2 vector

The normalized standard deviation of the first and second Gaussian functions. You can
specify this value as a 1-by-2 vector of positive, finite, real values, of built-in data types.

When you do not specify this dependent field, the default value is [1/sqrt(2) 1/
sqrt(2)].

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

'NormalizedCenterFrequencies' — Normalized center frequencies of first and second
Gaussian functions
[0 0] (default) | 1-by-2 vector

The normalized center frequencies of the first and second Gaussian functions. You can
specify this value as a 1-by-2 vector of real values between –1 and 1, of built-in data
types.

When you do not specify this dependent field, the default value is [0 0].

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

'PowerGains' — Power gains of first and second Gaussian functions
[0.5 0.5] (default) | 1-by-2 vector

The power gains of the first and second Gaussian functions. You can specify this value as
a 1-by-2 nonnegative, finite, real vector of built-in data types.

When you do not specify this dependent field, the default value is [0.5 0.5].

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

 doppler

1-203

More About

Algorithms

The following algorithms represent the analytical expressions for each Doppler spectrum
type. In each case, fd denotes the maximum Doppler shift (MaximumDopplerShift
property) of the associated fading channel System object.

Jakes

The theoretical Jakes Doppler spectrum, S(f) has the analytic formula

S f

f f f

f f

d d

d()

(/)

,=

-

£
1

1 2
p

Flat

The theoretical Flat Doppler spectrum, S(f) has the analytic formula

S f
f

f f
d

d() = £
1

2
,

Rounded

The theoretical Rounded Doppler spectrum, S(f) has the analytic formula

S f C a a
f

f
a

f

f
f fr

d d
d() = +

Ê

Ë
Á

ˆ

¯
˜ +

Ê

Ë
Á

ˆ

¯
˜

È

Î

Í
Í

˘

˚

˙
˙

£0 2

2

4

4

,

where

C

f a
a ar

d

=

+ +
È

Î
Í

˘

˚
˙

1

2
3 5

0
2 4

1 Functions — Alphabetical List

1-204

and you can specify [a a a0 2 4, ,] in the dependent field, polynomial.

Bell

The theoretical Bell Doppler spectrum, S(f) has the analytic formula

S f
C

A
f

f

b

d

() =

+
Ê

Ë
Á

ˆ

¯
˜1

2

f fd£

where

C
A

f
b

d

=

p

You can specify A in the dependent field, coefficient.

Asymmetric Jakes

The theoretical Asymmetric Jakes Doppler spectrum, S(f) has the analytic formula

S f
A

f f f
f f f f f

A
f

f

a

d d

d d

a

d

()
(/)

,

sin

min max

max

=
-

- £ £ £ £

=
Ê-

p

p

1

1

1

2

1

ËË
Á

ˆ

¯
˜ -

Ê

Ë
Á

ˆ

¯
˜

È

Î
Í

˘

˚
˙

-
sin min1 f

fd

where you can specify f
min / fd and f

max
 / fd in the dependent field,

NormalizedFrequencyInterval.

 doppler

1-205

Restricted Jakes

The theoretical Restricted Jakes Doppler spectrum, S(f) has the analytic formula

S f
A

f f f

f f f fr

d d

d()

(/)

, min max=

-

£ £ £ £

p 1

0
2

where

A
f

f

f

f

r

d d

=
Ê

Ë
Á

ˆ

¯
˜ -

Ê

Ë
Á

ˆ

¯
˜

È

Î
Í
Í

˘

˚
˙
˙

- -

1

2 1 1

p
sin sin

max min

where you can specify f
min / fd and f

max
 / fd in the dependent field,

NormalizedFrequencyInterval.

Gaussian

The theoretical Gaussian Doppler spectrum, S(f) has the analytic formula

S f
f

G

G G

() exp= -
Ê

Ë
ÁÁ

ˆ

¯
˜̃1

2 22

2

2
ps s

You can specify s G df/ in the dependent field, NormalizedStandardDeviation.

BiGaussian

The theoretical BiGaussian Doppler spectrum, S(f) has the analytic formula

S f A
C f f C f f

G G
G

G

G

G

G

G

() exp
()

exp
(

= -
-Ê

Ë
Á

ˆ

¯
˜ + -

-
1

1

2

1

2

1

2

2

2

22 2 2ps s ps
GG

G

2

2

2

22

)

s
Ê

Ë
Á

ˆ

¯
˜

È

Î
Í
Í

˘

˚
˙
˙

1 Functions — Alphabetical List

1-206

where A
C C

G

G G

=

+

1

1 2

 is a normalization coefficient.

You can specify s
G1

/ fd and s
G 2

/ fd in the NormalizedStandardDeviations
dependent field.

You can specify fG1
/ fd and fG 2

/ fd in the NormalizedCenterFrequencies dependent
field.

C
G1

 and C
G 2

 are power gains that you can specify in the PowerGains dependent field.

See Also
comm.MIMOChannel | comm.RayleighChannel | comm.RicianChannel | MIMO
Channel

 doppler.ajakes

1-207

doppler.ajakes

Construct asymmetrical Doppler spectrum object

Syntax

dop = doppler.ajakes(freqminmaxajakes)

dop = doppler.ajakes

Description

The doppler.ajakes function creates an asymmetrical Jakes (AJakes) Doppler
spectrum object. This object is to be used for the DopplerSpectrum property of a
channel object created with the rayleighchan or the ricianchan functions.

dop = doppler.ajakes(freqminmaxajakes), where freqminmaxajakes is
a row vector of two finite real numbers between -1 and 1, creates a Jakes Doppler
spectrum that is nonzero only for normalized (by the maximum Doppler shift fd , in

Hz) frequencies fnorm such that - £ £ £ £1 1f f fnorm norm normmin, max,
, where f normmin,

 is

given by freqminmaxajakes(1) and f normmax,
 is given by freqminmaxajakes(2).

The maximum Doppler shift fd is specified by the MaxDopplerShift property of the

channel object. Analytically: f f fnorm dmin, min
/= and f f fnorm dmax, max

/= , where f
min

 is

the minimum Doppler shift (in hertz) and f
max

 is the maximum Doppler shift (in hertz).

When dop is used as the DopplerSpectrum property of a channel object, space
freqminmaxajakes(1) and freqminmaxajakes(2) by more than 1/50. Assigning a
smaller spacing results in freqminmaxarjakes being reset to the default value of [0
1].

dop = doppler.ajakes creates an asymmetrical Doppler spectrum object with a
default freqminmaxajakes = [0 1]. This syntax is equivalent to constructing a Jakes
Doppler spectrum that is nonzero only for positive frequencies.

1 Functions — Alphabetical List

1-208

Properties
The AJakes Doppler spectrum object contains the following properties.

Property Description

SpectrumType Fixed value, 'AJakes'
FreqMinMaxAJakes Vector of minimum and maximum

normalized Doppler shifts, two real finite
numbers between -1 and 1

Theory and Applications
The Jakes power spectrum is based on the assumption that the angles of arrival at the
mobile receiver are uniformly distributed [1]: the spectrum then covers the frequency
range from - fd to fd , fd being the maximum Doppler shift. When the angles of
arrival are not uniformly distributed, then the Jakes power spectrum does not cover
the full Doppler bandwidth from - fd to fd . The AJakes Doppler spectrum object

covers the case of a power spectrum that is nonzero only for frequencies f such that

- £ £ £ £f f f f fd dmin max
. It is an asymmetrical spectrum in the general case, but

becomes a symmetrical spectrum if f f
min max

= - .

The normalized AJakes Doppler power spectrum is given analytically by:

S f
A

f f f
f f f f f

A
f

f

a

d d

d d

a

d

()
(/)

,

sin

min max

max

=
-

- £ £ £ £

=
Ê-

p

p

1

1

1

2

1

ËË
Á

ˆ

¯
˜ -

Ê

Ë
Á

ˆ

¯
˜

È

Î
Í

˘

˚
˙

-
sin min1 f

fd

where f
min

 and f
max

 denote the minimum and maximum frequencies where the
spectrum is nonzero. You can determine these values from the probability density
function of the angles of arrival.

 doppler.ajakes

1-209

Examples

The following MATLAB code first creates a Rayleigh channel object with a maximum
Doppler shift of f d =10 Hz. It then creates an AJakes Doppler object with minimum

normalized Doppler shift f normmin,
.= -0 2 and maximum normalized Doppler shift

f normmax,
.= 0 05 . The Doppler object is then assigned to the DopplerSpectrum property

of the channel object. The channel then has a Doppler spectrum that is nonzero for
frequencies f such that - £ £ £ £f f f f fd dmin max

, where f f fnorm dmin min,
= ¥ = -2 Hz

and f f fnorm dmax max,
.= ¥ = 0 5 Hz.

chan = rayleighchan(1/1000, 10);

dop_ajakes = doppler.ajakes([-0.2 0.05]);

chan.DopplerSpectrum = dop_ajakes;

chan.DopplerSpectrum

This code returns:

 SpectrumType: 'AJakes'

 FreqMinMaxAJakes: [-0.2000 0.0500]

More About
• “Fading Channels”

References

[1] Jakes, W. C., Ed., Microwave Mobile Communications, Wiley, 1974.

[2] Lee, W. C. Y., Mobile Communications Engineering: Theory and Applications, 2nd
Ed., McGraw-Hill, 1998.

[3] Pätzold, M., Mobile Fading Channels, Wiley, 2002.

1 Functions — Alphabetical List

1-210

See Also
doppler | doppler.bell | doppler.bigaussian | doppler.flat |
doppler.gaussian | doppler.jakes | doppler.rjakes | doppler.rounded |
rayleighchan | ricianchan | stdchan

 doppler.bell

1-211

doppler.bell
Construct bell-shaped Doppler spectrum object

Syntax
doppler.bell

doppler.bell(coeffbell)

Description
doppler.bell creates a bell Doppler spectrum object. You can use this object with
the DopplerSpectrum property of any channel object created with either the
rayleighchan function, the ricianchan function, or comm.MIMOChannel System
object™.

dop = doppler.bell creates a bell Doppler spectrum object with default coefficient.

dop = doppler.bell(coeffbell) creates a bell Doppler spectrum object with
coefficient given by coeffbell, where coeffbell is a positive, finite, real scalar.

Properties
The bell Doppler spectrum object has the following properties.

Property Description

SpectrumType Fixed value, 'Bell'
CoeffBell Bell spectrum coefficient, positive real

finite scalar.

Theory and Applications
A bell spectrum was proposed in [1] for the Doppler spectrum of indoor MIMO channels,
for 802.11n channel modeling.

The normalized bell Doppler spectrum is given analytically by:

1 Functions — Alphabetical List

1-212

S f
C

A
f

f

b

d

() =

+
Ê

Ë
Á

ˆ

¯
˜1

2

where

f fd£

and

C
A

f
b

d

=

p

fd represents the maximum Doppler shift specified for the channel object, and A
represents a positive real finite scalar (CoeffBell). The indoor MIMO channel model of
IEEE 802.11n [1] uses the following parameter: A = 9. Since the channel is modeled as
Rician fading with a fixed line-of-sight (LOS) component, a Dirac delta is also present in
the Doppler spectrum at f = 0.

Examples

Construct a bell Doppler spectrum object with a coefficient of 8.5. Assign it to a Rayleigh
channel object with one path.

 dop = doppler.bell(8.5);

 chan = rayleighchan(1e-5, 10);

 chan.DopplerSpectrum = dop;

More About
• “Fading Channels”

References

[1] IEEE P802.11 Wireless LANs, “TGn Channel Models”, IEEE 802.1103/940r4,
2004-05-10.

 doppler.bell

1-213

See Also
doppler | doppler.ajakes | doppler.flat | doppler.gaussian |
doppler.jakes | doppler.rjakes | doppler.rounded | rayleighchan |
ricianchan | stdchan

1 Functions — Alphabetical List

1-214

doppler.bigaussian
Construct bi-Gaussian Doppler spectrum object

Syntax

dop = doppler.bigaussian(property1,value1,...)

dop = doppler.bigaussian

Description

The doppler.bigaussian function creates a bi-Gaussian Doppler spectrum object to
be used for the DopplerSpectrum property of a channel object (created with either the
rayleighchan function or the ricianchan function).

dop = doppler.bigaussian(property1,value1,...) creates a bi-Gaussian
Doppler spectrum object with properties as specified by the property/value pairs. If you
do not specify a value for a property, the property is assigned a default value.

dop = doppler.bigaussian creates a bi-Gaussian Doppler spectrum object with
default properties. The constructed Doppler spectrum object is equivalent to a single
Gaussian Doppler spectrum centered at zero frequency. The equivalent command with
property/value pairs is:

dop = doppler.bigaussian('SigmaGaussian1', 1/sqrt(2), ...

 'SigmaGaussian2', 1/sqrt(2), ...

 'CenterFreqGaussian1', 0, ...

 'CenterFreqGaussian2', 0, ...

 'GainGaussian1', 0.5, ...

 'GainGaussian2', 0.5)

Properties

The bi-Gaussian Doppler spectrum object contains the following properties.

Property Description

SpectrumType Fixed value, 'BiGaussian'

 doppler.bigaussian

1-215

Property Description

SigmaGaussian1 Normalized standard deviation of first
Gaussian function (real positive finite
scalar value)

SigmaGaussian2 Normalized standard deviation of second
Gaussian function (real positive finite
scalar value)

CenterFreqGaussian1 Normalized center frequency of first
Gaussian function (real scalar value
between -1 and 1)

CenterFreqGaussian2 Normalized center frequency of second
Gaussian function (real scalar value
between -1 and 1)

GainGaussian1 Power gain of first Gaussian function
(linear scale, real nonnegative finite scalar
value)

GainGaussian2 Power gain of second Gaussian function
(linear scale, real nonnegative finite scalar
value)

All properties are writable except for the SpectrumType property.

The properties SigmaGaussian1, SigmaGaussian2, GainGaussian1, and
GainGaussian2 are normalized by the MaxDopplerShift property of the associated
channel object.

Analytically, the normalized standard deviations of the first and second Gaussian
functions are determined as s sG norm G df

1 1,
/= and s sG norm G df2 2,

/= , respectively,

where s
G1

 and s
G 2

 are the standard deviations of the first and second Gaussian

functions, and f d is the maximum Doppler shift, in hertz. Similarly, the normalized
center frequencies of the first and second Gaussian functions are determined as
f f fG norm G d1 1,

/= and f f fG norm G d2 2,
/= , respectively, where fG1

 and fG 2
 are the center

frequencies of the first and second Gaussian functions. The properties GainGaussian1

1 Functions — Alphabetical List

1-216

and GainGaussian2 correspond to the power gains C
G1

 and C
G 2

, respectively, of the
two Gaussian functions.

Theory and Applications

The bi-Gaussian power spectrum consists of two frequency-shifted Gaussian spectra.
The COST207 channel models ([1], [2], [3]) specify two distinct bi-Gaussian Doppler
spectra, GAUS1 and GAUS2, to be used in modeling long echos for urban and hilly
terrain profiles.

The normalized bi-Gaussian Doppler spectrum is given analytically by:

S f A
C f f C f f

G G
G

G

G

G

G

G

() exp
()

exp
(

= -
-Ê

Ë
Á

ˆ

¯
˜ + -

-
1

1

2

1

2

1

2

2

2

22 2 2ps s ps
GG

G

2

2

2

22

)

s
Ê

Ë
Á

ˆ

¯
˜

È

Î
Í
Í

˘

˚
˙
˙

where s
G1

 and s
G 2

 are standard deviations, fG1
 and fG 2

 are center frequencies, C
G1

and C
G 2

 are power gains, and A
C C

G

G G

=

+

1

1 2

 is a normalization coefficient.

If either fG1
0= or fG 2

0= , a frequency-shifted Gaussian Doppler spectrum is obtained.

Examples

The following MATLAB code first creates a bi-Gaussian Doppler spectrum object with
the same parameters as that of a COST 207 GAUS2 Doppler spectrum. It then creates
a Rayleigh channel object with a maximum Doppler shift of f d = 30 and assigns the
constructed Doppler spectrum object to its DopplerSpectrum property.

dop_bigaussian = doppler.bigaussian('SigmaGaussian1', 0.1, ...

 'SigmaGaussian2', 0.15, 'CenterFreqGaussian1', 0.7, ...

 'CenterFreqGaussian2', -0.4, 'GainGaussian1', 1, ...

 'GainGaussian2', 1/10^1.5)

chan = rayleighchan(1e-3, 30);

 doppler.bigaussian

1-217

chan.DopplerSpectrum = dop_bigaussian;

More About
• “Fading Channels”

References

[1] COST 207 WG1, Proposal on channel transfer functions to be used in GSM tests late
1986, COST 207 TD (86) 51 Rev. 3, Sept. 1986.

[2] COST 207, Digital land mobile radio communications, Office for Official Publications
of the European Communities, Final report, Luxembourg, 1989.

[3] Pätzold, M., Mobile Fading Channels, Wiley, 2002.

See Also
doppler | doppler.ajakes | doppler.bell | doppler.flat | doppler.gaussian
| doppler.jakes | doppler.rjakes | doppler.rounded | rayleighchan |
ricianchan | stdchan

1 Functions — Alphabetical List

1-218

doppler.flat
Construct flat Doppler spectrum object

Syntax

dop = doppler.flat

Description

dop = doppler.flat creates a flat Doppler spectrum object that is to be used for the
DopplerSpectrum property of a channel object (created with either the rayleighchan
or the ricianchan function). The maximum Doppler shift of the flat Doppler spectrum
object is specified by the MaxDopplerShift property of the channel object.

Properties

The flat Doppler spectrum object contains only one property, SpectrumType, which is
read-only and has a fixed value of 'Flat'.

Theory and Applications

In a 3-D isotropic scattering environment, where the angles of arrival are uniformly
distributed in the azimuth and elevation planes, the Doppler spectrum is found
theoretically to be flat [2]. A flat Doppler spectrum is also specified in some cases of the
ANSI J-STD-008 reference channel models for PCS, for both outdoor (pedestrian) and
indoor (commercial) [1] applications.

The normalized flat Doppler power spectrum is given analytically by:

S f
f

f f
d

d() = £
1

2
,

where fd is the maximum Doppler frequency.

 doppler.flat

1-219

Examples

Create a Rayleigh Channel with Flat Doppler Spectrum

This example shows how to create a Rayleigh channel object with a flat Doppler
spectrum.

Set the sample time and maximum Doppler shift.

ts = 1e-6; % sec

fd = 50; % Hz

Create the Rayleigh channel object.

chan = rayleighchan(ts,fd);

Observe that the default Doppler spectrum property, SpectrumType, is 'Jakes' .

chan.DopplerSpectrum

ans =

 SpectrumType: 'Jakes'

Change the Doppler spectrum property of the channel by using doppler.flat.

chan.DopplerSpectrum = doppler.flat

chan =

 ChannelType: 'Rayleigh'

 InputSamplePeriod: 1.0000e-06

 DopplerSpectrum: [1x1 doppler.flat]

 MaxDopplerShift: 50

 PathDelays: 0

 AvgPathGaindB: 0

 NormalizePathGains: 1

 StoreHistory: 0

 StorePathGains: 0

 PathGains: -0.6760 + 0.6319i

 ChannelFilterDelay: 0

 ResetBeforeFiltering: 1

1 Functions — Alphabetical List

1-220

 NumSamplesProcessed: 0

More About
• “Fading Channels”

References

[1] ANSI J-STD-008, Personal Station-Base Station Compatibility Requirements for 1.8
to 2.0 GHz Code Division Multiple Access (CDMA) Personal Communications
Systems, March 1995.

[2] Clarke, R. H., and Khoo, W. L., “3-D Mobile Radio Channel Statistics”, IEEE Trans.
Veh. Technol., Vol. 46, No. 3, pp. 798–799, August 1997.

See Also
doppler | doppler.ajakes | doppler.bell | doppler.bigaussian |
doppler.gaussian | doppler.jakes | doppler.rjakes | doppler.rounded |
rayleighchan | ricianchan | stdchan

 doppler.gaussian

1-221

doppler.gaussian
Construct Gaussian Doppler spectrum object

Syntax

dop = doppler.gaussian

dop = doppler.gaussian(sigmagaussian)

Description

The doppler.gaussian function creates a Gaussian Doppler spectrum object that is to
be used for the DopplerSpectrum property of a channel object (created with either the
rayleighchan or the ricianchan function).

dop = doppler.gaussian creates a Gaussian Doppler spectrum object with a
default standard deviation (normalized by the maximum Doppler shift fd , in Hz)

sG norm, /= 1 2 . The maximum Doppler shift fd is specified by the MaxDopplerShift

property of the channel object. Analytically, s sG norm G df, / /= = 1 2 , where sG is the
standard deviation of the Gaussian Doppler spectrum.

dop = doppler.gaussian(sigmagaussian) creates a Gaussian Doppler spectrum
object with a normalized fd (by the maximum Doppler shift fd , in Hz) sG norm,

 of value
sigmagaussian.

Properties

The Gaussian Doppler spectrum object contains the following properties.

Property Description

SpectrumType Fixed value, 'Gaussian'

1 Functions — Alphabetical List

1-222

Property Description

SigmaGaussian Normalized standard deviation of the
Gaussian Doppler spectrum (a real positive
number)

Theory and Applications

The Gaussian power spectrum is considered to be a good model for multipath components
with long delays in UHF communications [3]. It is also proposed as a model for the
aeronautical channel [2]. A Gaussian Doppler spectrum is also specified in some cases
of the ANSI J-STD-008 reference channel models for PCS applications, for both outdoor
(wireless loop) and indoor (residential, office) [1]. The normalized Gaussian Doppler
power spectrum is given analytically by:

S f
f

G

G G

() exp= -
Ê

Ë
ÁÁ

ˆ

¯
˜̃1

2 22

2

2
ps s

An alternate representation is [4]:

S f
f

f

f
G

c c

()
ln

exp (ln)= -
Ê

Ë
Á

ˆ

¯
˜

Ê

Ë

Á
Á

ˆ

¯

˜
˜

1 2
2

2

p

where fc G= s 2 2ln is the 3 dB cutoff frequency. If you set f fc d= ln 2 , where fd is

the maximum Doppler shift, or equivalently sG df= / 2 , the Doppler spread of the
Gaussian power spectrum becomes equal to the Doppler spread of the Jakes power
spectrum, where Doppler spread is defined as:

sD

f S f df

S f df

= -•

•

-•

•

Ú

Ú

2
()

()

 doppler.gaussian

1-223

Examples

The following code creates a Rayleigh channel object with a maximum Doppler shift of
fd = 10 . It then creates a Gaussian Doppler spectrum object with a normalized standard

deviation of sG,norm = 0 5. , and assigns it to the DopplerSpectrum property of the
channel object.

chan = rayleighchan(1/1000,10);

dop_gaussian = doppler.gaussian(0.5);

chan.DopplerSpectrum = dop_gaussian;

More About
• “Fading Channels”

References

[1] ANSI J-STD-008, Personal Station-Base Station Compatibility Requirements for 1.8
to 2.0 GHz Code Division Multiple Access (CDMA) Personal Communications
Systems, March 1995.

[2] Bello, P. A., “Aeronautical channel characterizations,” IEEE Trans. Commun., Vol. 21,
pp. 548–563, May 1973.

[3] Cox, D. C., “Delay Doppler characteristics of multipath propagation at 910 MHz in
a suburban mobile radio environment,” IEEE Transactions on Antennas and
Propagation, Vol. AP-20, No. 5, pp. 625–635, Sept. 1972.

[4] Pätzold, M., Mobile Fading Channels, Wiley, 2002.

See Also
doppler | doppler.ajakes | doppler.bell | doppler.bigaussian |
doppler.flat | doppler.jakes | doppler.rjakes | doppler.rounded |
rayleighchan | ricianchan | stdchan

1 Functions — Alphabetical List

1-224

doppler.jakes
Construct Jakes Doppler spectrum object

Syntax

Description

dop = doppler.jakes creates a Jakes Doppler spectrum object that is to be used
for the DopplerSpectrum property of a channel object (created with either the
rayleighchan or the ricianchan function). The maximum Doppler shift of the Jakes
Doppler spectrum object is specified by the MaxDopplerShift property of the channel
object. By default, channel objects are created with a Jakes Doppler spectrum.

Properties

The Jakes Doppler spectrum object contains only one property, SpectrumType, which is
read-only and has a fixed value of 'Jakes'.

Theory and Applications

The Jakes Doppler power spectrum model is actually due to Gans [2], who analyzed
the Clarke-Gilbert model ([1], [3], and [5]). The Clarke-Gilbert model is also called the
classical model.

The Jakes Doppler power spectrum applies to a mobile receiver. It derives from the
following assumptions [6]:

• The radio waves propagate horizontally.
• At the mobile receiver, the angles of arrival of the radio waves are uniformly

distributed over [,]-p p .

• At the mobile receiver, the antenna is omnidirectional (i.e., the antenna pattern is
circular-symmetrical).

 doppler.jakes

1-225

The normalized Jakes Doppler power spectrum is given analytically by:

S f

f f f

f f

d d

d()

(/)

,=

-

£
1

1 2
p

where fd is the maximum Doppler frequency.

Examples

Create a Rayleigh channel object with a maximum Doppler shift of fd=10 Hertz. Then,
create a Jakes Doppler spectrum object and assigns it to the DopplerSpectrum property
of the channel object.

chan = rayleighchan(1/1000,10);

dop_gaussian = doppler.jakes;

chan.DopplerSpectrum = dop_gaussian

More About
• “Fading Channels”

References

[1] Clarke, R. H., “A Statistical Theory of Mobile-Radio Reception,” Bell System Technical
Journal, Vol. 47, No. 6, pp. 957–1000, July-August 1968.

[2] Gans, M. J., “A Power-Spectral Theory of Propagation in the Mobile-Radio
Environment,” IEEE Trans. Veh. Technol., Vol. VT-21, No. 1, pp. 27–38, Feb.
1972.

[3] Gilbert, E. N., “Energy Reception for Mobile Radio,” Bell System Technical Journal,
Vol. 44, No. 8, pp. 1779–1803, Oct. 1965.

[4] Jakes, W. C., Ed. Microwave Mobile Communications, Wiley, 1974.

[5] Lee, W. C. Y., Mobile Communications Engineering: Theory and Applications, 2nd
Ed., McGraw-Hill, 1998.

1 Functions — Alphabetical List

1-226

[6] Pätzold, M., Mobile Fading Channels, Wiley, 2002.

See Also
doppler | doppler.ajakes | doppler.bell | doppler.bigaussian |
doppler.flat | doppler.gaussian | doppler.rjakes | doppler.rounded |
rayleighchan | ricianchan | stdchan

 doppler.rjakes

1-227

doppler.rjakes

Construct restricted Jakes Doppler spectrum object

Syntax

dop = doppler.rjakes

dop = doppler.rjakes(freqminmaxrjakes)

Description

The doppler.rjakes function creates a restricted Jakes (RJakes) Doppler spectrum
object that is used for the DopplerSpectrum property of a channel object (created with
either the rayleighchan or the ricianchan function).

dop = doppler.rjakes creates a Doppler spectrum object equivalent to the Jakes
Doppler spectrum. The maximum Doppler shift of the RJakes Doppler spectrum object is
specified by the MaxDopplerShift property of the channel object.

dop = doppler.rjakes(freqminmaxrjakes), where freqminmaxrjakes is
a row vector of two finite real numbers between 0 and 1, creates a Jakes Doppler
spectrum. This spectrum is nonzero only for normalized frequencies (by the maximum
Doppler shift, fd , in Hertz), fnorm , such that 0 1£ £ £ £f f fnorm norm normmin, max, ,

where f normmin, is given by freqminmaxrjakes(1) and f normmax, is given

by freqminmaxrjakes(2). The maximum Doppler shift fd is specified by the

MaxDopplerShift property of the channel object. Analytically, f f fnorm dmin, min /= and

f f fnorm dmax, max /= , where f
min is the minimum Doppler shift (in Hertz) and f

max
 is

the maximum Doppler shift (in Hertz).

When dop is used as the DopplerSpectrum property of a channel object,
freqminmaxrjakes(1) and freqminmaxrjakes(2) should be spaced by more than
1/50. Assigning a smaller spacing results in freqminmaxrjakes being reset to the
default value of [0 1].

1 Functions — Alphabetical List

1-228

Properties

The RJakes Doppler spectrum object contains the following properties.

Property Description

SpectrumType Fixed value, 'RJakes'
FreqMinMaxRJakes Vector of minimum and maximum

normalized Doppler shifts (two real finite
numbers between 0 and 1)

Theory and Applications

The Jakes power spectrum is based on the assumption that the angles of arrival at the
mobile receiver are uniformly distributed [1], where the spectrum covers the frequency
range from - fd to fd , fd being the maximum Doppler shift. When the angles of arrival
are not uniformly distributed, the Jakes power spectrum does not cover the full Doppler
bandwidth from - fd to fd . This exception also applies to the case where the antenna
pattern is directional. This type of spectrum is known as restricted Jakes [3]. The RJakes
Doppler spectrum object covers only the case of a symmetrical power spectrum, which is
nonzero only for frequencies f such that 0 £ £ £ £f f f fdmin max

.

The normalized RJakes Doppler power spectrum is given analytically by:

S f
A

f f f

f f f fr

d d

d()

(/)

, min max=

-

£ £ £ £

p 1

0
2

where

A
f

f

f

f

r

d d

=
Ê

Ë
Á

ˆ

¯
˜ -

Ê

Ë
Á

ˆ

¯
˜

È

Î
Í
Í

˘

˚
˙
˙

- -

1

2 1 1

p
sin sin

max min

 doppler.rjakes

1-229

f
min and f

max
 denote the minimum and maximum frequencies where the spectrum is

nonzero. They can be determined from the probability density function of the angles of
arrival.

Examples

The following code first creates a Rayleigh channel object with a maximum Doppler shift
of fd = 10 . It then creates an RJakes Doppler object with minimum normalized Doppler

shift f normmin, .= 0 14 and maximum normalized Doppler shift f normmax, .= 0 9 .

The Doppler object is assigned to the DopplerSpectrum property of the channel
object. The channel then has a Doppler spectrum that is nonzero for frequencies
f such that 0 £ £ £ £f f f fdmin max

, where f f fnorm dmin min, .= ¥ = 1 4 Hz and

f f fnorm dmax max,= ¥ = 9 Hz .

chan = rayleighchan(1/1000, 10);

dop_rjakes = doppler.rjakes([0.14 0.9]);

chan.DopplerSpectrum = dop_rjakes;

chan.DopplerSpectrum

The output is:

 SpectrumType: 'RJakes'

 FreqMinMaxRJakes: [0.1400 0.9000]

More About
• “Fading Channels”

References

[1] Jakes, W. C., Ed. Microwave Mobile Communications, Wiley, 1974.

[2] Lee, W. C. Y., Mobile Communications Engineering: Theory and Applications, 2nd
Ed., McGraw-Hill, 1998.

1 Functions — Alphabetical List

1-230

[3] Pätzold, M., Mobile Fading Channels, Wiley, 2002.

See Also
doppler | doppler.ajakes | doppler.bell | doppler.bigaussian |
doppler.flat | doppler.gaussian | doppler.jakes | doppler.rounded |
rayleighchan | ricianchan | stdchan

 doppler.rounded

1-231

doppler.rounded
Construct rounded Doppler spectrum object

Syntax

dop = doppler.rounded

dop = doppler.rounded(coeffrounded)

Description

The doppler.rounded function creates a rounded Doppler spectrum object that is
used for the DopplerSpectrum property of a channel object (created with either the
rayleighchan or the ricianchan function).

dop = doppler.rounded creates a rounded Doppler spectrum object with default
polynomial coefficients a

0
1= , a

2
1 72= - . , a

4
0 785= . (see “Theory and Applications” on

page 1-232 for the meaning of these coefficients). The maximum Doppler shift fd (in
Hertz) is specified by the MaxDopplerShift property of the channel object.

dop = doppler.rounded(coeffrounded), where coeffrounded is a row vector of
three finite real numbers, creates a rounded Doppler spectrum object with polynomial
coefficients, a a a0 2 4, , , given by coeffrounded(1), coeffrounded(2), and
coeffrounded(3), respectively.

Properties

The rounded Doppler spectrum object contains the following properties.

Property Description

SpectrumType Fixed value, 'Rounded'
CoeffRounded Vector of three polynomial coefficients (real

finite numbers)

1 Functions — Alphabetical List

1-232

Theory and Applications

A rounded spectrum is proposed as an approximation to the measured Doppler spectrum
of the scatter component of fixed wireless channels at 2.5 GHz [1]. However, the shape of
the spectrum is influenced by the center carrier frequency.

The normalized rounded Doppler spectrum is given analytically by a polynomial in f of
order four, where only the even powers of f are retained:

S f C a a
f

f
a

f

f
f fr

d d
d() = +

Ê

Ë
Á

ˆ

¯
˜ +

Ê

Ë
Á

ˆ

¯
˜

È

Î

Í
Í

˘

˚

˙
˙

£0 2

2

4

4

,

where

C

f a
a ar

d

=

+ +
È

Î
Í

˘

˚
˙

1

2
3 5

0
2 4

fd is the maximum Doppler shift, and a a a0 2 4, , are real finite coefficients. The fixed
wireless channel model of IEEE 802.16 [1] uses the following parameters: a

0
1= ,

a
2

1 72= - . , and a
4

0 785= . . Because the channel is modeled as Rician fading with a
fixed line-of-sight (LOS) component, a Dirac delta is also present in the Doppler spectrum
at f = 0 .

Examples

The following code creates a Rician channel object with a maximum Doppler shift of
fd = 10 . It then creates a rounded Doppler spectrum object with polynomial coefficients
a

0
1 0= . , a

2
0 5= - . , a

4
1 5= . , and assigns it to the DopplerSpectrum property of the

channel object.

chan = ricianchan(1/1000,10,1);

dop_rounded = doppler.rounded([1.0 -0.5 1.5]);

chan.DopplerSpectrum = dop_rounded;

 doppler.rounded

1-233

More About
• “Fading Channels”

References

[1] IEEE 802.16 Broadband Wireless Access Working Group, “Channel models for fixed
wireless applications,” IEEE 802.16a-03/01, 2003-06-27.

See Also
doppler | doppler.ajakes | doppler.bell | doppler.bigaussian |
doppler.flat | doppler.gaussian | doppler.jakes | doppler.rjakes |
rayleighchan | ricianchan | stdchan

1 Functions — Alphabetical List

1-234

dpcmdeco
Decode using differential pulse code modulation

Syntax
sig = dpcmdeco(indx,codebook,predictor)

[sig,quanterror] = dpcmdeco(indx,codebook,predictor)

Description
sig = dpcmdeco(indx,codebook,predictor) implements differential pulse code
demodulation to decode the vector indx. The vector codebook represents the predictive-
error quantization codebook. The vector predictor specifies the predictive transfer
function. If the transfer function has predictive order M, predictor has length M+1
and an initial entry of 0. To decode correctly, use the same codebook and predictor in
dpcmenco and dpcmdeco.

See “Represent Partitions”, “Represent Codebooks”, or the quantiz reference page, for a
description of the formats of partition and codebook.

[sig,quanterror] = dpcmdeco(indx,codebook,predictor) is the same as the
syntax above, except that the vector quanterror is the quantization of the predictive
error based on the quantization parameters. quanterror is the same size as sig.

Note: You can estimate the input parameters codebook, partition, and predictor
using the function dpcmopt.

Examples
See “Example: DPCM Encoding and Decoding” and “Example: Comparing Optimized and
Nonoptimized DPCM Parameters” for examples that use dpcmdeco.

More About
• “Differential Pulse Code Modulation”

 dpcmdeco

1-235

References

[1] Kondoz, A. M., Digital Speech, Chichester, England, John Wiley & Sons, 1994.

See Also
quantiz | dpcmopt | dpcmenco

1 Functions — Alphabetical List

1-236

dpcmenco

Encode using differential pulse code modulation

Syntax

indx = dpcmenco(sig,codebook,partition,predictor)

[indx,quants] = dpcmenco(sig,codebook,partition,predictor)

Description

indx = dpcmenco(sig,codebook,partition,predictor) implements differential
pulse code modulation to encode the vector sig. partition is a vector whose entries
give the endpoints of the partition intervals. codebook, a vector whose length exceeds
the length of partition by one, prescribes a value for each partition in the quantization.
predictor specifies the predictive transfer function. If the transfer function has
predictive order M, predictor has length M+1 and an initial entry of 0. The output
vector indx is the quantization index.

See “Differential Pulse Code Modulation” for more about the format of predictor. See
“Represent Partitions”, “Represent Partitions”, or the reference page for quantiz in this
chapter, for a description of the formats of partition and codebook.

[indx,quants] = dpcmenco(sig,codebook,partition,predictor) is the same
as the syntax above, except that quants contains the quantization of sig based on the
quantization parameters. quants is a vector of the same size as sig.

Note: If predictor is an order-one transfer function, the modulation is called a delta
modulation.

Examples

See “Example: DPCM Encoding and Decoding” and “Example: Comparing Optimized and
Nonoptimized DPCM Parameters” for examples that use dpcmenco.

 dpcmenco

1-237

More About
• “Differential Pulse Code Modulation”

References

[1] Kondoz, A. M., Digital Speech, Chichester, England, John Wiley & Sons, 1994.

See Also
quantiz | dpcmopt | dpcmdeco

1 Functions — Alphabetical List

1-238

dpcmopt

Optimize differential pulse code modulation parameters

Syntax

predictor = dpcmopt(training_set,ord)

[predictor,codebook,partition] = dpcmopt(training_set,ord,len)

[predictor,codebook,partition] = dpcmopt(training_set,ord,ini_cb)

Description

predictor = dpcmopt(training_set,ord) returns a vector representing a
predictive transfer function of order ord that is appropriate for the training data in
the vector training_set. predictor is a row vector of length ord+1. See “Represent
Predictors” for more about its format.

Note: dpcmopt optimizes for the data in training_set. For best results,
training_set should be similar to the data that you plan to quantize.

[predictor,codebook,partition] = dpcmopt(training_set,ord,len) is the
same as the syntax above, except that it also returns corresponding optimized codebook
and partition vectors codebook and partition. len is an integer that prescribes the
length of codebook. partition is a vector of length len-1. See “Represent Partitions”,
“Represent Codebooks”, or the reference page for quantiz in this chapter, for a
description of the formats of partition and codebook.

[predictor,codebook,partition] = dpcmopt(training_set,ord,ini_cb)

is the same as the first syntax, except that it also returns corresponding optimized
codebook and partition vectors codebook and partition. ini_cb, a vector of length at
least 2, is the initial guess of the codebook values. The output codebook is a vector of the
same length as ini_cb. The output partition is a vector whose length is one less than
the length of codebook.

 dpcmopt

1-239

Examples

See “Example: Comparing Optimized and Nonoptimized DPCM Parameters” for an
example that uses dpcmopt.

More About
• “Differential Pulse Code Modulation”

See Also
dpcmenco | dpcmdeco | quantiz | lloyds

1 Functions — Alphabetical List

1-240

dpskdemod
Differential phase shift keying demodulation

Syntax

z = dpskdemod(y,M)

z = dpskdemod(y,M,phaserot)

z = dpskdemod(y,M,phaserot,symbol_order)

Description

z = dpskdemod(y,M) demodulates the complex envelope y of a DPSK modulated
signal. M is the alphabet size and must be an integer. If y is a matrix with multiple rows
and columns, the function processes the columns independently.

Note: An initial phase rotation of 0 is used in determining the first element of the output
z, or the first row of z, if z is a matrix with multiple rows, because the differential
algorithm compares two successive elements of the modulated signal.

z = dpskdemod(y,M,phaserot) specifies the phase rotation of the modulation in
radians. In this case, the total phase shift per symbol is the sum of phaserot and the
phase generated by the differential modulation.

z = dpskdemod(y,M,phaserot,symbol_order) specifies how the function assigns
binary words to corresponding integers. If symbol_order is set to 'bin' (default), the
function uses a natural binary-coded ordering. If symbol_order is set to 'gray', it uses
a Gray-coded ordering.

Examples

DPSK Demodulation

This example shows how to demodulate DPSK data in a communication channel in which
a phase shift is introduced.

 dpskdemod

1-241

Set the random number generator to the default state for repeatability.

rng default

Generate a 4-ary data vector and modulate using DPSK.

M = 4; % Alphabet size

dataIn = randi([0 M-1],1000,1); % Random message

txSig = dpskmod(dataIn,M); % Modulate

Apply the random phase shift resulting from the transmission process.

rxSig = txSig*exp(2i*pi*rand());

Demodulate the received signal.

dataOut = dpskdemod(rxSig,M);

As the modulator and demodulator have the same initial condition while only the
received signal experiences a phase shift, the first demodulated symbol is likely to be in
error. Because of this, you should always discard the first symbol when using DPSK.

Find the number of symbol errors.

errs = symerr(dataIn,dataOut)

errs =

 1

Observe that there is one symbol in error. Repeat the error calculation after discarding
the first symbol.

errs = symerr(dataIn(2:end),dataIn(2:end))

errs =

 0

More About
• “Digital Modulation”

1 Functions — Alphabetical List

1-242

• “Example: Curve Fitting for an Error Rate Plot”

See Also
dpskmod | pskdemod | pskmod

 dpskmod

1-243

dpskmod

Differential phase shift keying modulation

Syntax

y = dpskmod(x,M)

y = dpskmod(x,M,phaserot)

y = dpskmod(x,M,phaserot,symbol_order)

Description

y = dpskmod(x,M) outputs the complex envelope y of the modulation of the message
signal x using differential phase shift keying modulation. M is the alphabet size and
must be an integer. The message signal must consist of integers between 0 and M-1.
If x is a matrix with multiple rows and columns, the function processes the columns
independently.

y = dpskmod(x,M,phaserot) specifies the phase rotation of the modulation in
radians. In this case, the total phase shift per symbol is the sum of phaserot and the
phase generated by the differential modulation.

y = dpskmod(x,M,phaserot,symbol_order) specifies how the function assigns
binary words to corresponding integers. If symbol_order is set to 'bin' (default), the
function uses a natural binary-coded ordering. If symbol_order is set to 'gray', it uses
a Gray-coded ordering.

Note: An initial phase rotation of 0 is used in determining the first element of the output
y (or the first row of y if it is a matrix with multiple rows), because two successive
elements are required for a differential algorithm.

1 Functions — Alphabetical List

1-244

Examples

Modulate a DPSK Signal and View its Signal Trajectory

This example shows how to plot the output of the dspkmod function. The image shows
the possible transitions from each symbol in the DPSK signal constellation to the next
symbol.

Set the modulation order to 4 to model DQPSK modulation.

M = 4;

Generate a sequence of 4-ary random symbols.

x = randi([0 M-1],500,1);

Apply DQPSK modulation to the input symbols.

y = dpskmod(x,M,pi/8);

Create a constellation diagram object and set its properties to display a signal trajectory
diagram and to disable the display of the reference constellation. Use the step function
to display the trajectory.

h = comm.ConstellationDiagram('ShowTrajectory',true,'ShowReferenceConstellation',false);

step(h,y)

 dpskmod

1-245

More About
• “Digital Modulation”

See Also
pskmod | pskdemod | dpskdemod

1 Functions — Alphabetical List

1-246

dvbs2ldpc
Low-density parity-check codes from DVB-S.2 standard

Syntax

H = dvbs2ldpc(r)

Description

H = dvbs2ldpc(r) returns the parity-check matrix of the LDPC code with code rate r
from the DVB-S.2 standard. H is a sparse logical matrix.

Possible values for r are 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 5/6, 8/9, and 9/10. The block
length of the code is 64800.

The default parity-check matrix (32400-by-64800) corresponds to an irregular LDPC code
with the structure shown in the following table.

Row Number of 1s Per Row

1 6
2 to 32400 7

Column Number of 1s Per Column

1 to 12960 8
12961 to 32400 3

Columns 32401 to 64800 form a lower triangular matrix. Only the elements on its main
diagonal and the subdiagonal immediately below are 1s. This LDPC code is used in
conjunction with a BCH code in the Digital Video Broadcasting standard DVB-S.2 to
achieve a packet error rate below 10

7- at about 0.7 dB to 1 dB from the Shannon limit.

Examples
H = dvbs2ldpc(3/5);

 dvbs2ldpc

1-247

spy(H); % Visualize the location of nonzero elements in H.

henc = comm.LDPCEncoder(H);

hdec = comm.LDPCDecoder(H);

More About
• “spy”

1 Functions — Alphabetical List

1-248

encode
Block encoder

Syntax

code = encode(msg,n,k,'linear/fmt',genmat)

code = encode(msg,n,k,'cyclic/fmt',genpoly)

code = encode(msg,n,k,'hamming/fmt',prim_poly)

code = encode(msg,n,k)

[code,added] = encode(...)

Optional Inputs

Input Default Value

fmt binary

genpoly cyclpoly(n,k)

prim_poly gfprimdf(n-k)

Description

For All Syntaxes

The encode function encodes messages using one of the following error-correction coding
methods:

• Linear block
• Cyclic
• Hamming

For all of these methods, the codeword length is n and the message length is k.

msg, which represents the messages, can have one of several formats. The table
Information Formats below shows which formats are allowed for msg, how the argument

 encode

1-249

fmt should reflect the format of msg, and how the format of the output code depends on
these choices. The examples in the table are for k = 4. If fmt is not specified as input,
its default value is binary.

Note: If 2^n or 2^k is large, use the default binary format instead of the decimal
format. This is because the function uses a binary format internally, while the roundoff
error associated with converting many bits to large decimal numbers and back might be
substantial.

Information Formats

Dimension of msg Value of fmt Argument Dimension of code

Binary column or row vector binary Binary column or row vector
Example: msg = [0 1 1 0, 0 1 0 1, 1 0 0 1].'
Binary matrix with k
columns

binary Binary matrix with n
columns

Example: msg = [0 1 1 0; 0 1 0 1; 1 0 0 1]
Column or row vector
of integers in the range
[0, 2^k-1]

decimal Column or row vector
of integers in the range
[0, 2^n-1]

Example: msg = [6, 10, 9].'

For Specific Syntaxes

code = encode(msg,n,k,'linear/fmt',genmat) encodes msg using genmat as
the generator matrix for the linear block encoding method. genmat, a k-by-n matrix, is
required as input.

code = encode(msg,n,k,'cyclic/fmt',genpoly) encodes msg and creates a
systematic cyclic code. genpoly is a row vector that gives the coefficients, in order of
ascending powers, of the binary generator polynomial. The default value of genpoly is
cyclpoly(n,k). By definition, the generator polynomial for an [n,k] cyclic code must
have degree n-k and must divide xn-1.

code = encode(msg,n,k,'hamming/fmt',prim_poly) encodes msg using the
Hamming encoding method. For this syntax, n must have the form 2m-1 for some integer

1 Functions — Alphabetical List

1-250

m greater than or equal to 3, and k must equal n-m. prim_poly is a row vector that
gives the binary coefficients, in order of ascending powers, of the primitive polynomial
for GF(2m) that is used in the encoding process. The default value of prim_poly is the
default primitive polynomial gfprimdf(m).

code = encode(msg,n,k) is the same as code = encode(msg,n,k,'hamming/
binary').

[code,added] = encode(...) returns the additional variable added. added is the
number of zeros that were placed at the end of the message matrix before encoding in
order for the matrix to have the appropriate shape. “Appropriate” depends on n, k, the
shape of msg, and the encoding method.

Examples

The example below illustrates the three different information formats (binary vector,
binary matrix, and decimal vector) for Hamming code. The three messages have identical
content in different formats; as a result, the three codes that encode creates have
identical content in correspondingly different formats.

m = 4; n = 2^m-1; % Codeword length = 15

k = 11; % Message length

% Create 100 messages, k bits each.

msg1 = randi([0,1],100*k,1); % As a column vector

msg2 = vec2mat(msg1,k); % As a k-column matrix

msg3 = bi2de(msg2)'; % As a row vector of decimal integers

% Create 100 codewords, n bits each.

code1 = encode(msg1,n,k,'hamming/binary');

code2 = encode(msg2,n,k,'hamming/binary');

code3 = encode(msg3,n,k,'hamming/decimal');

if (vec2mat(code1,n)==code2 & de2bi(code3',n)==code2)

 disp('All three formats produced the same content.')

end

The output is

All three formats produced the same content.

The next example creates a cyclic code, adds noise, and then decodes the noisy code. It
uses the decode function.

 encode

1-251

n = 3; k = 2; % A (3,2) cyclic code

msg = randi([0,1],100,k); % 100 messages, k bits each

code = encode(msg,n,k,'cyclic/binary');

% Add noise.

noisycode = rem(code + randerr(100,n,[0 1;.7 .3]), 2);

newmsg = decode(noisycode,n,k,'cyclic'); % Try to decode.

% Compute error rate for decoding the noisy code.

[number,ratio] = biterr(newmsg,msg);

disp(['The bit error rate is ',num2str(ratio)])

The output is below. Your error rate results might vary because the noise is random.

The bit error rate is 0.08

The next example encodes the same message using Hamming and cyclic methods. This
example also creates Hamming code with the 'linear' option of the encode command.
It then decodes each code and recovers the original message.

n = 7; % Codeword length

k = 4; % Message length

m = log2(n+1); % Express n as 2^m-1.

msg = randi([0,2^k-1],100,1); % Column of decimal integers

% Create various codes.

codehamming = encode(msg,n,k,'hamming/decimal');

[parmat,genmat] = hammgen(m);

codehamming2 = encode(msg,n,k,'linear/decimal',genmat);

if codehamming==codehamming2

 disp('The ''linear'' method can create Hamming code.')

end

codecyclic = encode(msg,n,k,'cyclic/decimal');

% Decode to recover the original message.

decodedhamming = decode(codehamming,n,k,'hamming/decimal');

decodedcyclic = decode(codecyclic,n,k,'cyclic/decimal');

if (decodedhamming==msg & decodedcyclic==msg)

 disp('All decoding worked flawlessly in this noiseless world.')

end

The output is

The 'linear' method can create Hamming code.

All decoding worked flawlessly in this noiseless world.

1 Functions — Alphabetical List

1-252

More About

Algorithms

Depending on the encoding method, encode relies on such lower-level functions as
hammgen and cyclgen.
• “Block Codes”

See Also
decode | cyclpoly | cyclgen | hammgen

 equalize

1-253

equalize
Equalize signal using equalizer object

Syntax

y = equalize(eqobj,x)

y = equalize(eqobj,x,trainsig)

[y,yd] = equalize(...)

[y,yd,e] = equalize(...)

Description

y = equalize(eqobj,x) processes the baseband signal vector x with equalizer object
eqobj and returns the equalized signal vector y. At the end of the process, eqobj
contains updated state information such as equalizer weight values and input buffer
values. To construct eqobj, use the lineareq or dfe function, as described in “Adaptive
Algorithms”. The equalize function assumes that the signal x is sampled at nsamp
samples per symbol, where nsamp is the value of the nSampPerSym property of eqobj.
For adaptive algorithms other than CMA, the equalizer adapts in decision-directed
mode using a detector specified by the SigConst property of eqobj. The delay of the
equalizer is (eqobj.RefTap-1)/eqobj.nSampPerSym, as described in “Delays from
Equalization”.

Note that (eqobj.RefTap-1) must be an integer multiple of nSampPerSym. For
a fractionally-spaced equalizer, the taps are spaced at fractions of a symbol period.
The reference tap pertains to training symbols, and thus, must coincide with a whole
number of symbols (i.e., an integer number of samples per symbol). eqobj.RefTap=1
corresponds to the first symbol, eqobj.RefTap=nSampPerSym+1 to the second, and so
on. Therefore (eqobj.RefTap-1) must be an integer multiple of nSampPerSym.

If eqobj.ResetBeforeFiltering is 0, equalize uses the existing state information
in eqobj when starting the equalization operation. As a result, equalize(eqobj,[x1
x2]) is equivalent to [equalize(eqobj,x1) equalize(eqobj,x2)]. To reset eqobj
manually, apply the reset function to eqobj.

If eqobj.ResetBeforeFiltering is 1, equalize resets eqobj before starting the
equalization operation, overwriting any previous state information in eqobj.

1 Functions — Alphabetical List

1-254

y = equalize(eqobj,x,trainsig) initially uses a training sequence to adapt the
equalizer. After processing the training sequence, the equalizer adapts in decision-
directed mode. The vector length of trainsig must be less than or equal to length(x)-
(eqobj.RefTap-1)/eqobj.nSampPerSym.

[y,yd] = equalize(...) returns the vector yd of detected data symbols.

[y,yd,e] = equalize(...) returns the result of the error calculation described in
“Error Calculation”. For adaptive algorithms other than CMA, e is the vector of errors
between y and the reference signal, where the reference signal consists of the training
sequence or detected symbols.

Examples

For examples that use this function, see “Equalize Using a Training Sequence in
MATLAB”, “Example: Equalizing Multiple Times, Varying the Mode”, and “Example:
Adaptive Equalization Within a Loop”.

More About
• “Equalization”

See Also
lms | signlms | normlms | varlms | rls | cma | lineareq | dfe

 eyediagram

1-255

eyediagram
Generate eye diagram

Syntax

eyediagram(x,n)

eyediagram(x,n,period)

eyediagram(x,n,period,offset)

eyediagram(x,n,period,offset,plotstring)

eyediagram(x,n,period,offset,plotstring,h)

h = eyediagram(...)

Description

eyediagram(x,n) creates an eye diagram for the signal x, plotting n samples in
each trace. n must be an integer greater than 1. The labels on the horizontal axis of the
diagram range between -1/2 and 1/2. The function assumes that the first value of the
signal, and every nth value thereafter, occur at integer times. The interpretation of x and
the number of plots depend on the shape and complexity of x:

• If x is a real two-column matrix, eyediagram interprets the first column as in-phase
components and the second column as quadrature components. The two components
appear in different subplots of a single figure window.

• If x is a complex vector, eyediagram interprets the real part as in-phase components
and the imaginary part as quadrature components. The two components appear in
different subplots of a single figure window.

• If x is a real vector, eyediagram interprets it as a real signal. The figure window
contains a single plot.

eyediagram(x,n,period) is the same as the syntax above, except that the labels on
the horizontal axis range between -period/2 and period/2.

eyediagram(x,n,period,offset) is the same as the syntax above, except that
the function assumes that the (offset+1)st value of the signal, and every nth value
thereafter, occur at times that are integer multiples of period. The variable offset
must be a nonnegative integer between 0 and n-1.

1 Functions — Alphabetical List

1-256

eyediagram(x,n,period,offset,plotstring) is the same as the syntax above,
except that plotstring determines the plotting symbol, line type, and color for the plot.
plotstring is a string whose format and meaning are the same as in the plot function.
The default string is 'b-', which produces a blue solid line.

eyediagram(x,n,period,offset,plotstring,h) is the same as the syntax above,
except that the eye diagram is in the figure whose handle is h, rather than in a new
figure. h must be a handle to a figure that eyediagram previously generated.

Note: You cannot use hold on to plot multiple signals in the same figure.

h = eyediagram(...) is the same as the earlier syntaxes, except that h is the handle
to the figure that contains the eye diagram.

Examples

For an online demonstration, type showdemo scattereyedemo.

More About
• “Eye Diagram Analysis”

See Also
scatterplot | plot

 EyeScope

1-257

EyeScope
Launch eye diagram scope for eye diagram object H

Syntax

eyescope

eyescope(h)

Description

Eye Diagram Scope is a graphical user interface (GUI) that enables you to visualize and
measure the effects that various impairments, such as noise, jitter, and filtering, have on
a modulated signal. The scope performs a probability density function (pdf) analysis on
the signal to illustrate its trajectory in time, and to calculate such quantities as eye SNR,
RMS jitter, rise time, and fall time. The scope also enables you to import and compare
measurement results for eye diagrams of multiple signals.

There are two ways to call EyeScope:

• eyescope calls an empty scope
• eyescope(h) calls the scope and displays object h

Note: You can call EyeScope with an eye diagram object as the input argument.
EyeScope uses the inputname function to resolve the caller’s work space name for the
argument. If the inputname function cannot resolve the caller’s work space name,
then EyeScope uses a default name. To learn about the cases when EyeScope can not
determine the work space name, type help inputname at the MATLAB command line.

For more information, see “Eye Diagram Analysis”.

Starting EyeScope

To start EyeScope from the MATLAB command line, type:

1 Functions — Alphabetical List

1-258

eyescope

The following figure shows an EyeScope that does not have an eye diagram object loaded
in its memory.

Alternatively, you can start EyeScope so it displays an eye diagram object. To start
EyeScope so it displays an eye diagram object, type the following at the MATLAB
command line:

eyescope(h)

Note: h is a handle to an eye diagram object in the workspace.

The EyeScope Environment

• “EyeScope Menu Bar” on page 1-259

 EyeScope

1-259

• “Eye Diagram Object Plot and Plot Controls” on page 1-259
• “Eye Diagram Object Settings Panel” on page 1-261
• “Measurements” on page 1-262

EyeScope Menu Bar

EyeScope Menu Bar

The EyeScope menu bar is comprised of four menus: File, Options, View, and Help.

• Use the File menu to control the session management functions, import an eye
diagram object into EyeScope, and export an eye diagram plot.

• Use the Options menu to setup the eye diagram scope by selecting which eye
diagram settings and measurements EyeScope displays.

• Use the View menu to toggle between Single eye diagram view or Compare
measurement results view, and to add or modify a legend for the eye diagram plot.

• The Help menu is used to access help pertaining to the eye diagram object and
EyeScope.

Eye Diagram Object Plot and Plot Controls

The Eye diagram object plot is the region of the GUI where the eye diagram plot appears.

1 Functions — Alphabetical List

1-260

Eye diagram plot controls are user-configurable settings that specify plot type, color
scale, minimum and maximum plot PDF range, and plot time offset for the eye diagram
being analyzed. To access the EyeScope plot controls Options > Eye Diagram Plot
Controls

 EyeScope

1-261

Note: The value for the Plot time offset parameter can either be entered directly into
the text box or set using the slide bar control.

For more information pertaining to the eye diagram properties, refer to the
commscope.eyediagram reference page.

Eye Diagram Object Settings Panel

The eye diagram object settings panel displays the eye diagram object settings. The
default EyeScope configuration displays the following eye diagram object settings:

• Sampling frequency
• Symbol rate
• Eye level boundaries
• BER threshold
• Amplitude threshold

1 Functions — Alphabetical List

1-262

To specify which eye diagram object settings display in EyeScope, refer to “Selecting
Which Eye Diagram Object Settings To Display”. If you select additional eye diagram
object settings to display in EyeScope, use the scroll buttons to view all of the settings.

Measurements

The Measurements panel displays the eye diagram measurement settings. The default
EyeScope configuration displays the following eye diagram object measurements:

• Horizontal Eye Opening
• Random Jitter
• Deterministic Jitter
• Total Jitter
• RMS Jitter
• Peak to Peak Jitter
• Vertical Opening
• Rise Time
• Fall Time
• Eye SNR

 EyeScope

1-263

To select which eye diagram measurements EyeScope displays, refer to “Selecting Which
Eye Diagram Measurements To Display”. If you select additional eye diagram object
measurements to display in EyeScope, use the scroll buttons to view all of the settings.

Using EyeScope

• “Starting EyeScope with an Argument” on page 1-263
• “Starting a new Session” on page 1-264
• “Opening a Session” on page 1-264
• “Saving a Session” on page 1-265
• “Importing an Eye Diagram Object” on page 1-266
• “Printing to a Figure” on page 1-267
• “Selecting Which Eye Diagram Object Settings To Display” on page 1-268
• “Selecting Which Eye Diagram Measurements To Display” on page 1-269

Starting EyeScope with an Argument

You can start EyeScope so it is displaying an eye diagram object. To start EyeScope so it
is displaying an eye diagram object, type the following at the MATLAB command line:

1 Functions — Alphabetical List

1-264

eyescope(h)

Note: h is a handle to an eye diagram object presently in the workspace.

Starting a new Session

Starting a new session purges EyeScope memory, returning EyeScope to an empty plot
display. If changes have been made to an open session and you start a new session, you
will be prompted to save the open session.

Opening a Session

To open session, choose the file name and location of the session file. The file extensions
for a session file is .eds, which stands for eye diagram scope. If changes have been made
to a session that is presently open and you try to open up a new session, you will be
prompted to save the session that is presently open before the new session can start.

To open a session:

1 Click File > Open Session.

The Select File To Open Window appears.

 EyeScope

1-265

2 Navigate to the EyeScope session file you want, and click Open.

Saving a Session

The Save Session selection saves the current session, updating the session file. A session
file includes the eye diagram object, eyescope options, and plot control selections.

If you attempt to save a session that you have not previously saved, EyeScope will
prompt you for a file name and location. Otherwise, the session is saved to the previously
selected file.

To save a session, follow these steps:

1 Click File > Save Session.
2 Navigate to the folder where you want to save the EyeScope session file and click

Save.

1 Functions — Alphabetical List

1-266

Importing an Eye Diagram Object

The Import menu selection imports an eye diagram object from either the workspace or
a MAT-file to EyeScope. The imported variable name will be reconstructed to reflect the
origin of the eye diagram object, as follows:

• If an object is imported from the workspace, the variable name will be ws_object
name, where object name is the name of the original variable.

• If the object is imported from a MATLAB file, then the file name (without the path)
precedes the object name.

Importing an object creates a copy of the object, using the naming convention previously
described. EyeScope displays the object's contents as configured when the object was
imported. EyeScope does not track any object changes made in the workspace (or to the
MATLAB file) from which the object was imported.

To import an eye diagram object:

1 Click File > Import Eye Diagram Object

The Import eye diagram object window appears.

 EyeScope

1-267

The contents panel of the of the Import eye diagram object window displays all eye
diagram objects available in the source location.

2 From the Import eye diagram object window, select the source for the object being
imported.

• Select From workspace to import an eye diagram object directly from the
workspace.

• Select From File to choose an eye diagram object file that was previously saved
and click Browse to select the file to be loaded.

3 Click Import.

Printing to a Figure

EyeScope allows you to print an eye diagram plot to a separate MATLAB figure window.
From the MATLAB figure window, along with other tasks, you can print, zoom, or edit
the plot.

To export an eye diagram figure:

• Click File > Print to Figure

The MATLAB figure window, containing the exported image, appears.

1 Functions — Alphabetical List

1-268

Selecting Which Eye Diagram Object Settings To Display

The Eye Diagram Object Settings View allows you to select which object settings
display in the eye diagram object settings panel. You make your selections in the
Configure eye diagram object settings view window, where a shuttle control allows you to
add, remove, or reorder the settings you are displaying.

To add an eye diagram object setting:

1 Click Options > Eye Diagram Object Settings View

The Configure eye diagram object settings view window appears.

 EyeScope

1-269

2 Locate any items to be added in the list of Available items, and left-click to select.

Note: To select multiple items, you can either press and hold the <Shift> key and
left-click or press and hold the <Ctrl> key and left-click.

When you select an item, the Quick help panel displays information about the item.
If you select multiple items, Quick help displays information pertaining to the last
item you select.

3 Click Add.

Note: Using the Move Up orMove Down buttons, you can change the order in
which the eye diagrams settings you select appear.

4 Click OK .

Selecting Which Eye Diagram Measurements To Display

You can modify the contents of the measurement panel by selecting which eye diagram
measurements display in the eye diagram object settings panel. You make your

1 Functions — Alphabetical List

1-270

selections in the Configure measurements view window, where a shuttle control allows
you to add, remove, or reorder the settings you are including.

Adding An Eye Diagram Measurement Setting

1 Click Options > Measurements View

The Configure measurements window appears.

2 Locate any items to be added in the list of Available items, and left-click to select.

Note: To select multiple items, you can either press and hold the <Shift> key and
left-click or press and hold the <Ctrl> key and left-click.

When you select an item, the Quick help panel displays information about the item.
If you select multiple items, Quick help displays information pertaining to the last
item you select.

3 Click Add.

 EyeScope

1-271

Note: Using the Move Up or Move Down buttons, you can change the order in
which the eye diagrams settings you select appear.

4 Click OK .

1 Functions — Alphabetical List

1-272

fft

Discrete Fourier transform

Syntax

fft(x)

Description

fft(x) is the discrete Fourier transform (DFT) of the Galois vector x. If x is in the
Galois field GF(2m), the length of x must be 2m-1.

Examples

m = 4;

n = 2^m-1;

x = gf(randi([0 2^m-1],n,1),m); % Random vector

y = fft(x); % Transform of x

z = ifft(y); % Inverse transform of y

ck = isequal(z,x) % Check that ifft(fft(x)) recovers x.

The output is

ck =

 1

Limitations

The Galois field over which this function works must have 256 or fewer elements. In
other words, x must be in the Galois field GF(2m), where m is an integer between 1 and 8.

 fft

1-273

More About

Algorithms

If x is a column vector, fft applies dftmtx to the primitive element of the Galois field
and multiplies the resulting matrix by x.
• “Signal Processing Operations in Galois Fields”

See Also
ifft | dftmtx

1 Functions — Alphabetical List

1-274

filter (channel)

Filter signal with channel object

Syntax

y = filter(chan,x)

Description

y = filter(chan,x) processes the baseband signal vector x with the channel
object chan. The result is the signal vector y. The final state of the channel is stored
in chan. You can construct chan using either rayleighchan or ricianchan. The
filter function assumes x is sampled at frequency 1/ts, where ts equals the
InputSamplePeriod property of chan.

If chan.ResetBeforeFiltering is 0, filter uses the existing state information in
chan when starting the filtering operation. As a result, filter(chan,[x1 x2]) is
equivalent to [filter(chan,x1) filter(chan,x2)]. To reset chan manually, apply
the reset function to chan.

If chan.ResetBeforeFiltering is 1, filter resets chan before starting the filtering
operation, overwriting any previous state information in chan.

Examples

Examples using this function are in “Use Fading Channels”.

More About
• “Fading Channels”

 filter (channel)

1-275

References

[1] Jeruchim, Michel C., Philip Balaban, and K. Sam Shanmugan, Simulation of
Communication Systems, Second Edition, New York, Kluwer Academic/Plenum,
2000.

See Also
rayleighchan | reset | ricianchan

1 Functions — Alphabetical List

1-276

filter (gf)
1-D digital filter over Galois field

Syntax

y = filter(b,a,x)

[y,zf] = filter(b,a,x)

Description

y = filter(b,a,x) filters the data in the vector x with the filter described by
numerator coefficient vector b and denominator coefficient vector a. The vectors b, a, and
x must be Galois vectors in the same field. If a(1) is not equal to 1, filter normalizes
the filter coefficients by a(1). As a result, a(1) must be nonzero.

The filter is a “Direct Form II Transposed” implementation of the standard difference
equation below.

a(1)*y(n) = b(1)*x(n) + b(2)*x(n-1) + ... + b(nb+1)*x(n-nb) ...

 - a(2)*y(n-1) - ... - a(na+1)*y(n-na)

[y,zf] = filter(b,a,x) returns the final conditions of the filter delays in the
Galois vector zf. The length of the vector zf is max(size(a),size(b))-1.

Examples

An example is in “Huffman Coding”.

 finddelay

1-277

finddelay
Estimate delay(s) between signals

Syntax

D = finddelay(X,Y)

D = finddelay(...,MAXLAG)

Description

D = finddelay(X,Y), where X and Y are row or column vectors, returns an estimate
of the delay D between X and Y, where X serves as the reference vector. If Y is delayed
with respect to X, then D is positive. If Y is advanced with respect to X, then D is negative.
Delays in X and Y can be introduced by pre-pending zeros.

X and Y need not be exact delayed copies of each other, as finddelay(X,Y) returns an
estimate of the delay via cross-correlation. However this estimated delay has a useful
meaning only if there is sufficient correlation between delayed versions of X and Y.
Also, if several delays are possible, as in the case of periodic signals, the delay with the
smallest absolute value is returned. In the case that both a positive and a negative delay
with the same absolute value are possible, the positive delay is returned.

D = finddelay(X,Y), where X is a matrix of size MX-by-NX (MX>1 and NX>1) and
Y is a matrix of size MY-by-NY (MY>1 and NY>1), returns a row vector D of estimated
delays between each column of X and the corresponding column of Y. With this usage the
number of columns of X must be equal to the number of columns of Y (i.e., NX=NY).

D = finddelay(...,MAXLAG), uses MAXLAG as the maximum correlation window size
used to find the estimated delay(s) between X and Y. The usage of MAXLAG is detailed in
the table below.

By default, MAXLAG is equal to MAX(LX, LY)-1 for two vector inputs (where LX and LY
are the lengths of X and Y, respectively), MAX(MX, MY)-1 for two matrix inputs, and
MAX(LX, MY)-1 or MAX(MX, LY)-1 for one vector input and one matrix input. If MAXLAG
is input as [], it is replaced by the default value. If any element of MAXLAG is negative,
it is replaced by its absolute value. If any element of MAXLAG is not integer-valued, or is
complex, Inf, or NaN, then finddelay returns an error.

1 Functions — Alphabetical List

1-278

The calculation of the vector of estimated delays, D, depends on X, Y, and MAXLAG as
shown in the following table.

MAXLAG X Y D is calculated by...

Integer-valued
scalar

Row or column
vector or matrix

Row or column
vector or matrix

Cross-correlating the columns of X and
Y over a range of lags -MAXLAG:MAXLAG.

Integer-valued
row or column
vector

Row or column
vector of length
LX ≥ 1

Matrix of size
MY-by-NY
(MY>1, NY>1)

Cross-correlating X and column
j of Y over a range of lags
-MAXLAG(j):MAXLAG(j), for j=1:NY.

Integer-valued
row or column
vector

Matrix of size MX-
by-NX (MX>1,
NX>1)

Row or column
vector of length
LY ≥ 1

Cross-correlating column j of
X and Y over a range of lags
-MAXLAG(j):MAXLAG(j), for j=1:NX.

Integer-valued
row or column
vector

Matrix of size MX-
by-NX (MX>1,
NX>1)

Matrix of size
MY-by-NY
(MY>1,
NY=NX>1)

Cross-correlating column j of X and
column j of Y over a range of lags
-MAXLAG(j):MAXLAG(j), for j=1:NY.

Treating X as Multiple Channels

If you wish to treat a row vector X of length LX as comprising one sample from LX
different channels, you need to append one or more rows of zeros to X so that it appears
as a matrix. Then each column of X will be considered a channel.

For example, X = [1 1 1 1] is considered a single channel comprising four samples.
To treat it as four different channels, each channel comprising one sample, define a new
matrix Xm:

Xm = [1 1 1 1;

 0 0 0 0];

Each column of Xm corresponds to a single channel, each one containing the samples 1
and 0.

Examples

X and Y Are Vectors, and MAXLAG Is Not Specified

The following shows Y being delayed with respect to X by two samples.

 finddelay

1-279

X = [1 2 3];

Y = [0 0 1 2 3];

D = finddelay(X,Y)

The result is D = 2.

Here is a case of Y advanced with respect to X by three samples.

X = [0 0 0 1 2 3 0 0]';

Y = [1 2 3 0]';

D = finddelay(X,Y)

The result is D = -3.

The following illustrates a case where Y is aligned with X but is noisy.

X = [0 0 1 2 3 0];

Y = [0.02 0.12 1.08 2.21 2.95 -0.09];

D = finddelay(X,Y)

The result is D = 0.

If Y is a periodic version of X, the smallest possible delay is returned.

X = [0 1 2 3];

Y = [1 2 3 0 0 0 0 1 2 3 0 0];

D = finddelay(X,Y)

The result is D = -1.

X is a Vector, Y a Matrix, and MAXLAG Is a Scalar

MAXLAG is specified as a scalar (same maximum window sizes).

X = [0 1 2];

Y = [0 1 0 0;

 1 2 0 0;

 2 0 1 0;

 0 0 2 1];

MAXLAG = 3;

D = finddelay(X,Y,MAXLAG)

The result is D = [0 -1 1 1].

1 Functions — Alphabetical List

1-280

X and Y Are Matrices, and MAXLAG Is Not Specified

X = [0 1 0 0;

 1 2 0 0;

 2 0 1 0;

 1 0 2 1;

 0 0 0 2];

Y = [0 0 1 0;

 1 1 2 0;

 2 2 0 1;

 1 0 0 2;

 0 0 0 0];

D = finddelay(X,Y)

The result is D = [0 1 -2 -1].

X and Y Are Matrices, and MAXLAG Is Specified

X = [0 1 0 0;

 1 2 0 0;

 2 0 1 0;

 1 0 2 1;

 0 0 0 2];

Y = [0 0 1 0;

 1 1 2 0;

 2 2 0 1;

 1 0 0 2;

 0 0 0 0];

MAXLAG = [10 10 20 20];

D = finddelay(X,Y,MAXLAG)

The result is D = [0 1 -2 -1].

More About

Algorithms

The finddelay function uses the xcorr function of Signal Processing Toolbox to
determine the cross-correlation between each pair of signals at all possible lags specified
by the user. The normalized cross-correlation between each pair of signals is then
calculated. The estimated delay is given by the negative of the lag for which the
normalized cross-correlation has the largest absolute value.

 finddelay

1-281

If more than one lag leads to the largest absolute value of the cross-correlation, such
as in the case of periodic signals, the delay is chosen as the negative of the smallest (in
absolute value) of such lags.

Pairs of signals need not be exact delayed copies of each other. However, the estimated
delay has a useful meaning only if there is sufficient correlation between at least one pair
of the delayed signals.

See Also
alignsignals | biterr | symerr | xcorr

1 Functions — Alphabetical List

1-282

fmdemod
Frequency demodulation

Syntax

z = fmdemod(y,Fc,Fs,freqdev)

z = fmdemod(y,Fc,Fs,freqdev,ini_phase)

Description

z = fmdemod(y,Fc,Fs,freqdev) demodulates the modulating signal z from the
carrier signal using frequency demodulation. The carrier signal has frequency Fc (Hz)
and sampling rate Fs (Hz), where Fs must be at least 2*Fc. The freqdev argument is
the frequency deviation (Hz) of the modulated signal y.

z = fmdemod(y,Fc,Fs,freqdev,ini_phase) specifies the initial phase of the
modulated signal, in radians.

Examples

An example using fmdemod is on the reference page for fmmod.

More About
• “Digital Modulation”

See Also
fmmod | pmmod | pmdemod

 fmmod

1-283

fmmod
Frequency modulation

Syntax
y = fmmod(x,Fc,Fs,freqdev)

y = fmmod(x,Fc,Fs,freqdev,ini_phase)

Description
y = fmmod(x,Fc,Fs,freqdev) modulates the message signal x using frequency
modulation. The carrier signal has frequency Fc (Hz) and sampling rate Fs (Hz), where
Fs must be at least 2*Fc. The freqdev argument is the frequency deviation constant
(Hz) of the modulated signal.

y = fmmod(x,Fc,Fs,freqdev,ini_phase) specifies the initial phase of the
modulated signal, in radians.

Examples
The code below modulates a multichannel signal using fmmod and demodulates it using
fmdemod.

Fs = 8000; % Sampling rate of signal

Fc = 3000; % Carrier frequency

t = [0:Fs-1]'/Fs; % Sampling times

s1 = sin(2*pi*300*t)+2*sin(2*pi*600*t); % Channel 1

s2 = sin(2*pi*150*t)+2*sin(2*pi*900*t); % Channel 2

x = [s1,s2]; % Two-channel signal

dev = 50; % Frequency deviation in modulated signal

y = fmmod(x,Fc,Fs,dev); % Modulate both channels.

z = fmdemod(y,Fc,Fs,dev); % Demodulate both channels.

plot(z);

More About
• “Digital Modulation”

1 Functions — Alphabetical List

1-284

See Also
fmdemod | ammod | pmmod

 fskdemod

1-285

fskdemod
Frequency shift keying demodulation

Syntax

z = fskdemod(y,M,freq_sep,nsamp)

z = fskdemod(y,M,freq_sep,nsamp,Fs)

z = fskdemod(y,M,freq_sep,nsamp,Fs,symbol_order)

Description

z = fskdemod(y,M,freq_sep,nsamp) noncoherently demodulates the complex
envelope y of a signal using the frequency shift key method. M is the alphabet size and
must be an integer power of 2. freq_sep is the frequency separation between successive
frequencies in Hz. nsamp is the required number of samples per symbol and must be a
positive integer greater than 1. The sampling frequency is 1 Hz. If y is a matrix with
multiple rows and columns, the function processes the columns independently.

z = fskdemod(y,M,freq_sep,nsamp,Fs) specifies the sampling frequency in Hz.

z = fskdemod(y,M,freq_sep,nsamp,Fs,symbol_order) specifies how the function
assigns binary words to corresponding integers. If symbol_order is set to 'bin'
(default), the function uses a natural binary-coded ordering. If symbol_order is set to
'gray', it uses a Gray-coded ordering.

Examples

Modulation and Demodulation of an FSK Signal in AWGN

Pass an FSK signal through an AWGN channel and estimate the resulting bit error rate
(BER). Compare the estimated BER to the theoretical value.

Set the simulation parameters.

M = 2; % Modulation order

k = log2(M); % Bits per symbol

1 Functions — Alphabetical List

1-286

EbNo = 5; % Eb/No (dB)

Fs = 16; % Sample rate (Hz)

nsamp = 8; % Number of samples per symbol

freqsep = 10; % Frequency separation (Hz)

Generate random data symbols.

data = randi([0 M-1],5000,1);

Apply FSK modulation.

txsig = fskmod(data,M,freqsep,nsamp,Fs);

Pass the signal through an AWGN channel

rxSig = awgn(txsig,EbNo+10*log10(k)-10*log10(nsamp),...

 'measured',[],'dB');

Demodulate the received signal.

dataOut = fskdemod(rxSig,M,freqsep,nsamp,Fs);

Calculate the bit error rate.

[num,BER] = biterr(data,dataOut);

Determine the theoretical BER and compare it to the estimated BER. Your BER value
might vary because the example uses random numbers.

BER_theory = berawgn(EbNo,'fsk',M,'noncoherent');

[BER BER_theory]

ans =

 0.0958 0.1029

More About
• “Digital Modulation”

See Also
fskmod | pskmod | pskdemod

 fskmod

1-287

fskmod

Frequency shift keying modulation

Syntax

y = fskmod(x,M,freq_sep,nsamp)

y = fskmod(x,M,freq_sep,nsamp,Fs)

y = fskmod(x,M,freq_sep,nsamp,Fs,phase_cont)

y = FSKMOD(x,M,freq_sep,nsamp,Fs,phase_cont,symbol_order)

Description

y = fskmod(x,M,freq_sep,nsamp) outputs the complex envelope y of the modulation
of the message signal x using frequency shift keying modulation. M is the alphabet
size and must be an integer power of 2. The message signal must consist of integers
between 0 and M-1. freq_sep is the desired separation between successive frequencies
in Hz. nsamp denotes the number of samples per symbol in y and must be a positive
integer greater than 1. The sampling rate of y is 1 Hz. By the Nyquist sampling theorem,
freq_sep and M must satisfy (M-1)*freq_sep <= 1. If x is a matrix with multiple
rows and columns, the function processes the columns independently.

y = fskmod(x,M,freq_sep,nsamp,Fs) specifies the sampling rate of y in Hz.
Because the Nyquist sampling theorem implies that the maximum frequency must be no
larger than Fs/2, the inputs must satisfy (M-1)*freq_sep <= Fs.

y = fskmod(x,M,freq_sep,nsamp,Fs,phase_cont) specifies the phase continuity.
Set phase_cont to 'cont' to force phase continuity across symbol boundaries in y, or
'discont' to avoid forcing phase continuity. The default is 'cont'.

y = FSKMOD(x,M,freq_sep,nsamp,Fs,phase_cont,symbol_order) specifies how
the function assigns binary words to corresponding integers. If symbol_order is set to
'bin' (default), the function uses a natural binary-coded ordering. If symbol_order is
set to 'gray', it uses a Gray-coded ordering.

1 Functions — Alphabetical List

1-288

Examples

FSK Signal Spectrum Plot

Generate an FSK modulated signal and display its spectral characteristics.

Set the function parameters.

M = 4; % Modulation order

freqsep = 8; % Frequency separation (Hz)

nsamp = 8; % Number of samples per symbol

Fs = 32; % Sample rate (Hz)

Generate random M-ary symbols.

x = randi([0 M-1],1000,1);

Apply FSK modulation.

y = fskmod(x,M,freqsep,nsamp,Fs);

Create a spectrum analyzer System object™ and use its step method to display a plot of
the signal spectrum.

h = dsp.SpectrumAnalyzer('SampleRate',Fs);

step(h,y)

 fskmod

1-289

More About
• “Digital Modulation”

See Also
fskdemod | pskmod | pskdemod

1 Functions — Alphabetical List

1-290

plotPhaseNoiseFilter

Plot response of phase noise filter block

Syntax

plotPhaseNoiseFilter(BLOCKNAME)

Description

plotPhaseNoiseFilter(BLOCKNAME) plots the response of the phase noise filter
associated with the Phase Noise block specified by the string variable BLOCKNAME.

Examples

View the Filter Response of a Phase Noise Block

This example shows how to use the plotPhaseNoiseFilter function to view the filter
response of a Phase Noise block in a Simulink model.

Load a Simulink model that contains a Phase Noise block. The load_system command
loads a model into memory without making its model window visible. The function will
also work with models whose window is visible. The example, doc_phasenoise, contains a
Phase Noise block.

load_system('doc_phasenoise')

Run the plotPhaseNoiseFilter function to view the filter response of the block ‘Phase
Noise’.

plotPhaseNoiseFilter('doc_phasenoise/Phase Noise')

 plotPhaseNoiseFilter

1-291

Input Arguments

BLOCKNAME — Phase noise block name
string

The name of a Phase Noise block in a Simulink model
Example: plotPhaseNoiseFilter('Model Name/Phase Noise')

Data Types: char

See Also
Phase Noise

1 Functions — Alphabetical List

1-292

gen2par
Convert between parity-check and generator matrices

Syntax

parmat = gen2par(genmat)

genmat = gen2par(parmat)

Description

parmat = gen2par(genmat) converts the standard-form binary generator matrix
genmat into the corresponding parity-check matrix parmat.

genmat = gen2par(parmat) converts the standard-form binary parity-check matrix
parmat into the corresponding generator matrix genmat.

The standard forms of the generator and parity-check matrices for an [n,k] binary linear
block code are shown in the table below

Type of Matrix Standard Form Dimensions

Generator [Ik P] or [P Ik] k-by-n
Parity-check [-P' In-k] or [In-k -P'] (n-k)-by-n

.

where Ik is the identity matrix of size k and the ' symbol indicates matrix transpose.
Two standard forms are listed for each type, because different authors use different
conventions. For binary codes, the minus signs in the parity-check form listed above are
irrelevant; that is, -1 = 1 in the binary field.

Examples

The commands below convert the parity-check matrix for a Hamming code into the
corresponding generator matrix and back again.

 gen2par

1-293

parmat = hammgen(3)

genmat1 = gen2par(parmat)

parmat2 = gen2par(genmat1) % Ans should be the same as parmat above

The output is

parmat =

 1 0 0 1 0 1 1

 0 1 0 1 1 1 0

 0 0 1 0 1 1 1

genmat =

 1 1 0 1 0 0 0

 0 1 1 0 1 0 0

 1 1 1 0 0 1 0

 1 0 1 0 0 0 1

parmat2 =

 1 0 0 1 0 1 1

 0 1 0 1 1 1 0

 0 0 1 0 1 1 1

More About
• “Block Codes”

See Also
cyclgen | hammgen

1 Functions — Alphabetical List

1-294

genqamdemod
General quadrature amplitude demodulation

Syntax

z = genqamdemod(y,const)

Description

z = genqamdemod(y,const) demodulates the complex envelope y of a quadrature
amplitude modulated signal. The complex vector const specifies the signal mapping. If y
is a matrix with multiple rows, the function processes the columns independently.

Examples

The reference page for genqammod has an example that uses genqamdemod.

More About
• “Digital Modulation”

See Also
genqammod | qammod | qamdemod | pammod | pamdemod

 genqammod

1-295

genqammod
General quadrature amplitude modulation

Syntax

y = genqammod(x,const)

Description

y = genqammod(x,const) outputs the complex envelope y of the modulation of
the message signal x using quadrature amplitude modulation. The message signal
must consist of integers between 0 and length(const)-1. The complex vector const
specifies the signal mapping. If x is a matrix with multiple rows, the function processes
the columns independently.

Examples

The code below plots a signal constellation that has a hexagonal structure. It also uses
genqammod and genqamdemod to modulate and demodulate a message [3 8 5 10 7]
using this constellation.
% Describe hexagonal constellation.

inphase = [1/2 1 1 1/2 1/2 2 2 5/2];

quadr = [0 1 -1 2 -2 1 -1 0];

inphase = [inphase;-inphase]; inphase = inphase(:);

quadr = [quadr;quadr]; quadr = quadr(:);

const = inphase + j*quadr;

% Plot constellation.

h = scatterplot(const);

% Modulate message using this constellation.

x = [3 8 5 10 7]; % Message signal

y = genqammod(x,const);

z = genqamdemod(y,const); % Demodulate.

% Plot modulated signal in same figure.

hold on; scatterplot(y,1,0,'ro',h);

legend('Constellation','Modulated signal','Location','NorthWest'); % Include legend.

hold off;

1 Functions — Alphabetical List

1-296

More About
• “Digital Modulation”

See Also
genqamdemod | qammod | qamdemod | pammod | pamdemod

 gf

1-297

gf

Create Galois field array

Syntax

x_gf = gf(x,m)

x_gf = gf(x,m,prim_poly)

x_gf = gf(x)

Description

x_gf = gf(x,m) creates a Galois field array from the matrix x. The Galois field
has 2^m elements, where m is an integer between 1 and 16. The elements of x must
be integers between 0 and 2^m-1. The output x_gf is a variable that MATLAB
recognizes as a Galois field array, rather than an array of integers. As a result, when you
manipulate x_gf using operators or functions such as + or det, MATLAB works within
the Galois field you have specified.

Note: To learn how to manipulate x_gf using familiar MATLAB operators and functions,
see “Galois Field Computations”. To learn how the integers in x represent elements of
GF(2^m), see “How Integers Correspond to Galois Field Elements”.

x_gf = gf(x,m,prim_poly) is the same as the previous syntax, except it uses
the primitive polynomial prim_poly to define the field. prim_poly is the integer
representation of a primitive polynomial. For example, the number 37 represents
the polynomial D^5+D^2+1 because the binary form of 37 is 1 0 0 1 0 1. For more
information about the primitive polynomial, see “Specifying the Primitive Polynomial”.

x_gf = gf(x) creates a GF(2) array from the matrix x. Each element of x must be 0 or
1.

1 Functions — Alphabetical List

1-298

Default Primitive Polynomials

The table below lists the primitive polynomial that gf uses by default for each Galois
field GF(2^m). To use a different primitive polynomial, specify prim_poly as an input
argument when you invoke gf.

m Default Primitive Polynomial Integer Representation

1 D + 1 3
2 D^2 + D + 1 7
3 D^3 + D + 1 11
4 D^4 + D + 1 19
5 D^5 + D^2 + 1 37
6 D^6 + D + 1 67
7 D^7 + D^3 + 1 137
8 D^8 + D^4 + D^3 + D^2 + 1 285
9 D^9 + D^4 + 1 529
10 D^10 + D^3 + 1 1033
11 D^11 + D^2 + 1 2053
12 D^12 + D^6 + D^4 + D + 1 4179
13 D^13 + D^4 + D^3 + D + 1 8219
14 D^14 + D^10 + D^6 + D + 1 17475
15 D^15 + D + 1 32771
16 D^16 + D^12 + D^3 + D + 1 69643

Examples

For examples that use gf, see

• “Example: Creating Galois Field Variables”
• “Example: Representing a Primitive Element”
• Other sample code within “Galois Field Computations”
• The Galois field demonstration: type showdemo gfdemo.

 gf

1-299

More About
• “Galois field computations”
• “Galois Field Computations”

See Also
gftable

1 Functions — Alphabetical List

1-300

gfadd
Add polynomials over Galois field

Syntax

c = gfadd(a,b)

c = gfadd(a,b,p)

c = gfadd(a,b,p,len)

c = gfadd(a,b,field)

Description

Note: This function performs computations in GF(pm) where p is prime. To work in
GF(2m), apply the + operator to Galois arrays of equal size. For details, see “Example:
Addition and Subtraction”.

c = gfadd(a,b) adds two GF(2) polynomials, a and b. If a and b are vectors of the
same orientation but different lengths, then the shorter vector is zero-padded. If a and b
are matrices they must be of the same size.

c = gfadd(a,b,p) adds two GF(p) polynomials, where p is a prime number. a, b, and
c are row vectors that give the coefficients of the corresponding polynomials in order of
ascending powers. Each coefficient is between 0 and p-1. If a and b are matrices of the
same size, the function treats each row independently.

c = gfadd(a,b,p,len) adds row vectors a and b as in the previous syntax, except
that it returns a row vector of length len. The output c is a truncated or extended
representation of the sum. If the row vector corresponding to the sum has fewer than
len entries (including zeros), extra zeros are added at the end; if it has more than len
entries, entries from the end are removed.

c = gfadd(a,b,field) adds two GF(pm) elements, where m is a positive integer. a
and b are the exponential format of the two elements, relative to some primitive element
of GF(pm). field is the matrix listing all elements of GF(pm), arranged relative to the

 gfadd

1-301

same primitive element. c is the exponential format of the sum, relative to the same
primitive element. See “Representing Elements of Galois Fields” for an explanation of
these formats. If a and b are matrices of the same size, the function treats each element
independently.

Examples

In the code below, sum5 is the sum of 2 + 3x + x2 and 4 + 2x + 3x2 over GF(5), and
linpart is the degree-one part of sum5.

sum5 = gfadd([2 3 1],[4 2 3],5)

linpart = gfadd([2 3 1],[4 2 3],5,2)

The output is

sum5 =

 1 0 4

linpart =

 1 0

The code below shows that A2 + A4 = A1, where A is a root of the primitive polynomial
2 + 2x + x2 for GF(9).

p = 3; m = 2;

prim_poly = [2 2 1];

field = gftuple([-1:p^m-2]',prim_poly,p);

g = gfadd(2,4,field)

The output is

g =

 1

Other examples are in “Arithmetic in Galois Fields”.

See Also
gfsub | gfconv | gfmul | gfdeconv | gfdiv | gftuple

1 Functions — Alphabetical List

1-302

gfconv
Multiply polynomials over Galois field

Syntax

c = gfconv(a,b)

c = gfconv(a,b,p)

c = gfconv(a,b,field)

Description

Note: This function performs computations in GF(pm), where p is prime. To work in
GF(2m), use the conv function with Galois arrays. For details, see “Multiplication and
Division of Polynomials”.

The gfconv function multiplies polynomials over a Galois field. (To multiply elements of
a Galois field, use gfmul instead.) Algebraically, multiplying polynomials over a Galois
field is equivalent to convolving vectors containing the polynomials' coefficients, where
the convolution operation uses arithmetic over the same Galois field.

c = gfconv(a,b) multiplies two GF(2) polynomials, a and b. The polynomial degree
of the resulting GF(2) polynomial c equals the degree of a plus the degree of b.

c = gfconv(a,b,p) multiplies two GF(p) polynomials, where p is a prime number.
a, b, and c are row vectors that give the coefficients of the corresponding polynomials in
order of ascending powers. Each coefficient is between 0 and p-1.

c = gfconv(a,b,field) multiplies two GF(pm) polynomials, where p is a prime
number and m is a positive integer. a, b, and c are row vectors that list the exponential
formats of the coefficients of the corresponding polynomials, in order of ascending
powers. The exponential format is relative to some primitive element of GF(pm). field
is the matrix listing all elements of GF(pm), arranged relative to the same primitive
element. See “Representing Elements of Galois Fields” for an explanation of these
formats.

 gfconv

1-303

Examples

The command below shows that

()()1 2
4 2 2 3 5 6

+ + + = + + + +x x x x x x x x x

over GF(3).

gfc = gfconv([1 1 0 0 1],[0 1 1],3)

The output is

gfc =

 0 1 2 1 0 1 1

The code below illustrates the identity

()x x x x
r s p rp sp

+ = +

for the case in which p = 7, r = 5, and s = 3. (The identity holds when p is any prime
number, and r and s are positive integers.)

p = 7; r = 5; s = 3;

a = gfrepcov([r s]); % x^r + x^s

% Compute a^p over GF(p).

c = 1;

for ii = 1:p

 c = gfconv(c,a,p);

end;

% Check whether c = x^(rp) + x^(sp).

powers = [];

for ii = 1:length(c)

 if c(ii)~=0

 powers = [powers, ii];

 end;

end;

if (powers==[r*p+1 s*p+1] | powers==[s*p+1 r*p+1])

 disp('The identity is proved for this case of r, s, and p.')

end

1 Functions — Alphabetical List

1-304

See Also
gfdeconv | gfadd | gfsub | gfmul | gftuple

 gfcosets

1-305

gfcosets
Produce cyclotomic cosets for Galois field

Syntax

c = gfcosets(m)

c = gfcosets(m,p)

Description

Note: This function performs computations in GF(pm), where p is prime. To work in
GF(2m), use the cosets function.

c = gfcosets(m) produces cyclotomic cosets mod(2m - 1). Each row of the output GFCS
contains one cyclotomic coset.

c = gfcosets(m,p) produces the cyclotomic cosets for GF(p^m), where m is a positive
integer and p is a prime number.

The output matrix c is structured so that each row represents one coset. The row
represents the coset by giving the exponential format of the elements of the coset,
relative to the default primitive polynomial for the field. For a description of exponential
formats, see “Representing Elements of Galois Fields”.

The first column contains the coset leaders. Because the lengths of cosets might vary,
entries of NaN are used to fill the extra spaces when necessary to make c rectangular.

A cyclotomic coset is a set of elements that all satisfy the same minimal polynomial. For
more details on cyclotomic cosets, see the works listed in “References” on page 1-306.

Examples

The command below finds the cyclotomic cosets for GF(9).

1 Functions — Alphabetical List

1-306

c = gfcosets(2,3)

The output is

c =

 0 NaN

 1 3

 2 6

 4 NaN

 5 7

The gfminpol function can check that the elements of, for example, the third row of c
indeed belong in the same coset.

m = [gfminpol(2,2,3); gfminpol(6,2,3)] % Rows are identical.

The output is

m =

 1 0 1

 1 0 1

References

[1] Blahut, Richard E., Theory and Practice of Error Control Codes, Reading, MA,
Addison-Wesley, 1983, p. 105.

[2] Lin, Shu, and Daniel J. Costello, Jr., Error Control Coding: Fundamentals and
Applications, Englewood Cliffs, NJ, Prentice-Hall, 1983.

See Also
gfminpol | gfprimdf | gfroots

 gfdeconv

1-307

gfdeconv
Divide polynomials over Galois field

Syntax

[quot,remd] = gfdeconv(b,a)

[quot,remd] = gfdeconv(b,a,p)

[quot,remd] = gfdeconv(b,a,field)

Description

Note: This function performs computations in GF(pm), where p is prime. To work in
GF(2m), use the deconv function with Galois arrays. For details, see “Multiplication and
Division of Polynomials”.

The gfdeconv function divides polynomials over a Galois field. (To divide elements of a
Galois field, use gfdiv instead.) Algebraically, dividing polynomials over a Galois field
is equivalent to deconvolving vectors containing the polynomials' coefficients, where the
deconvolution operation uses arithmetic over the same Galois field.

[quot,remd] = gfdeconv(b,a) computes the quotient quot and remainder remd of
the division of b by a in GF(2).

[quot,remd] = gfdeconv(b,a,p) divides the polynomial b by the polynomial a over
GF(p) and returns the quotient in quot and the remainder in remd. p is a prime number.
b, a, quot, and remd are row vectors that give the coefficients of the corresponding
polynomials in order of ascending powers. Each coefficient is between 0 and p-1.

[quot,remd] = gfdeconv(b,a,field) divides the polynomial b by the polynomial
a over GF(pm) and returns the quotient in quot and the remainder in remd. Here p is
a prime number and m is a positive integer. b, a, quot, and remd are row vectors that
list the exponential formats of the coefficients of the corresponding polynomials, in order
of ascending powers. The exponential format is relative to some primitive element of
GF(pm). field is the matrix listing all elements of GF(pm), arranged relative to the same

1 Functions — Alphabetical List

1-308

primitive element. See “Representing Elements of Galois Fields” for an explanation of
these formats.

Examples

The code below shows that

() ()x x x x x+ + ∏ + = +
3 4 3

1 1 2 Remainder

in GF(3). It also checks the results of the division.

p = 3;

b = [0 1 0 1 1]; a = [1 1];

[quot, remd] = gfdeconv(b,a,p)

% Check the result.

bnew = gfadd(gfconv(quot,a,p),remd,p);

if isequal(bnew,b)

 disp('Correct.')

end;

The output is below.

quot =

 1 0 0 1

remd =

 2

Correct.

Working over GF(3), the code below outputs those polynomials of the form xk - 1 (k = 2, 3,
4,..., 8) that 1 + x2 divides evenly.

p = 3; m = 2;

a = [1 0 1]; % 1+x^2

for ii = 2:p^m-1

 b = gfrepcov(ii); % x^ii

 b(1) = p-1; % -1+x^ii

 [quot, remd] = gfdeconv(b,a,p);

 gfdeconv

1-309

 % Display -1+x^ii if a divides it evenly.

 if remd==0

 multiple{ii}=b;

 gfpretty(b)

 end

end

The output is below.

 4

 2 + X

 8

 2 + X

In light of the discussion in “Algorithms” on page 1-323 on the gfprimck reference
page, along with the irreducibility of 1 + x2 over GF(3), this output indicates that 1 + x2 is
not primitive for GF(9).

More About

Algorithms

The algorithm of gfdeconv is similar to that of the MATLAB function deconv.

See Also
gfconv | gfadd | gfsub | gfdiv | gftuple

1 Functions — Alphabetical List

1-310

gfdiv
Divide elements of Galois field

Syntax
quot = gfdiv(b,a)

quot = gfdiv(b,a,p)

quot = gfdiv(b,a,field)

Description

Note: This function performs computations in GF(pm), where p is prime. To work in
GF(2m), apply the ./ operator to Galois arrays. For details, see “Example: Division”.

The gfdiv function divides elements of a Galois field. (To divide polynomials over a
Galois field, use gfdeconv instead.)

quot = gfdiv(b,a) divides b by a in GF(2) element-by-element. a and b are scalars,
vectors or matrices of the same size. Each entry in a and b represents an element of
GF(2). The entries of a and b are either 0 or 1.

quot = gfdiv(b,a,p) divides b by a in GF(p) and returns the quotient. p is a prime
number. If a and b are matrices of the same size, the function treats each element
independently. All entries of b, a, and quot are between 0 and p-1.

quot = gfdiv(b,a,field) divides b by a in GF(pm) and returns the quotient. p is
a prime number and m is a positive integer. If a and b are matrices of the same size,
then the function treats each element independently. All entries of b, a, and quot are
the exponential formats of elements of GF(pm) relative to some primitive element of
GF(pm). field is the matrix listing all elements of GF(pm), arranged relative to the same
primitive element. See “Representing Elements of Galois Fields” for an explanation of
these formats.

In all cases, an attempt to divide by the zero element of the field results in a “quotient” of
NaN.

 gfdiv

1-311

Examples

The code below displays lists of multiplicative inverses in GF(5) and GF(25). It uses
column vectors as inputs to gfdiv.

% Find inverses of nonzero elements of GF(5).

p = 5;

b = ones(p-1,1);

a = [1:p-1]';

quot1 = gfdiv(b,a,p);

disp('Inverses in GF(5):')

disp('element inverse')

disp([a, quot1])

% Find inverses of nonzero elements of GF(25).

m = 2;

field = gftuple([-1:p^m-2]',m,p);

b = zeros(p^m-1,1); % Numerator is zero since 1 = alpha^0.

a = [0:p^m-2]';

quot2 = gfdiv(b,a,field);

disp('Inverses in GF(25), expressed in EXPONENTIAL FORMAT with')

disp('respect to a root of the default primitive polynomial:')

disp('element inverse')

disp([a, quot2])

See Also
gfmul | gfdeconv | gfconv | gftuple

1 Functions — Alphabetical List

1-312

gffilter
Filter data using polynomials over prime Galois field

Syntax

y = gffilter(b,a,x)

y = gffilter(b,a,x,p)

Description

Note: This function performs computations in GF(pm), where p is prime. To work in
GF(2m), use the filter function with Galois arrays. For details, see “Filtering”.

y = gffilter(b,a,x) filters the data in vector x with the filter described by vectors b
and a. The vectors b, a and x must be in GF(2), that is, be binary and y is also in GF(2).

y = gffilter(b,a,x,p) filters the data x using the filter described by vectors a and
b. y is the filtered data in GF(p). p is a prime number, and all entries of a and b are
between 0 and p-1.

By definition of the filter, y solves the difference equation

a(1)y(n) = b(1)x(n)+b(2)x(n-1)+b(3)x(n-2)+...+b(B+1)x(n-B)

 -a(2)y(n-1)-a(3)y(n-2)-...-a(A+1)y(n-A)

where

• A+1 is the length of the vector a
• B+1 is the length of the vector b
• n varies between 1 and the length of the vector x.

The vector a represents the degree-na polynomial

a(1)+a(2)x+a(3)x^2+...+a(A+1)x^A

 gffilter

1-313

Examples

The impulse response of a particular filter is given in the code and diagram below.

b = [1 0 0 1 0 1 0 1];

a = [1 0 1 1];

y = gffilter(b,a,[1,zeros(1,19)]);

stem(y);

axis([0 20 -.1 1.1])

See Also
gfconv | gfadd | filter

1 Functions — Alphabetical List

1-314

gflineq
Find particular solution of Ax = b over prime Galois field

Syntax

x = gflineq(A,b)

x = gflineq(A,b,p)

[x,vld] = gflineq(...)

Description

Note: This function performs computations in GF(p), where p is prime. To work in
GF(2m), apply the \ or / operator to Galois arrays. For details, see “Solving Linear
Equations”.

x = gflineq(A,b) outputs a particular solution of the linear equation A x = b in
GF(2). The elements in a, b and x are either 0 or 1. If the equation has no solution, then
x is empty.

x = gflineq(A,b,p) returns a particular solution of the linear equation A x = b over
GF(p), where p is a prime number. If A is a k-by-n matrix and b is a vector of length k,
x is a vector of length n. Each entry of A, x, and b is an integer between 0 and p-1. If no
solution exists, x is empty.

[x,vld] = gflineq(...) returns a flag vld that indicates the existence of a solution.
If vld = 1, the solution x exists and is valid; if vld = 0, no solution exists.

Examples

The code below produces some valid solutions of a linear equation over GF(3).

A = [2 0 1;

 1 1 0;

 gflineq

1-315

 1 1 2];

% An example in which the solutions are valid

[x,vld] = gflineq(A,[1;0;0],3)

The output is below.

x =

 2

 1

 0

vld =

 1

By contrast, the command below finds that the linear equation has no solutions.

[x2,vld2] = gflineq(zeros(3,3),[2;0;0],3)

The output is below.

This linear equation has no solution.

x2 =

 []

vld2 =

 0

More About

Algorithms

gflineq uses Gaussian elimination.

See Also
gfadd | gfdiv | gfroots | gfrank | gfconv | conv

1 Functions — Alphabetical List

1-316

gfminpol
Find minimal polynomial of Galois field element

Syntax

pol = gfminpol(k,m)

pol = gfminpol(k,m,p)

pol = gfminpol(k,prim_poly,p)

Description

Note: This function performs computations in GF(pm), where p is prime. To work
in GF(2m), use the minpol function with Galois arrays. For details, see “Minimal
Polynomials”.

pol = gfminpol(k,m) produces a minimal polynomial for each entry in k. k must be
either a scalar or a column vector. Each entry in k represents an element of GF(2m) in
exponential format. That is, k represents alpha^k, where alpha is a primitive element
in GF(2m). The ith row of pol represents the minimal polynomial of k(i). The coefficients
of the minimal polynomial are in the base field GF(2) and listed in order of ascending
exponents.

pol = gfminpol(k,m,p) finds the minimal polynomial of Ak over GF(p), where p is
a prime number, m is an integer greater than 1, and A is a root of the default primitive
polynomial for GF(p^m). The format of the output is as follows:

• If k is a nonnegative integer, pol is a row vector that gives the coefficients of the
minimal polynomial in order of ascending powers.

• If k is a vector of length len all of whose entries are nonnegative integers, pol is
a matrix having len rows; the rth row of pol gives the coefficients of the minimal
polynomial of Ak(r) in order of ascending powers.

pol = gfminpol(k,prim_poly,p) is the same as the first syntax listed, except that
A is a root of the primitive polynomial for GF(pm) specified by prim_poly. prim_poly is

 gfminpol

1-317

a row vector that gives the coefficients of the degree-m primitive polynomial in order of
ascending powers.

Examples

The syntax gfminpol(k,m,p) is used in the sample code in “Characterization of
Polynomials”.

See Also
gfprimdf | gfcosets | gfroots

1 Functions — Alphabetical List

1-318

gfmul
Multiply elements of Galois field

Syntax

c = gfmul(a,b,p)

c = gfmul(a,b,field)

Description

Note: This function performs computations in GF(pm) where p is prime. To work
in GF(2m), apply the .* operator to Galois arrays. For details, see “Example:
Multiplication”.

The gfmul function multiplies elements of a Galois field. (To multiply polynomials over a
Galois field, use gfconv instead.)

c = gfmul(a,b,p) multiplies a and b in GF(p). Each entry of a and b is between 0
and p-1. p is a prime number. If a and b are matrices of the same size, the function treats
each element independently.

c = gfmul(a,b,field) multiplies a and b in GF(pm), where p is a prime number
and m is a positive integer. a and b represent elements of GF(pm) in exponential format
relative to some primitive element of GF(pm). field is the matrix listing all elements
of GF(pm), arranged relative to the same primitive element. c is the exponential format
of the product, relative to the same primitive element. See “Representing Elements of
Galois Fields” for an explanation of these formats. If a and b are matrices of the same
size, the function treats each element independently.

Examples

“Arithmetic in Galois Fields” contains examples. Also, the code below shows that

 gfmul

1-319

A A A
2 4 6

◊ =

where A is a root of the primitive polynomial 2 + 2x + x2 for GF(9).

p = 3; m = 2;

prim_poly = [2 2 1];

field = gftuple([-1:p^m-2]',prim_poly,p);

a = gfmul(2,4,field)

The output is

a =

 6

See Also
gfdiv | gfdeconv | gfadd | gfsub | gftuple

1 Functions — Alphabetical List

1-320

gfpretty
Polynomial in traditional format

Syntax

gfpretty(a)

gfpretty(a,st)

gfpretty(a,st,n)

Description

gfpretty(a) displays a polynomial in a traditional format, using X as the variable
and the entries of the row vector a as the coefficients in order of ascending powers. The
polynomial is displayed in order of ascending powers. Terms having a zero coefficient are
not displayed.

gfpretty(a,st) is the same as the first syntax listed, except that the content of the
string st is used as the variable instead of X.

gfpretty(a,st,n) is the same as the first syntax listed, except that the content of
the string st is used as the variable instead of X, and each line of the display has width n
instead of the default value of 79.

Note: For all syntaxes: If you do not use a fixed-width font, the spacing in the display
might not look correct.

Examples

Display statements about the elements of GF(81).

p = 3; m = 4;

ii = randi([1,p^m-2],1,1); % Random exponent for prim element

primpolys = gfprimfd(m,'all',p);

[rows, cols] = size(primpolys);

jj = randi([1,rows],1,1); % Random primitive polynomial

 gfpretty

1-321

disp('If A is a root of the primitive polynomial')

gfpretty(primpolys(jj,:)) % Polynomial in X

disp('then the element')

gfpretty([zeros(1,ii),1],'A') % The polynomial A^ii

disp('can also be expressed as')

gfpretty(gftuple(ii,m,p),'A') % Polynomial in A

Below is a sample of the output.

If A is a root of the primitive polynomial

 3 4

 2 + 2 X + X

then the element

 22

 A

can also be expressed as

 2 3

 2 + A + A

See Also
gftuple | gfprimdf

1 Functions — Alphabetical List

1-322

gfprimck

Check whether polynomial over Galois field is primitive

Syntax

ck = gfprimck(a)

ck = gfprimck(a,p)

Description

Note: This function performs computations in GF(pm), where p is prime. If you are
working in GF(2m), use the isprimitive function. For details, see “Finding Primitive
Polynomials”.

ck = gfprimck(a) checks whether the degree-m GF(2) polynomial a is a primitive
polynomial for GF(2m), where m = length(a) - 1. The output ck is as follows:

• -1 if a is not an irreducible polynomial
• 0 if a is irreducible but not a primitive polynomial for GF(pm)
• 1 if a is a primitive polynomial for GF(pm)

ck = gfprimck(a,p) checks whether the degree-m GF(P) polynomial a is a primitive
polynomial for GF(pm). p is a prime number.

This function considers the zero polynomial to be “not irreducible” and considers all
polynomials of degree zero or one to be primitive.

Examples

“Characterization of Polynomials” contains examples.

 gfprimck

1-323

More About

Algorithms

An irreducible polynomial over GF(p) of degree at least 2 is primitive if and only if it does
not divide -1 + xk for any positive integer k smaller than pm-1.

References

[1] Clark, George C. Jr., and J. Bibb Cain, Error-Correction Coding for Digital
Communications, New York, Plenum, 1981.

[2] Krogsgaard, K., and T., Karp, Fast Identification of Primitive Polynomials over Galois
Fields: Results from a Course Project, ICASSP 2005, Philadelphia, PA, 2004.

See Also
gfprimfd | gfprimdf | gftuple | gfminpol | gfadd

1 Functions — Alphabetical List

1-324

gfprimdf
Provide default primitive polynomials for Galois field

Syntax

pol = gfprimdf(m)

pol = gfprimdf(m,p)

Description

Note: This function performs computations in GF(pm), where p is prime. To work in
GF(2m), use the primpoly function. For details, see “Finding Primitive Polynomials”.

pol = gfprimdf(m) outputs the default primitive polynomial pol in GF(2m).

pol = gfprimdf(m,p) returns the row vector that gives the coefficients, in order of
ascending powers, of the default primitive polynomial for GF(pm). m is a positive integer
and p is a prime number.

Examples

The command below shows that 2 + x + x2 is the default primitive polynomial for GF(52).

pol = gfprimdf(2,5)

pol =

 2 1 1

The code below displays the default primitive polynomial for each of the fields GF(3m),
where m ranges between 3 and 5.

for m = 3:5

 gfpretty(gfprimdf(m,3))

 gfprimdf

1-325

end

The output is below.

 3

 1 + 2 X + X

 4

 2 + X + X

 5

 1 + 2 X + X

See Also
gfprimck | gfprimfd | gftuple | gfminpol

1 Functions — Alphabetical List

1-326

gfprimfd

Find primitive polynomials for Galois field

Syntax

pol = gfprimfd(m,opt,p)

Description

Note: This function performs computations in GF(pm), where p is prime. To work in
GF(2m), use the primpoly function. For details, see “Finding Primitive Polynomials”.

• If m = 1, pol = [1 1].
• A polynomial is represented as a row containing the coefficients in order of ascending

powers.

pol = gfprimfd(m,opt,p) searches for one or more primitive polynomials for
GF(p^m), where p is a prime number and m is a positive integer. If m = 1, pol = [1 1].
If m > 1, the output pol depends on the argument opt as shown in the table below.
Each polynomial is represented in pol as a row containing the coefficients in order of
ascending powers.

opt Significance of pol Format of pol

'min' One primitive polynomial
for GF(p^m) having the
smallest possible number of
nonzero terms

The row vector representing
the polynomial

'max' One primitive polynomial
for GF(p^m) having the
greatest possible number of
nonzero terms

The row vector representing
the polynomial

 gfprimfd

1-327

opt Significance of pol Format of pol

'all' All primitive polynomials
for GF(p^m)

A matrix, each row of
which represents one such
polynomial

A positive integer All primitive polynomials
for GF(p^m) that have opt
nonzero terms

A matrix, each row of
which represents one such
polynomial

Examples

The code below seeks primitive polynomials for GF(81) having various other properties.
Notice that fourterms is empty because no primitive polynomial for GF(81) has exactly
four nonzero terms. Also notice that fewterms represents a single polynomial having
three terms, while threeterms represents all of the three-term primitive polynomials
for GF(81).

p = 3; m = 4; % Work in GF(81).

fewterms = gfprimfd(m,'min',p)

threeterms = gfprimfd(m,3,p)

fourterms = gfprimfd(m,4,p)

The output is below.

fewterms =

 2 1 0 0 1

threeterms =

 2 1 0 0 1

 2 2 0 0 1

 2 0 0 1 1

 2 0 0 2 1

No primitive polynomial satisfies the given constraints.

fourterms =

 []

1 Functions — Alphabetical List

1-328

More About

Algorithms

gfprimfd tests for primitivity using gfprimck. If opt is 'min', 'max', or omitted,
polynomials are constructed by converting decimal integers to base p. Based on the
decimal ordering, gfprimfd returns the first polynomial it finds that satisfies the
appropriate conditions.

See Also
gfprimck | gfprimdf | gftuple | gfminpol

 gfrank

1-329

gfrank
Compute rank of matrix over Galois field

Syntax

rk = gfrank(A,p)

Description

Note: This function performs computations in GF(pm) where p is prime. If you are
working in GF(2m), use the rank function with Galois arrays. For details, see “Computing
Ranks”.

rk = gfrank(A,p) calculates the rank of the matrix A in GF(p), where p is a prime
number.

Examples

In the code below, gfrank says that the matrix A has less than full rank. This conclusion
makes sense because the determinant of A is zero mod p.

A = [1 0 1;

 2 1 0;

 0 1 1];

p = 3;

det_a = det(A); % Ordinary determinant of A

detmodp = rem(det(A),p); % Determinant mod p

rankp = gfrank(A,p);

disp(['Determinant = ',num2str(det_a)])

disp(['Determinant mod p is ',num2str(detmodp)])

disp(['Rank over GF(p) is ',num2str(rankp)])

The output is below.

Determinant = 3

1 Functions — Alphabetical List

1-330

Determinant mod p is 0

Rank over GF(p) is 2

More About

Algorithms

gfrank uses an algorithm similar to Gaussian elimination.

 gfrepcov

1-331

gfrepcov

Convert one binary polynomial representation to another

Syntax

polystandard = gfrepcov(poly2)

Description

Two logical ways to represent polynomials over GF(2) are listed below.

1 [A_0 A_1 A_2 ... A_(m-1)] represents the polynomial

A_ A_1 A_2 A_(m-1)0
2 1

+ + + +
-

x x x
m

L

Each entry A_k is either one or zero.
2 [A_0 A_1 A_2 ... A_(m-1)] represents the polynomial

x x x x
A_0 A_1 A_2 A_(m-1)

+ + + +L

Each entry A_k is a nonnegative integer. All entries must be distinct.

Format 1 is the standard form used by the Galois field functions in this toolbox, but there
are some cases in which format 2 is more convenient.

polystandard = gfrepcov(poly2) converts from the second format to the first,
for polynomials of degree at least 2. poly2 and polystandard are row vectors. The
entries of poly2 are distinct integers, and at least one entry must exceed 1. Each entry of
polystandard is either 0 or 1.

Note: If poly2 is a binary row vector, gfrepcov assumes that it is already in Format 1
above and returns it unaltered.

1 Functions — Alphabetical List

1-332

Examples

The command below converts the representation format of the polynomial 1 + x2 + x5.

polystandard = gfrepcov([0 2 5])

polystandard =

 1 0 1 0 0 1

See Also
gfpretty

 gfroots

1-333

gfroots
Find roots of polynomial over prime Galois field

Syntax
rt = gfroots(f,m,p)

rt = gfroots(f,prim_poly,p)

[rt,rt_tuple] = gfroots(...)

[rt,rt_tuple,field] = gfroots(...)

Description

Note: This function performs computations in GF(pm), where p is prime. To work
in GF(2m), use the roots function with Galois arrays. For details, see “Roots of
Polynomials”.

For all syntaxes, f is a row vector that gives the coefficients, in order of ascending
powers, of a degree-d polynomial.

Note: gfroots lists each root exactly once, ignoring multiplicities of roots.

rt = gfroots(f,m,p) finds roots in GF(p^m) of the polynomial that f represents. rt is
a column vector each of whose entries is the exponential format of a root. The exponential
format is relative to a root of the default primitive polynomial for GF(p^m).

rt = gfroots(f,prim_poly,p) finds roots in GF(pm) of the polynomial that f
represents. rt is a column vector each of whose entries is the exponential format of a
root. The exponential format is relative to a root of the degree-m primitive polynomial for
GF(pm) that prim_poly represents.

[rt,rt_tuple] = gfroots(...) returns an additional matrix rt_tuple, whose kth
row is the polynomial format of the root rt(k). The polynomial and exponential formats
are both relative to the same primitive element.

1 Functions — Alphabetical List

1-334

[rt,rt_tuple,field] = gfroots(...) returns additional matrices rt_tuple
and field. rt_tuple is described in the preceding paragraph. field gives the list
of elements of the extension field. The list of elements, the polynomial format, and the
exponential format are all relative to the same primitive element.

Note: For a description of the various formats that gfroots uses, see “Representing
Elements of Galois Fields”.

Examples

“Roots of Polynomials” contains a description and example of the use of gfroots.

The code below finds the polynomial format of the roots of the primitive polynomial
2 + x3 + x4 for GF(81). It then displays the roots in traditional form as polynomials in
alph. (The output is omitted here.) Because prim_poly is both the primitive polynomial
and the polynomial whose roots are sought, alph itself is a root.

p = 3; m = 4;

prim_poly = [2 0 0 1 1]; % A primitive polynomial for GF(81)

f = prim_poly; % Find roots of the primitive polynomial.

[rt,rt_tuple] = gfroots(f,prim_poly,p);

% Display roots as polynomials in alpha.

for ii = 1:length(rt_tuple)

 gfpretty(rt_tuple(ii,:),'alpha')

end

See Also
gfprimdf

 gfsub

1-335

gfsub
Subtract polynomials over Galois field

Syntax

c = gfsub(a,b,p)

c = gfsub(a,b,p,len)

c = gfsub(a,b,field)

Description

Note: This function performs computations in GF(pm), where p is prime. To work in
GF(2m), apply the - operator to Galois arrays of equal size. For details, see “Example:
Addition and Subtraction”.

c = gfsub(a,b,p) calculates a minus b, where a and b represent polynomials over
GF(p) and p is a prime number. a, b, and c are row vectors that give the coefficients
of the corresponding polynomials in order of ascending powers. Each coefficient is
between 0 and p-1. If a and b are matrices of the same size, the function treats each row
independently.

c = gfsub(a,b,p,len) subtracts row vectors as in the syntax above, except
that it returns a row vector of length len. The output c is a truncated or extended
representation of the answer. If the row vector corresponding to the answer has fewer
than len entries (including zeros), extra zeros are added at the end; if it has more than
len entries, entries from the end are removed.

c = gfsub(a,b,field) calculates a minus b, where a and b are the exponential
format of two elements of GF(pm), relative to some primitive element of GF(pm). p is a
prime number and m is a positive integer. field is the matrix listing all elements of
GF(pm), arranged relative to the same primitive element. c is the exponential format of
the answer, relative to the same primitive element. See “Representing Elements of Galois
Fields” for an explanation of these formats. If a and b are matrices of the same size, the
function treats each element independently.

1 Functions — Alphabetical List

1-336

Examples

In the code below, differ is the difference of 2 + 3x + x2 and 4 + 2x + 3x2 over GF(5), and
linpart is the degree-one part of differ.

differ = gfsub([2 3 1],[4 2 3],5)

linpart = gfsub([2 3 1],[4 2 3],5,2)

The output is

differ =

 3 1 3

linpart =

 3 1

The code below shows that A2 - A4 = A7, where A is a root of the primitive polynomial
2 + 2x + x2 for GF(9).

p = 3; m = 2;

prim_poly = [2 2 1];

field = gftuple([-1:p^m-2]',prim_poly,p);

d = gfsub(2,4,field)

The output is

d =

 7

See Also
gfadd | gfconv | gfmul | gfdeconv | gfdiv | gftuple

 gftable

1-337

gftable
Generate file to accelerate Galois field computations

Syntax
gftable(m,prim_poly);

Description

gftable(m,prim_poly) generates a file that can help accelerate computations in
the field GF(2^m) as described by the nondefault primitive polynomial prim_poly. The
integer m is between 1 and 16. The integer prim_poly represents a primitive polynomial
for GF(2^m) using the format described in “Specifying the Primitive Polynomial”. The
function places the file, called userGftable.mat, in your current working folder. If
necessary, the function overwrites any writable existing version of the file.

Note: If prim_poly is the default primitive polynomial for GF(2^m) listed in the table
on the gf reference page, this function has no effect. A MAT-file in your MATLAB
installation already includes information that facilitates computations with respect to
the default primitive polynomial.

Examples

In the example below, you expect t3 to be similar to t1 and to be significantly smaller
than t2, assuming that you do not already have a userGftable.mat file that includes
the (m, prim_poly) pair (8, 501). Notice that before executing the gftable command,
MATLAB displays a warning and that after executing gftable, there is no warning. By
executing the gftable command you save the GF table for faster calculations.

% Sample code to check how much gftable improves speed.

tic; a = gf(repmat([0:2^8-1],1000,1),8); b = a.^100; t1 = toc;

tic; a = gf(repmat([0:2^8-1],1000,1),8,501); b = a.^100; t2 = toc;

gftable(8,501); % Include this primitive polynomial in the file.

tic; a = gf(repmat([0:2^8-1],1000,1),8,501); b = a.^100; t3 = toc;

1 Functions — Alphabetical List

1-338

More About
• “Speed and Nondefault Primitive Polynomials”

See Also
gf

 gftrunc

1-339

gftrunc
Minimize length of polynomial representation

Syntax

c = gftrunc(a)

Description

c = gftrunc(a) truncates a row vector, a, that gives the coefficients of a GF(p)
polynomial in order of ascending powers. If a(k) = 0 whenever k > d + 1, the polynomial
has degree d. The row vector c omits these high-order zeros and thus has length d + 1.

Examples

In the code below, zeros are removed from the end, but not from the beginning or middle,
of the row-vector representation of x2 + 2x3 + 3x4 + 4x7 + 5x8.

c = gftrunc([0 0 1 2 3 0 0 4 5 0 0])

c =

 0 0 1 2 3 0 0 4 5

See Also
gfadd | gfsub | gfconv | gfdeconv | gftuple

1 Functions — Alphabetical List

1-340

gftuple
Simplify or convert Galois field element formatting

Syntax

tp = gftuple(a,m)

tp = gftuple(a,prim_poly)

tp = gftuple(a,m,p)

tp = gftuple(a,prim_poly,p)

tp = gftuple(a,prim_poly,p,prim_ck)

[tp,expform] = gftuple(...)

Description

Note: This function performs computations in GF(pm), where p is prime. To perform
equivalent computations in GF(2m), apply the .^ operator and the log function to
Galois arrays. For more information, see “Example: Exponentiation” and “Example:
Elementwise Logarithm”.

For All Syntaxes

gftuple serves to simplify the polynomial or exponential format of Galois field elements,
or to convert from one format to another. For an explanation of the formats that gftuple
uses, see “Representing Elements of Galois Fields”.

In this discussion, the format of an element of GF(pm) is called “simplest” if all exponents
of the primitive element are

• Between 0 and m-1 for the polynomial format
• Either -Inf, or between 0 and pm-2, for the exponential format

For all syntaxes, a is a matrix, each row of which represents an element of a Galois field.
The format of a determines how MATLAB interprets it:

 gftuple

1-341

• If a is a column of integers, MATLAB interprets each row as an exponential format of
an element. Negative integers are equivalent to -Inf in that they all represent the
zero element of the field.

• If a has more than one column, MATLAB interprets each row as a polynomial format
of an element. (Each entry of a must be an integer between 0 and p-1.)

The exponential or polynomial formats mentioned above are all relative to a primitive
element specified by the second input argument. The second argument is described
below.

For Specific Syntaxes

tp = gftuple(a,m) returns the simplest polynomial format of the elements that a
represents, where the kth row of tp corresponds to the kth row of a. The formats are
relative to a root of the default primitive polynomial for GF(2^m), where m is a positive
integer.

tp = gftuple(a,prim_poly) is the same as the syntax above, except that prim_poly
is a row vector that lists the coefficients of a degree m primitive polynomial for GF(2^m) in
order of ascending exponents.

tp = gftuple(a,m,p) is the same as tp = gftuple(a,m) except that 2 is replaced
by a prime number p.

tp = gftuple(a,prim_poly,p) is the same as tp = gftuple(a,prim_poly)
except that 2 is replaced by a prime number p.

tp = gftuple(a,prim_poly,p,prim_ck) is the same as tp =
gftuple(a,prim_poly,p) except that gftuple checks whether prim_poly
represents a polynomial that is indeed primitive. If not, then gftuple generates an error
and tp is not returned. The input argument prim_ck can be any number or string; only
its existence matters.

[tp,expform] = gftuple(...) returns the additional matrix expform. The kth
row of expform is the simplest exponential format of the element that the kth row of
a represents. All other features are as described in earlier parts of this “Description”
section, depending on the input arguments.

1 Functions — Alphabetical List

1-342

Examples

• “List of All Elements of a Galois Field” (end of section)
• “Converting to Simplest Polynomial Format”

As another example, the gftuple command below generates a list of elements of
GF(p^m), arranged relative to a root of the default primitive polynomial. Some functions
in this toolbox use such a list as an input argument.

p = 5; % Or any prime number

m = 4; % Or any positive integer

field = gftuple([-1:p^m-2]',m,p);

Finally, the two commands below illustrate the influence of the shape of the input
matrix. In the first command, a column vector is treated as a sequence of elements
expressed in exponential format. In the second command, a row vector is treated as a
single element expressed in polynomial format.

tp1 = gftuple([0; 1],3,3)

tp2 = gftuple([0, 0, 0, 1],3,3)

The output is below.

tp1 =

 1 0 0

 0 1 0

tp2 =

 2 1 0

The outputs reflect that, according to the default primitive polynomial for GF(33), the
relations below are true.

a a a

a a a

a a a a a

0 2

1 2

2 3 2

1 0 0

0 1 0

0 0 0 2 0

= + +

= + +

+ + + = + +

 gftuple

1-343

More About

Algorithms

gftuple uses recursive callbacks to determine the exponential format.

See Also
gfadd | gfmul | gfconv | gfdiv | gfdeconv | gfprimdf

1 Functions — Alphabetical List

1-344

gfweight
Calculate minimum distance of linear block code

Syntax

wt = gfweight(genmat)

wt = gfweight(genmat,'gen')

wt = gfweight(parmat,'par')

wt = gfweight(genpoly,n)

Description

The minimum distance, or minimum weight, of a linear block code is defined as the
smallest positive number of nonzero entries in any n-tuple that is a codeword.

wt = gfweight(genmat) returns the minimum distance of the linear block code whose
generator matrix is genmat.

wt = gfweight(genmat,'gen') returns the minimum distance of the linear block
code whose generator matrix is genmat.

wt = gfweight(parmat,'par') returns the minimum distance of the linear block
code whose parity-check matrix is parmat.

wt = gfweight(genpoly,n) returns the minimum distance of the cyclic code whose
codeword length is n and whose generator polynomial is represented by genpoly.
genpoly is a row vector that gives the coefficients of the generator polynomial in order of
ascending powers.

Examples

The commands below illustrate three different ways to compute the minimum distance of
a (7,4) cyclic code.

n = 7;

% Generator polynomial of (7,4) cyclic code

 gfweight

1-345

genpoly = cyclpoly(n,4);

[parmat, genmat] = cyclgen(n,genpoly);

wts = [gfweight(genmat,'gen'),gfweight(parmat,'par'),...

 gfweight(genpoly,n)]

The output is

wts =

 3 3 3

More About
• “Block Codes”

See Also
hammgen | cyclpoly | bchgenpoly

1 Functions — Alphabetical List

1-346

gray2bin
Convert Gray-encoded positive integers to corresponding Gray-decoded integers

Syntax

y = gray2bin(x,modulation,M)

[y,map] = gray2bin(x,modulation,M)

Description

y = gray2bin(x,modulation,M) generates a Gray-decoded output vector or matrix y
with the same dimensions as its input parameter x. x can be a scalar, vector, or matrix.
modulation is the modulation type and must be a string equal to 'qam', 'pam', 'fsk',
'dpsk', or 'psk'. M is the modulation order that can be an integer power of 2.

[y,map] = gray2bin(x,modulation,M) generates a Gray-decoded output y with its
respective Gray-encoded constellation map, map.

You can use map output to label a Gray-encoded constellation. The map output gives the
Gray encoded labels for the corresponding modulation. See the example below.

Note: If you are converting binary coded data to Gray-coded data and modulating the
result immediately afterwards, you should use the appropriate modulation object or
function with the'Gray' option, instead of BIN2GRAY.

Examples

Binary to Gray Symbol Mapping

This example shows how to use the bin2gray and gray2bin functions to map integer
inputs from a natural binary order symbol mapping to a Gray coded signal constellation
and vice versa, assuming 16-QAM modulation. In addition, a visual representation of the
difference between Gray and binary coded symbol mappings is shown.

Create a complete vector of 16-QAM integers.

 gray2bin

1-347

x = (0:15)';

Convert the input vector from a natural binary order to a Gray encoded vector using
bin2gray.

y = bin2gray(x,'qam',16);

Convert the Gray encoded symbols, y, back to a binary ordering using gray2bin.

z = gray2bin(y,'qam',16);

Verify that the original data, x, and the final output vector, z are identical.

isequal(x,z)

ans =

 1

To create a constellation plot showing the different symbol mappings, construct a 16-
QAM modulator System object and use its associated constellation function to find
the complex symbol values.

hMod = comm.RectangularQAMModulator;

symbols = constellation(hMod);

Plot the constellation symbols and label them using the Gray, y, and binary, z, output
vectors. The binary representation of the Gray coded symbols is shown in black while the
binary representation of the naturally ordered symbols is shown in red. Set the axes so
that all points are displayed.

scatterplot(symbols,1,0,'b*');

for k = 1:16

 text(real(symbols(k))-0.3,imag(symbols(k))+0.3,...

 dec2base(y(k),2,4));

 text(real(symbols(k))-0.3,imag(symbols(k))-0.3,...

 dec2base(z(k),2,4),'Color',[1 0 0]);

end

axis([-4 4 -4 4])

1 Functions — Alphabetical List

1-348

 gray2bin

1-349

Observe that only a single bit differs between adjacent constellation points when using
Gray coding.

See Also
bin2gray

1 Functions — Alphabetical List

1-350

hammgen

Produce parity-check and generator matrices for Hamming code

Syntax

h = hammgen(m)

h = hammgen(m,pol)

[h,g] = hammgen(...)

[h,g,n,k] = hammgen(...)

Description

For all syntaxes, the codeword length is n. n has the form 2m-1 for some positive integer
m greater than or equal to 3. The message length, k, has the form n-m.

h = hammgen(m) produces an m-by-n parity-check matrix for a Hamming code having
codeword length n = 2^m-1. The input m is a positive integer greater than or equal
to 3. The message length of the code is n-m. The binary primitive polynomial used to
produce the Hamming code is the default primitive polynomial for GF(2^m), represented
by gfprimdf(m).

h = hammgen(m,pol) produces an m-by-n parity-check matrix for a Hamming code
having codeword length n = 2^m-1. The input m is a positive integer greater than or
equal to 3. The message length of the code is n-m. pol is a row vector that gives the
coefficients, in order of ascending powers, of the binary primitive polynomial for GF(2^m)
that is used to produce the Hamming code. hammgen produces an error if pol represents
a polynomial that is not, in fact, primitive.

[h,g] = hammgen(...) is the same as h = hammgen(...) except that it also
produces the k-by-n generator matrix g that corresponds to the parity-check matrix h. k,
the message length, equals n-m, or 2^m-1-m.

[h,g,n,k] = hammgen(...) is the same as [h,g] = hammgen(...) except that it
also returns the codeword length n and the message length k.

 hammgen

1-351

Note: If your value of m is less than 25 and if your primitive polynomial is the default
primitive polynomial for GF(2^m), the syntax hammgen(m) is likely to be faster than the
syntax hammgen(m,pol).

Examples

The command below exhibits the parity-check and generator matrices for a Hamming
code with codeword length 7 = 23-1 and message length 4 = 7-3.

[h,g,n,k] = hammgen(3)

h =

 1 0 0 1 0 1 1

 0 1 0 1 1 1 0

 0 0 1 0 1 1 1

g =

 1 1 0 1 0 0 0

 0 1 1 0 1 0 0

 1 1 1 0 0 1 0

 1 0 1 0 0 0 1

n =

 7

k =

 4

The command below, which uses 1 + x2 + x3 as the primitive polynomial for GF(23), shows
that the parity-check matrix depends on the choice of primitive polynomial. Notice that
h1 below is different from h in the example above.

h1 = hammgen(3,[1 0 1 1])

h1 =

1 Functions — Alphabetical List

1-352

 1 0 0 1 1 1 0

 0 1 0 0 1 1 1

 0 0 1 1 1 0 1

More About

Algorithms

Unlike gftuple, which processes one m-tuple at a time, hammgen generates the entire
sequence from 0 to 2^m-1. The computation algorithm uses all previously computed
values to produce the computation result.
• “Block Codes”

See Also
encode | decode | gen2par

 hank2sys

1-353

hank2sys
Convert Hankel matrix to linear system model

Syntax

[num,den] = hank2sys(h,ini,tol)

[num,den,sv] = hank2sys(h,ini,tol)

[a,b,c,d] = hank2sys(h,ini,tol)

[a,b,c,d,sv] = hank2sys(h,ini,tol)

Description

[num,den] = hank2sys(h,ini,tol) converts a Hankel matrix h to a linear system
transfer function with numerator num and denominator den. The vectors num and den
list the coefficients of their respective polynomials in ascending order of powers of z-1.
The argument ini is the system impulse at time zero. If tol > 1, tol is the order of the
conversion. If tol < 1, tol is the tolerance in selecting the conversion order based on
the singular values. If you omit tol, its default value is 0.01. This conversion uses the
singular value decomposition method.

[num,den,sv] = hank2sys(h,ini,tol) returns a vector sv that lists the singular
values of h.

[a,b,c,d] = hank2sys(h,ini,tol) converts a Hankel matrix h to a corresponding
linear system state-space model. a, b, c, and d are matrices. The input parameters are
the same as in the first syntax above.

[a,b,c,d,sv] = hank2sys(h,ini,tol) is the same as the syntax above, except that
sv is a vector that lists the singular values of h.

Examples
h = hankel([1 0 1]);

[num,den,sv] = hank2sys(h,0,.01)

The output is

1 Functions — Alphabetical List

1-354

num =

 0 1.0000 0.0000 1.0000

den =

 1.0000 0.0000 0.0000 0.0000

sv =

 1.6180

 1.0000

 0.6180

See Also
hankel

 heldeintrlv

1-355

heldeintrlv
Restore ordering of symbols permuted using helintrlv

Syntax

[deintrlved,state] = heldeintrlv(data,col,ngrp,stp)

[deintrlved,state] = heldeintrlv(data,col,ngrp,stp,init_state)

deintrlved = heldeintrlv(data,col,ngrp,stp,init_state)

Description

[deintrlved,state] = heldeintrlv(data,col,ngrp,stp) restores the ordering
of symbols in data by placing them in an array row by row and then selecting groups
in a helical fashion to place in the output, deintrlved. data must have col*ngrp
elements. If data is a matrix with multiple rows and columns, it must have col*ngrp
rows, and the function processes the columns independently. state is a structure that
holds the final state of the array. state.value stores input symbols that remain in the
col columns of the array and do not appear in the output.

The function uses the array internally for its computations. The array has unlimited
rows indexed by 1, 2, 3,..., and col columns. The function initializes the top of the array
with zeros. It then places col*ngrp symbols from the input into the next ngrp rows of
the array. The function places symbols from the array in the output, intrlved, placing
ngrp symbols at a time; the kth group of ngrp symbols comes from the kth column of the
array, starting from row 1+(k-1)*stp. Some output symbols are default values of 0 rather
than input symbols; similarly, some input symbols are left in the array and do not appear
in the output.

[deintrlved,state] = heldeintrlv(data,col,ngrp,stp,init_state)

initializes the array with the symbols contained in init_state.value instead of zeros.
The structure init_state is typically the state output from a previous call to this
same function, and is unrelated to the corresponding interleaver. In this syntax, some
output symbols are default values of 0, some are input symbols from data, and some are
initialization values from init_state.value.

deintrlved = heldeintrlv(data,col,ngrp,stp,init_state) is the same as the
syntax above, except that it does not record the deinterleaver's final state. This syntax

1 Functions — Alphabetical List

1-356

is appropriate for the last in a series of calls to this function. However, if you plan to
call this function again to continue the deinterleaving process, the syntax above is more
appropriate.

Using an Interleaver-Deinterleaver Pair

To use this function as an inverse of the helintrlv function, use the same col, ngrp,
and stp inputs in both functions. In that case, the two functions are inverses in the
sense that applying helintrlv followed by heldeintrlv leaves data unchanged, after
you take their combined delay of col*ngrp*ceil(stp*(col-1)/ngrp) into account.
To learn more about delays of convolutional interleavers, see “Delays of Convolutional
Interleavers”.

Note: Because the delay is an integer multiple of the number of symbols in data, you
must use heldeintrlv at least twice (possibly more times, depending on the actual
delay value) before the function returns results that represent more than just the delay.

Examples

Recover interleaved data, taking into account the delay of the interleaver-deinterleaver
pair.

col = 4; ngrp = 3; stp = 2; % Helical interleaver parameters

% Compute the delay of interleaver-deinterleaver pair.

delayval = col * ngrp * ceil(stp * (col-1)/ngrp);

len = col*ngrp; % Process this many symbols at one time.

data = randi([0 9],len,1); % Random symbols

data_padded = [data; zeros(delayval,1)]; % Pad with zeros.

% Interleave zero-padded data.

[i1,istate] = helintrlv(data_padded(1:len),col,ngrp,stp);

[i2,istate] = helintrlv(data_padded(len+1:2*len),col,ngrp, ...

 stp,istate);

i3 = helintrlv(data_padded(2*len+1:end),col,ngrp,stp,istate);

% Deinterleave.

[d1,dstate] = heldeintrlv(i1,col,ngrp,stp);

[d2,dstate] = heldeintrlv(i2,col,ngrp,stp,dstate);

 heldeintrlv

1-357

d3 = heldeintrlv(i3,col,ngrp,stp,dstate);

% Check the results.

d0 = [d1; d2; d3]; % All the deinterleaved data

d0_trunc = d0(delayval+1:end); % Remove the delay.

ser = symerr(data,d0_trunc)

The output below shows that no symbol errors occurred.

ser =

 0

More About
• “Interleaving”

See Also
helintrlv

1 Functions — Alphabetical List

1-358

helintrlv
Permute symbols using helical array

Syntax

intrlved = helintrlv(data,col,ngrp,stp)

[intrlved,state] = helintrlv(data,col,ngrp,stp)

[intrlved,state] = helintrlv(data,col,ngrp,stp,init_state)

Description

intrlved = helintrlv(data,col,ngrp,stp) permutes the symbols in data by
placing them in an unlimited-row array in helical fashion and then placing rows of
the array in the output, intrlved. data must have col*ngrp elements. If data is a
matrix with multiple rows and columns, it must have col*ngrp rows, and the function
processes the columns independently.

The function uses the array internally for its computations. The array has unlimited
rows indexed by 1, 2, 3,..., and col columns. The function partitions col*ngrp symbols
from the input into consecutive groups of ngrp symbols. The function places the kth
group in the array along column k, starting from row 1+(k-1)*stp. Positions in the
array that do not contain input symbols have default values of 0. The function places
col*ngrp symbols from the array in the output, intrlved, by reading the first ngrp
rows sequentially. Some output symbols are default values of 0 rather than input
symbols; similarly, some input symbols are left in the array and do not appear in the
output.

[intrlved,state] = helintrlv(data,col,ngrp,stp) returns a structure that
holds the final state of the array. state.value stores input symbols that remain in the
col columns of the array and do not appear in the output.

[intrlved,state] = helintrlv(data,col,ngrp,stp,init_state) initializes
the array with the symbols contained in init_state.value. The structure
init_state is typically the state output from a previous call to this same function,
and is unrelated to the corresponding deinterleaver. In this syntax, some output symbols
are default values of 0, some are input symbols from data, and some are initialization
values from init_state.value.

 helintrlv

1-359

Examples

The example below rearranges the integers from 1 to 24.

% Interleave some symbols. Record final state of array.

[i1,state] = helintrlv([1:12]',3,4,1);

% Interleave more symbols, remembering the symbols that

% were left in the array from the earlier command.

i2 = helintrlv([13:24]',3,4,1,state);

disp('Interleaved data:')

disp([i1,i2]')

disp('Values left in array after first interleaving operation:')

state.value{:}

During the successive calls to helintrlv, it internally creates the three-column arrays

[1 0 0;

 2 5 0;

 3 6 9;

 4 7 10;

 0 8 11;

 0 0 12]

and

[13 8 11;

 14 17 12;

 15 18 21;

 16 19 22;

 0 20 23;

 0 0 24]

In the second array shown above, the 8, 11, and 12 are values left in the array from the
previous call to the function. Specifying the init_state input in the second call to the
function causes it to use those values rather than the default values of 0.

The output from this example is below. (The actual interleaved data is a tall matrix, but
it has been transposed into a wide matrix for display purposes.) The interleaved data
comes from the top four rows of the three-column arrays shown above. Notice that some
of the symbols in the first half of the interleaved data are default values of 0, some of the
symbols in the second half of the interleaved data were left in the array from the first
call to helintrlv, and some of the input symbols (20, 23, and 24) do not appear in the
interleaved data at all.

1 Functions — Alphabetical List

1-360

Interleaved data:

 Columns 1 through 10

 1 0 0 2 5 0 3 6 9 4

 13 8 11 14 17 12 15 18 21 16

 Columns 11 through 12

 7 10

 19 22

Values left in array after first interleaving operation:

ans =

 []

ans =

 8

ans =

 11 12

The example on the reference page for heldeintrlv also uses this function.

More About
• “Interleaving”

See Also
heldeintrlv

 helscandeintrlv

1-361

helscandeintrlv
Restore ordering of symbols in helical pattern

Syntax

deintrlvd = helscandeintrlv(data,Nrows,Ncols,hstep)

Description

deintrlvd = helscandeintrlv(data,Nrows,Ncols,hstep) rearranges the
elements in data by filling a temporary matrix with the elements in a helical fashion
and then sending the matrix contents to the output row by row. Nrows and Ncols are
the dimensions of the temporary matrix. hstep is the slope of the diagonal, that is, the
amount by which the row index increases as the column index increases by one. hstep
must be a nonnegative integer less than Nrows.

Helical fashion means that the function places input elements along diagonals of the
temporary matrix. The number of elements in each diagonal is exactly Ncols, after the
function wraps past the edges of the matrix when necessary. The function traverses
diagonals so that the row index and column index both increase. Each diagonal after the
first one begins one row below the first element of the previous diagonal.

If data is a vector, it must have Nrows*Ncols elements. If data is a matrix with
multiple rows and columns, data must have Nrows*Ncols rows and the function
processes the columns independently.

To use this function as an inverse of the helscanintrlv function, use the same Nrows,
Ncols, and hstep inputs in both functions. In that case, the two functions are inverses
in the sense that applying helscanintrlv followed by helscandeintrlv leaves data
unchanged.

Examples

The command below rearranges a vector using a 3-by-4 temporary matrix and diagonals
of slope 1.

1 Functions — Alphabetical List

1-362

d = helscandeintrlv(1:12,3,4,1)

d =

 Columns 1 through 10

 1 10 7 4 5 2 11 8 9 6

 Columns 11 through 12

 3 12

Internally, the function creates the 3-by-4 temporary matrix

[1 10 7 4;

 5 2 11 8;

 9 6 3 12]

using length-four diagonals. The function then sends the elements, row by row, to the
output d.

More About
• “Interleaving”

See Also
helscanintrlv

 helscanintrlv

1-363

helscanintrlv
Reorder symbols in helical pattern

Syntax

intrlvd = helscanintrlv(data,Nrows,Ncols,hstep)

Description

intrlvd = helscanintrlv(data,Nrows,Ncols,hstep) rearranges the elements in
data by filling a temporary matrix with the elements row by row and then sending the
matrix contents to the output in a helical fashion. Nrows and Ncols are the dimensions
of the temporary matrix. hstep is the slope of the diagonal, that is, the amount by
which the row index increases as the column index increases by one. hstep must be a
nonnegative integer less than Nrows.

Helical fashion means that the function selects elements along diagonals of the
temporary matrix. The number of elements in each diagonal is exactly Ncols, after the
function wraps past the edges of the matrix when necessary. The function traverses
diagonals so that the row index and column index both increase. Each diagonal after the
first one begins one row below the first element of the previous diagonal.

If data is a vector, it must have Nrows*Ncols elements. If data is a matrix with
multiple rows and columns, data must have Nrows*Ncols rows and the function
processes the columns independently.

Examples

The command below rearranges a vector using diagonals of two different slopes.

i1 = helscanintrlv(1:12,3,4,1) % Slope of diagonal is 1.

i2 = helscanintrlv(1:12,3,4,2) % Slope of diagonal is 2.

The output is below.

i1 =

1 Functions — Alphabetical List

1-364

 Columns 1 through 10

 1 6 11 4 5 10 3 8 9 2

 Columns 11 through 12

 7 12

i2 =

 Columns 1 through 10

 1 10 7 4 5 2 11 8 9 6

 Columns 11 through 12

 3 12

In each case, the function internally creates the temporary 3-by-4 matrix

[1 2 3 4;

 5 6 7 8;

 9 10 11 12]

To form i1, the function forms each slope-one diagonal by moving one row down and one
column to the right. The first diagonal contains 1, 6, 11, and 4, while the second diagonal
starts with 5 because that is beneath 1 in the temporary matrix.

To form i2, the function forms each slope-two diagonal by moving two rows down and
one column to the right. The first diagonal contains 1, 10, 7, and 4, while the second
diagonal starts with 5 because that is beneath 1 in the temporary matrix.

More About
• “Interleaving”

See Also
helscandeintrlv

 hilbiir

1-365

hilbiir
Design Hilbert transform IIR filter

Syntax

hilbiir

hilbiir(ts)

hilbiir(ts,dly)

hilbiir(ts,dly,bandwidth)

hilbiir(ts,dly,bandwidth,tol)

[num,den] = hilbiir(...)

[num,den,sv] = hilbiir(...)

[a,b,c,d] = hilbiir(...)

[a,b,c,d,sv] = hilbiir(...)

Description

The function hilbiir designs a Hilbert transform filter. The output is either

• A plot of the filter's impulse response, or
• A quantitative characterization of the filter, using either a transfer function model or

a state-space model

Background Information

An ideal Hilbert transform filter has the transfer function H(s) = -jsgn(s), where
sgn(.) is the signum function (sign in MATLAB). The impulse response of the Hilbert
transform filter is

h t
t

() =
1

p

Because the Hilbert transform filter is a noncausal filter, the hilbiir function
introduces a group delay, dly. A Hilbert transform filter with this delay has the impulse
response

1 Functions — Alphabetical List

1-366

h t
t

()
()

=

-

1

p dly

Choosing a Group Delay Parameter

The filter design is an approximation. If you provide the filter's group delay as an input
argument, these two suggestions can help improve the accuracy of the results:

• Choose the sample time ts and the filter's group delay dly so that dly is at least a
few times larger than ts and rem(dly,ts) = ts/2. For example, you can set ts to
2*dly/N, where N is a positive integer.

• At the point t = dly, the impulse response of the Hilbert transform filter can be
interpreted as 0, -Inf, or Inf. If hilbiir encounters this point, it sets the impulse
response there to zero. To improve accuracy, avoid the point t = dly.

Syntaxes for Plots

Each of these syntaxes produces a plot of the impulse response of the filter that the
hilbiir function designs, as well as the impulse response of a corresponding ideal
Hilbert transform filter.

hilbiir plots the impulse response of a fourth-order digital Hilbert transform filter
with a one-second group delay. The sample time is 2/7 seconds. In this particular design,
the tolerance index is 0.05. The plot also displays the impulse response of the ideal
Hilbert transform filter with a one-second group delay.

hilbiir(ts) plots the impulse response of a fourth-order Hilbert transform filter with
a sample time of ts seconds and a group delay of ts*7/2 seconds. The tolerance index
is 0.05. The plot also displays the impulse response of the ideal Hilbert transform filter
having a sample time of ts seconds and a group delay of ts*7/2 seconds.

hilbiir(ts,dly) is the same as the syntax above, except that the filter's group delay is
dly for both the ideal filter and the filter that hilbiir designs. See “Choosing a Group
Delay Parameter” on page 1-366 above for guidelines on choosing dly.

hilbiir(ts,dly,bandwidth) is the same as the syntax above, except that bandwidth
specifies the assumed bandwidth of the input signal and that the filter design might use
a compensator for the input signal. If bandwidth = 0 or bandwidth > 1/(2*ts), hilbiir
does not use a compensator.

 hilbiir

1-367

hilbiir(ts,dly,bandwidth,tol) is the same as the syntax above, except that tol is
the tolerance index. If tol < 1, the order of the filter is determined by

truncated-singular-value

maximum-singular-value
< tol

If tol > 1, the order of the filter is tol.

Syntaxes for Transfer Function and State-Space Quantities

Each of these syntaxes produces quantitative information about the filter that hilbiir
designs, but does not produce a plot. The input arguments for these syntaxes (if you
provide any) are the same as those described in “Syntaxes for Plots” on page 1-366.

[num,den] = hilbiir(...) outputs the numerator and denominator of the IIR filter's
transfer function.

[num,den,sv] = hilbiir(...) outputs the numerator and denominator of the IIR
filter's transfer function, and the singular values of the Hankel matrix that hilbiir
uses in the computation.

[a,b,c,d] = hilbiir(...) outputs the discrete-time state-space model of the
designed Hilbert transform filter. a, b, c, and d are matrices.

[a,b,c,d,sv] = hilbiir(...) outputs the discrete-time state-space model of the
designed Hilbert transform filter, and the singular values of the Hankel matrix that
hilbiir uses in the computation.

Examples

For an example using the function's default values, type one of the following commands
at the MATLAB prompt.

hilbiir

[num,den] = hilbiir

1 Functions — Alphabetical List

1-368

More About

Algorithms

The hilbiir function calculates the impulse response of the ideal Hilbert transform
filter response with a group delay. It fits the response curve using a singular-value
decomposition method. See the book by Kailath [1].
•

References

[1] Kailath, Thomas, Linear Systems, Englewood Cliffs, NJ, Prentice-Hall, 1980.

See Also
grpdelay

 huffmandeco

1-369

huffmandeco
Huffman decoder

Syntax

dsig = huffmandeco(comp,dict)

Description

dsig = huffmandeco(comp,dict) decodes the numeric Huffman code vector comp
using the code dictionary dict. The argument dict is an N-by-2 cell array, where N
is the number of distinct possible symbols in the original signal that was encoded as
comp. The first column of dict represents the distinct symbols and the second column
represents the corresponding codewords. Each codeword is represented as a numeric
row vector, and no codeword in dict is allowed to be the prefix of any other codeword
in dict. You can generate dict using the huffmandict function and comp using the
huffmanenco function. If all signal values in dict are numeric, dsig is a vector; if any
signal value in dict is alphabetical, dsig is a one-dimensional cell array.

Examples

The example below encodes and then decodes a vector of random data that has a
prescribed probability distribution.

symbols = [1:6]; % Distinct symbols that data source can produce

p = [.5 .125 .125 .125 .0625 .0625]; % Probability distribution

[dict,avglen] = huffmandict(symbols,p); % Create dictionary.

actualsig = randsrc(1,100,[symbols; p]); % Create data using p.

comp = huffmanenco(actualsig,dict); % Encode the data.

dsig = huffmandeco(comp,dict); % Decode the Huffman code.

isequal(actualsig,dsig) % Check whether the decoding is correct.

The output below indicates that the decoder successfully recovered the data in
actualsig.

ans =

1 Functions — Alphabetical List

1-370

 1

More About
• “Huffman Coding”

References

[1] Sayood, Khalid, Introduction to Data Compression, San Francisco, Morgan Kaufmann,
2000.

See Also
huffmandict | huffmanenco

 huffmandict

1-371

huffmandict
Generate Huffman code dictionary for source with known probability model

Syntax

[dict,avglen] = huffmandict(symbols,p)

[dict,avglen] = huffmandict(symbols,p,N)

[dict,avglen] = huffmandict(symbols,p,N,variance)

Description

For All Syntaxes

The huffmandict function generates a Huffman code dictionary corresponding to a
source with a known probability model. The required inputs are

• symbols, which lists the distinct signal values that the source produces. It can have
the form of a numeric vector, numeric cell array, or alphanumeric cell array. If it is a
cell array, it must be either a row or a column.

• p, a probability vector whose kth element is the probability with which the source
produces the kth element of symbols. The length of p must equal the length of
symbols.

The outputs of huffmandict are

• dict, a two-column cell array in which the first column lists the distinct signal values
from symbols and the second column lists the corresponding Huffman codewords. In
the second column, each Huffman codeword is represented as a numeric row vector.

• avglen, the average length among all codewords in the dictionary, weighted
according to the probabilities in the vector p.

For Specific Syntaxes

[dict,avglen] = huffmandict(symbols,p) generates a binary Huffman code
dictionary using the maximum variance algorithm.

1 Functions — Alphabetical List

1-372

[dict,avglen] = huffmandict(symbols,p,N) generates an N-ary Huffman code
dictionary using the maximum variance algorithm. N is an integer between 2 and 10 that
must not exceed the number of source symbols whose probabilities appear in the vector p.

[dict,avglen] = huffmandict(symbols,p,N,variance) generates an N-ary
Huffman code dictionary with the minimum variance if variance is 'min' and the
maximum variance if variance is 'max'. N is an integer between 2 and 10 that must
not exceed the length of the vector p.

Examples

symbols = [1:5];

p = [.3 .3 .2 .1 .1];

[dict,avglen] = huffmandict(symbols,p)

samplecode = dict{5,2} % Codeword for fifth signal value

The output is below, where the first column of dict lists the values in symbols and the
second column lists the corresponding codewords.

dict =

 [1] [1x2 double]

 [2] [1x2 double]

 [3] [1x2 double]

 [4] [1x3 double]

 [5] [1x3 double]

avglen =

 2.2000

samplecode =

 1 1 0

More About
• “Huffman Coding”

 huffmandict

1-373

References

[1] Sayood, Khalid, Introduction to Data Compression, San Francisco, Morgan Kaufmann,
2000.

See Also
huffmanenco | huffmandeco

1 Functions — Alphabetical List

1-374

huffmanenco

Huffman encoder

Syntax

comp = huffmanenco(sig,dict)

Description

comp = huffmanenco(sig,dict) encodes the signal sig using the Huffman codes
described by the code dictionary dict. The argument sig can have the form of a numeric
vector, numeric cell array, or alphanumeric cell array. If sig is a cell array, it must
be either a row or a column. dict is an N-by-2 cell array, where N is the number of
distinct possible symbols to be encoded. The first column of dict represents the distinct
symbols and the second column represents the corresponding codewords. Each codeword
is represented as a numeric row vector, and no codeword in dict can be the prefix of any
other codeword in dict. You can generate dict using the huffmandict function.

Examples

The example below encodes a vector of random data that has a prescribed probability
distribution.

symbols = [1:6]; % Distinct symbols that data source can produce

p = [.5 .125 .125 .125 .0625 .0625]; % Probability distribution

[dict,avglen] = huffmandict(symbols,p); % Create dictionary.

actualsig = randsrc(100,1,[symbols; p]); % Create data using p.

comp = huffmanenco(actualsig,dict); % Encode the data.

More About
• “Huffman Coding”

 huffmanenco

1-375

References

[1] Sayood, Khalid, Introduction to Data Compression, San Francisco, Morgan Kaufmann,
2000.

See Also
huffmandict | huffmandeco

1 Functions — Alphabetical List

1-376

ifft
Inverse discrete Fourier transform

Syntax

ifft(x)

Description

ifft(x) is the inverse discrete Fourier transform (DFT) of the Galois vector x. If x is in
the Galois field GF(2m), the length of x must be 2m-1.

Examples

For an example using ifft, see the reference page for fft.

Limitations

The Galois field over which this function works must have 256 or fewer elements. In
other words, x must be in the Galois field GF(2m), where m is an integer between 1 and 8.

More About

Algorithms

If x is a column vector, ifft applies dftmtx to the multiplicative inverse of the
primitive element of the Galois field and multiplies the resulting matrix by x.
• “Signal Processing Operations in Galois Fields”

See Also
fft | dftmtx

 intdump

1-377

intdump
Integrate and dump

Syntax

y = intdump(x,nsamp)

Description

y = intdump(x,nsamp) integrates the signal x for one symbol period, then outputs
the averaged one value into Y. nsamp is the number of samples per symbol. For two-
dimensional signals, the function treats each column as one channel.

Examples

An example in “Combine Pulse Shaping and Filtering with Modulation” uses this
function in conjunction with modulation.

Processes two independent channels, each of which contain three symbols of data made
up of four samples.

s = rng;

rng(68521);

nsamp = 4; % Number of samples per symbol

ch1 = randi([0 1],3*nsamp,1); % Random binary channel

ch2 = rectpulse([1 2 3]',nsamp); % Rectangular pulses

x = [ch1 ch2]; % Two-channel signal

y = intdump(x,nsamp)

rng(s);

The output is below. Each column corresponds to one channel, and each row corresponds
to one symbol.

y =

 0.5000 1.0000

 0.5000 2.0000

1 Functions — Alphabetical List

1-378

 1.0000 3.0000

See Also
rectpulse

 intrlv

1-379

intrlv
Reorder sequence of symbols

Syntax

intrlvd = intrlv(data,elements)

Description

intrlvd = intrlv(data,elements) rearranges the elements of data without
repeating or omitting any elements. If data is a length-N vector or an N-row matrix,
elements is a length-N vector that permutes the integers from 1 to N. The sequence
in elements is the sequence in which elements from data or its columns appear in
intrlvd. If data is a matrix with multiple rows and columns, the function processes the
columns independently.

Examples

The command below rearranges the elements of a vector. Your output might differ
because the permutation vector is random in this example.

p = randperm(10); % Permutation vector

a = intrlv(10:10:100,p)

The output is below.

a =

 10 90 60 30 50 80 100 20 70 40

The command below rearranges each of two columns of a matrix.

b = intrlv([.1 .2 .3 .4 .5; .2 .4 .6 .8 1]',[2 4 3 5 1])

b =

 0.2000 0.4000

 0.4000 0.8000

1 Functions — Alphabetical List

1-380

 0.3000 0.6000

 0.5000 1.0000

 0.1000 0.2000

More About
• “Interleaving”

See Also
deintrlv

 iqcoef2imbal

1-381

iqcoef2imbal
Convert compensator coefficient to amplitude and phase imbalance

Syntax

[A,P] = iqcoef2imbal(C)

Description

[A,P] = iqcoef2imbal(C) converts compensator coefficient C to its equivalent
amplitude and phase imbalance.

Examples

Estimate I/Q Imbalance from Compensator Coefficient

Use iqcoef2imbal to estimate the amplitude and phase imbalance for a given
complex coefficient. The coefficients are an output from the step function of the
IQImbalanceCompensator.

Create a QAM modulator and a raised cosine transmit filter to generate a 64-QAM
signal.

hMod = comm.RectangularQAMModulator('ModulationOrder',64);

hTxFilter = comm.RaisedCosineTransmitFilter;

Modulate and filter random 64-ary symbols.

data = randi([0 63],100000,1);

dataMod = step(hMod,data);

txSig = step(hTxFilter,dataMod);

Specify amplitude and phase imbalance.

ampImb = 2; % dB

phImb = 15; % degrees

Apply the specified I/Q imbalance.

1 Functions — Alphabetical List

1-382

gainI = 10.^(0.5*ampImb/20);

gainQ = 10.^(-0.5*ampImb/20);

imbI = real(txSig)*gainI*exp(-0.5i*phImb*pi/180);

imbQ = imag(txSig)*gainQ*exp(1i*(pi/2 + 0.5*phImb*pi/180));

rxSig = imbI + imbQ;

Normalize the power of the received signal

rxSig = rxSig/std(rxSig);

Remove the I/Q imbalance using the comm.IQImbalanceCompensator System object.
Set the compensator object such that the complex coefficients are made available as an
output argument.

hIQComp = comm.IQImbalanceCompensator('CoefficientOutputPort',true);

[compSig,coef] = step(hIQComp,rxSig);

Estimate the imbalance from the last value of the compensator coefficient.

[ampImbEst,phImbEst] = iqcoef2imbal(coef(end));

Compare the estimated imbalance values with the specified ones. Notice that there is
good agreement.

[ampImb phImb; ampImbEst phImbEst]

ans =

 2.0000 15.0000

 2.0178 14.5740

Input Arguments

C — Compensator coefficient
complex-valued scalar or vector

Coefficient used to compensate for an I/Q imbalance, specified as a complex-valued
vector.
Example: 0.4+0.6i

Example: [0.1+0.2i; 0.3+0.5i]

 iqcoef2imbal

1-383

Data Types: single | double

Output Arguments
A — Amplitude imbalance
real-valued vector

Amplitude imbalance in dB, returned as a real-valued vector with the same dimensions
as C.

P — Phase imbalance
real-valued vector

Phase imbalance in degrees, returned as a real-valued vector with the same dimensions
as C.

More About
I/Q Imbalance Compensation

The function iqcoef2imbal is a supporting function for the
comm.IQImbalanceCompensator System object.

Given a scaling and rotation factor, G, compensator coefficient, C, and received signal, x,
the compensated signal, y, has the form

y G x C x= +[]conj() .

In matrix form, this can be rewritten as

Y RX= ,

where X is a 2-by-1 vector representing the imbalanced signal [XI, XQ] and Y is a 2-by-1
vector representing the compensator output [YI, YQ].

The matrix R is expressed as

R =
+

-

È

Î
Í

˘

˚
˙

1

1

Re{ } Im{ }

Im{ } Re{ }

C C

C C

1 Functions — Alphabetical List

1-384

For the compensator to perfectly remove the I/Q imbalance, R = K-1 because X = K S ,
where K is a 2-by-2 matrix whose values are determined by the amplitude and phase
imbalance and S is the ideal signal. Define a matrix M with the form

M =
-È

Î
Í

˘

˚
˙

1

1

a

a

Both M and M-1 can be thought of as scaling and rotation matrices that correspond
to the factor G. Because K = R-1, the product M-1 R K M is the identity matrix, where
M-1 R represents the compensator output and K M represents the I/Q imbalance. The
coefficient α is chosen such that

KM =
È

Î
Í
Í

˘

˚
L

I Q

I Q

gain I gain Q

gain I gain Q

cos() cos()

sin() sin()

q q

q q
˙̇
˙

where L is a constant. From this form, we can obtain Igain, Qgain, θI, and θQ. For a given
phase imbalance, ΦImb, the in-phase and quadrature angles can be expressed as

q p

q p p

I

Q

Imb

Imb

= - ()()

= + () ()

/ /

/ / /

2 180

2 2 180

F

F

Hence, cos(θQ) = sin(θI) and sin(θQ) = cos(θI) so that

L
I Q

I Q

gain I gain Q

gain I gain Q

cos() cos()

sin() sin()

q q

q q

È

Î
Í
Í

˘

˚
˙
˙

= LL
I Q

I Q

gain I gain I

gain I gain I

cos() sin()

sin() cos()

q q

q q

È

Î
Í
Í

˘

˚
˙
˙

The I/Q imbalance can be expressed as

KM =
+ - +

+ - +

È

Î
Í

˘

˚
˙

=

K K

K K

L
I Q

K K

K K

gain I

11 12 11 12

21 22 21 22

a a

a a

qcos() ggain I

gain I gain II Q

sin()

sin() cos()

q

q q

È

Î
Í
Í

˘

˚
˙
˙

Therefore,

 iqcoef2imbal

1-385

K K K KK K K K
I21 22 11 12 11 12 21 22+() +() = - +() - +() =a a a a q/ / sin() / cos(qq

I
)

The equation can be written as a quadratic equation to solve for the variable α, that is
D1α2 + D2α + D3 = 0, where

D K K K K

D K K K K

D K K K K

1 11 12 22 21

2 12

2

21

2

11

2

22

2

3 11 12 21 22

= - +

= + - -

= -

When |C| ≤ 1, the quadratic equation has the following solution:

a =

- - -D D D D

D

2

2

1 3

1

4

2

Otherwise, when |C| > 1, the solution has the following form:

a =

- + -D D D D

D

2

2

1 3

1

4

2

Finally, the amplitude imbalance, AImb, and the phase imbalance, ΦImb, are obtained.

¢ =
-È

Î
Í

˘

˚
˙

= ¢ ¢()
= - ¢ ¢-

K K
1

1

20

2

10 11 22

1
21 1

a

a

A K K

K K

Imb

Imb

log /

tan /F 11 180()()p

Note:

• If C is real and |C| ≤ 1, the phase imbalance is 0 and the amplitude imbalance is
20log10((1–C)/(1+C))

• If C is real and |C| > 1, the phase imbalance is 180° and the amplitude imbalance is
20log10((C+1)/(C−1)).

1 Functions — Alphabetical List

1-386

• If C is imaginary, AImb = 0.

See Also
comm.IQImbalanceCompensator | iqimbal2coef

 iqimbal2coef

1-387

iqimbal2coef

Convert I/Q imbalance to compensator coefficient

Syntax

C = iqimbal2coef(A,P)

Description

C = iqimbal2coef(A,P) converts an I/Q amplitude and phase imbalance to its
equivalent compensator coefficient.

Examples

Generate Coefficients for I/Q Imbalance Compensation

Generate coefficients for the I/Q imbalance compensator System object™ using
iqimbal2coef. The compensator corrects for an I/Q imbalance using the generated
coefficients.

Create a QAM modulator and a raised cosine transmit filter to generate a 64-QAM
signal.

hMod = comm.RectangularQAMModulator('ModulationOrder',64);

hTxFilter = comm.RaisedCosineTransmitFilter;

Modulate and filter random 64-ary symbols.

data = randi([0 63],100000,1);

dataMod = step(hMod,data);

txSig = step(hTxFilter,dataMod);

Specify amplitude and phase imbalance.

ampImb = 2; % dB

1 Functions — Alphabetical List

1-388

phImb = 15; % degrees

Apply the specified I/Q imbalance.

gainI = 10.^(0.5*ampImb/20);

gainQ = 10.^(-0.5*ampImb/20);

imbI = real(txSig)*gainI*exp(-0.5i*phImb*pi/180);

imbQ = imag(txSig)*gainQ*exp(1i*(pi/2 + 0.5*phImb*pi/180));

rxSig = imbI + imbQ;

Normalize the power of the received signal.

rxSig = rxSig/std(rxSig);

Remove the I/Q imbalance by creating and applying a comm.IQImbalanceCompensator
object. Set the compensator such that the complex coefficients are made available as an
output argument.

hIQComp = comm.IQImbalanceCompensator('CoefficientOutputPort',true);

[compSig,coef] = step(hIQComp,rxSig);

Compare the final compensator coefficient to the coefficient generated by the
iqimbal2coef function. Observe that there is good argreement.

idealcoef = iqimbal2coef(ampImb,phImb);

[coef(end); idealcoef]

ans =

 -0.1137 + 0.1296i

 -0.1126 + 0.1334i

Input Arguments

A — Amplitude imbalance
real-valued scalar or vector

Amplitude imbalance in dB, specified as a real-valued row or column vector.
Example: 3

 iqimbal2coef

1-389

Example: [0; 5]

Data Types: single | double

P — Phase imbalance
real-valued scalar or vector

Phase imbalance in degrees, specified as a real-valued row or column vector.
Example: 10

Example: [15; 45]

Data Types: single | double

Output Arguments

C — Compensator coefficient
complex-valued vector

Coefficient that perfectly compensates for the I/Q imbalance, returned as a complex-
valued vector having the same dimensions as A and P.

More About

I/Q Imbalance Compensation

The function iqimbal2coef is a supporting function for the
comm.IQImbalanceCompensator System object.

Define S and X as 2-by-1 vectors representing the I and Q components of the ideal and I/
Q imbalanced signals, respectively.

X K S= ◊

where K is a 2-by-2 matrix whose values are determined by the amplitude imbalance, A,
and phase imbalance, P. A is expressed in dB and P is expressed in degrees.

The imbalance can be expressed as:

1 Functions — Alphabetical List

1-390

I

Q

P

gain
A

gain
A

i

q

=

=

= -Ê
ËÁ

ˆ
¯̃
Ê
ËÁ

ˆ
¯̃

=

-

10

10

2 180

2

0 5 20

0 5 20

. /

. /

q p

q
p

++ Ê
Ë
Á

ˆ
¯
˜
Ê
Ë
Á

ˆ
¯
˜

P

2 180

p

Then K has the form:

K =
È

Î
Í
Í

˘

˚
˙
˙

I Q

I Q

gain i gain q

gain i gain q

cos() cos()

sin() sin()

q q

q q

The vector Y is defined as the I/Q imbalance compensator output.

Y R X= ◊

For the compensator to perfectly remove the I/Q imbalance, R must be the matrix
inversion of K, namely:

R K=
-1

Using complex notation, the vector Y can be rewritten as:

y w x w x

w x
w

w
x

= +

= + Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

1 2

1
2

1

conj()

conj()

where,

Re{ } (

}

}

) /

Im{ () /

Re{ () /

Im{

w R R

w R R

w R R

w

1 11 22

1 21 12

2 11 22

2

2

2

= +

= -

= -

22 21 12 2} () /= +R R

 iqimbal2coef

1-391

The output of the function is w2/w1. To exactly obtain the original signal, the compensator
output needs to be scaled and rotated by the complex number w1.

Note:

There are cases for which the output of iqimbal2coef is unreliable.

• If the phase imbalance is ±90°, the in-phase and quadrature components will become
co-linear; consequently, the I/Q imbalance cannot be compensated.

• If the amplitude imbalance is 0 dB and the phase imbalance is 180°, w1 = 0 and w2 =
1i; therefore, the compensator takes the form of y = 1i*conj(x).

See Also
comm.IQImbalanceCompensator | iqcoef2imbal

1 Functions — Alphabetical List

1-392

iscatastrophic
True for trellis corresponding to catastrophic convolutional code

Syntax

iscatastrophic(s)

Description

iscatastrophic(s) returns true if the trellis s corresponds to a convolutional code
that causes catastrophic error propagation. Otherwise, it returns false.

Examples

Determine if a Convolutional Code is Catastrophic

This example shows how to determine if a convolutional code causes catastrophic error
propagation.

Create the trellis for the standard, rate 1/2, constraint length 7 convolutional code.

t = poly2trellis(7,[171 133]);

Verify that the the code is not catastrophic.

iscatastrophic(t)

ans =

 0

Create a trellis for a different convolutional code using the poly2trellis function.

u = poly2trellis(7,[161 143]);

Verify that the code is catastrophic.

 iscatastrophic

1-393

iscatastrophic(u)

ans =

 1

More About
• “Convolutional Codes”

References

[1] Stephen B. Wicker, Error Control Systems for Digital Communication and Storage,
Prentice-Hall, 1995, pp. 274-275.

See Also
convenc | istrellis | poly2trellis | struct

1 Functions — Alphabetical List

1-394

isprimitive
True for primitive polynomial for Galois field

Syntax
isprimitive(a)

Description

isprimitive(a) returns 1 if the polynomial that a represents is primitive for the
Galois field GF(2m), and 0 otherwise. The input a can represent the polynomial using one
of these formats:

• A nonnegative integer less than 217. The binary representation of this integer
indicates the coefficients of the polynomial. In this case, m is floor(log2(a)).

• A Galois row vector in GF(2), listing the coefficients of the polynomial in order of
descending powers. In this case, m is the order of the polynomial represented by a.

Examples

The example below finds all primitive polynomials for GF(8) and then checks using
isprimitive whether specific polynomials are primitive.

a = primpoly(3,'all','nodisplay'); % All primitive polys for GF(8)

isp1 = isprimitive(13) % 13 represents a primitive polynomial.

isp2 = isprimitive(14) % 14 represents a nonprimitive polynomial.

The output is below. If you examine the vector a, notice that isp1 is true because 13 is
an element in a, while isp2 is false because 14 is not an element in a.

isp1 =

 1

 isprimitive

1-395

isp2 =

 0

More About
• “Galois Field Computations”

See Also
primpoly

1 Functions — Alphabetical List

1-396

istrellis
True for valid trellis structure

Syntax

[isok,status] = istrellis(s)

Description

[isok,status] = istrellis(s) checks if the input s is a valid trellis structure. If
the input is a valid trellis structure, isok is 1 and status is an empty string. Otherwise,
isok is 0 and status is a string that indicates why s is not a valid trellis structure.

A valid trellis structure is a MATLAB structure whose fields are as in the table below.

Fields of a Valid Trellis Structure for a Rate k/n Code

Field in Trellis Structure Dimensions Meaning

numInputSymbols Scalar Number of input symbols to
the encoder: 2k

numOutputSymbols Scalar Number of output symbols
from the encoder: 2n

numStates Scalar Number of states in the
encoder

nextStates numStates-by-2k matrix Next states for all
combinations of current state
and current input

outputs numStates-by-2k matrix Outputs (in octal) for all
combinations of current state
and current input

In the nextStates matrix, each entry is an integer between 0 and numStates-1. The
element in the sth row and uth column denotes the next state when the starting state
is s-1 and the input bits have decimal representation u-1. To convert the input bits to a

 istrellis

1-397

decimal value, use the first input bit as the most significant bit (MSB). For example, the
second column of the nextStates matrix stores the next states when the current set of
input values is {0,...,0,1}.

To convert the state to a decimal value, use this rule: If k exceeds 1, the shift register
that receives the first input stream in the encoder provides the least significant bits in
the state number, and the shift register that receives the last input stream in the encoder
provides the most significant bits in the state number.

In the outputs matrix, the element in the sth row and uth column denotes the encoder's
output when the starting state is s-1 and the input bits have decimal representation u-1.
To convert to decimal value, use the first output bit as the MSB.

Examples

These commands assemble the fields into a very simple trellis structure, and then verify
the validity of the trellis structure.

trellis.numInputSymbols = 2;

trellis.numOutputSymbols = 2;

trellis.numStates = 2;

trellis.nextStates = [0 1;0 1];

trellis.outputs = [0 0;1 1];

[isok,status] = istrellis(trellis)

The output is below.

isok =

 1

status =

 ''

Another example of a trellis is in “Trellis Description of a Convolutional Code”.

More About
• “Convolutional Codes”

1 Functions — Alphabetical List

1-398

See Also
poly2trellis | struct | convenc | vitdec

 legacychannelsim

1-399

legacychannelsim
Toggles random number generation mode for channel objects

Syntax

b = legacychannelsim

legacychannelsim(true)

legacychannelsim(false)

oldmode = legacychannelsim(newmode)

Description

b = legacychannelsim returns FALSE if the code you are running uses the R2009b
(or later) version of the random number generator for rayleighchan or ricianchan.
(By default, these use the 2009b random number generator.) It returns TRUE if pre-
R2009b versions are used. See Version 4.4. (R2009b) Communications System Toolbox
Release Notes for more information.

legacychannelsim(true) reverts the random number generation mode for channel
objects to pre-2009b version.

Note: legacychannelsim(true) will support the reset(chan,randstate)
functionality.

legacychannelsim(false) sets the random number generation mode for channel
objects to 2009b and later versions.

oldmode = legacychannelsim(newmode) sets the random number generation mode
for channel objects to NEWMODE and returns the previous mode, OLDMODE.

1 Functions — Alphabetical List

1-400

lineareq
Construct linear equalizer object

Syntax

eqobj = lineareq(nweights,alg)

eqobj = lineareq(nweights,alg,sigconst)

eqobj = lineareq(nweights,alg,sigconst,nsamp)

Description

The lineareq function creates an equalizer object that you can use with the equalize
function to equalize a signal. To learn more about the process for equalizing a signal, see
“Adaptive Algorithms”.

eqobj = lineareq(nweights,alg) constructs a symbol-spaced linear equalizer
object. The equalizer has nweights complex weights, which are initially all zeros.
alg describes the adaptive algorithm that the equalizer uses; you should create alg
using any of these functions: lms, signlms, normlms, varlms, rls, or cma. The signal
constellation of the desired output is [-1 1], which corresponds to binary phase shift
keying (BPSK).

eqobj = lineareq(nweights,alg,sigconst) specifies the signal constellation
vector of the desired output.

eqobj = lineareq(nweights,alg,sigconst,nsamp) constructs a fractionally
spaced linear equalizer object. The equalizer has nweights complex weights spaced
at T/nsamp, where T is the symbol period and nsamp is a positive integer. nsamp = 1
corresponds to a symbol-spaced equalizer.

Properties

The table below describes the properties of the linear equalizer object. To learn how to
view or change the values of a linear equalizer object, see “Accessing Properties of an
Equalizer”.

 lineareq

1-401

Tip To initialize or reset the equalizer object eqobj, enter reset(eqobj).

Property Description

EqType Fixed value, 'Linear Equalizer'
AlgType Name of the adaptive algorithm

represented by alg
nWeights Number of weights
nSampPerSym Number of input samples per symbol

(equivalent to nsamp input argument).
This value relates to both the equalizer
structure (see the use of K in “Fractionally
Spaced Equalizers”) and an assumption
about the signal to be equalized.

RefTap (except for CMA equalizers) Reference tap index, between 1 and
nWeights. Setting this to a value greater
than 1 effectively delays the reference
signal and the output signal by RefTap-1
with respect to the equalizer's input signal.

SigConst Signal constellation, a vector whose length
is typically a power of 2

Weights Vector of complex coefficients. This is
the set of wi values in the schematic in
“Symbol-Spaced Equalizers”.

WeightInputs Vector of tap weight inputs. This is the set
of ui values in the schematic in “Symbol-
Spaced Equalizers”.

ResetBeforeFiltering If 1, each call to equalize resets the
state of eqobj before equalizing. If 0, the
equalization process maintains continuity
from one call to the next.

NumSamplesProcessed Number of samples the equalizer processed
since the last reset. When you create or
reset eqobj, this property value is 0.

1 Functions — Alphabetical List

1-402

Property Description

Properties specific to the adaptive
algorithm represented by alg

See reference page for the adaptive
algorithm function that created alg: lms,
signlms, normlms, varlms, rls, or cma.

Relationships Among Properties

If you change nWeights, MATLAB maintains consistency in the equalizer object by
adjusting the values of the properties listed below.

Property Adjusted Value

Weights zeros(1,nWeights)

WeightInputs zeros(1,nWeights)

StepSize (Variable-step-size LMS
equalizers)

InitStep*ones(1,nWeights)

InvCorrMatrix (RLS equalizers) InvCorrInit*eye(nWeights)

An example illustrating relationships among properties is in “Linked Properties of an
Equalizer Object”.

Examples

For examples that use this function, see “Equalize Using a Training Sequence in
MATLAB”, “Example: Equalizing Multiple Times, Varying the Mode”, and “Example:
Adaptive Equalization Within a Loop”.

More About
• “Equalization”

See Also
lms | signlms | normlms | varlms | rls | cma | dfe | equalize

 lloyds

1-403

lloyds

Optimize quantization parameters using Lloyd algorithm

Syntax

[partition,codebook] = lloyds(training_set,initcodebook)

[partition,codebook] = lloyds(training_set,len)

[partition,codebook] = lloyds(training_set,...,tol)

[partition,codebook,distor] = lloyds(...)

[partition,codebook,distor,reldistor] = lloyds(...)

Description

[partition,codebook] = lloyds(training_set,initcodebook) optimizes
the scalar quantization parameters partition and codebook for the training data in
the vector training_set. initcodebook, a vector of length at least 2, is the initial
guess of the codebook values. The output codebook is a vector of the same length as
initcodebook. The output partition is a vector whose length is one less than the
length of codebook.

See “Represent Partitions”, “Represent Codebooks”, or the reference page for quantiz in
this chapter, for a description of the formats of partition and codebook.

Note: lloyds optimizes for the data in training_set. For best results, training_set
should be similar to the data that you plan to quantize.

[partition,codebook] = lloyds(training_set,len) is the same as the first
syntax, except that the scalar argument len indicates the size of the vector codebook.
This syntax does not include an initial codebook guess.

[partition,codebook] = lloyds(training_set,...,tol) is the same as the two
syntaxes above, except that tol replaces 10-7 in condition 1 of the algorithm description
below.

1 Functions — Alphabetical List

1-404

[partition,codebook,distor] = lloyds(...) returns the final mean square
distortion in the variable distor.

[partition,codebook,distor,reldistor] = lloyds(...) returns a value
reldistor that is related to the algorithm's termination. In condition 1 of the algorithm
below, reldistor is the relative change in distortion between the last two iterations. In
condition 2, reldistor is the same as distor.

Examples

The code below optimizes the quantization parameters for a sinusoidal transmission via
a three-bit channel. Because the typical data is sinusoidal, training_set is a sampled
sine wave. Because the channel can transmit three bits at a time, lloyds prepares a
codebook of length 23.

% Generate a complete period of a sinusoidal signal.

x = sin([0:1000]*pi/500);

[partition,codebook] = lloyds(x,2^3)

The output is below.

partition =

 Columns 1 through 6

 -0.8540 -0.5973 -0.3017 0.0031 0.3077 0.6023

 Column 7

 0.8572

codebook =

 Columns 1 through 6

 -0.9504 -0.7330 -0.4519 -0.1481 0.1558 0.4575

 Columns 7 through 8

 0.7372 0.9515

 lloyds

1-405

More About

Algorithms

lloyds uses an iterative process to try to minimize the mean square distortion. The
optimization processing ends when either

• The relative change in distortion between iterations is less than 10-7.
• The distortion is less than eps*max(training_set), where eps is the MATLAB

floating-point relative accuracy.

• “Source Coding”

References

[1] Lloyd, S.P., “Least Squares Quantization in PCM,” IEEE Transactions on Information
Theory, Vol. IT-28, March, 1982, pp. 129–137.

[2] Max, J., “Quantizing for Minimum Distortion,” IRE Transactions on Information
Theory, Vol. IT-6, March, 1960, pp. 7–12.

See Also
quantiz | dpcmopt

1 Functions — Alphabetical List

1-406

lms
Construct least mean square (LMS) adaptive algorithm object

Syntax

alg = lms(stepsize)

alg = lms(stepsize,leakagefactor)

Description

The lms function creates an adaptive algorithm object that you can use with the
lineareq function or dfe function to create an equalizer object. You can then use the
equalizer object with the equalize function to equalize a signal. To learn more about
the process for equalizing a signal, see “Adaptive Algorithms”.

alg = lms(stepsize) constructs an adaptive algorithm object based on the least mean
square (LMS) algorithm with a step size of stepsize.

alg = lms(stepsize,leakagefactor) sets the leakage factor of the LMS algorithm.
leakagefactor must be between 0 and 1. A value of 1 corresponds to a conventional
weight update algorithm, and a value of 0 corresponds to a memoryless update
algorithm.

Properties

The table below describes the properties of the LMS adaptive algorithm object. To learn
how to view or change the values of an adaptive algorithm object, see “Access Properties
of an Adaptive Algorithm”.

Property Description

AlgType Fixed value, 'LMS'
StepSize LMS step size parameter, a nonnegative

real number
LeakageFactor LMS leakage factor, a real number between

0 and 1

 lms

1-407

Examples

For examples that use this function, see “Equalize Using a Training Sequence in
MATLAB”, “Example: Equalizing Multiple Times, Varying the Mode”, and “Example:
Adaptive Equalization Within a Loop”.

More About

Algorithms

Referring to the schematics presented in “Adaptive Algorithms”, define w as the vector
of all weights wi and define u as the vector of all inputs ui. Based on the current set of
weights, w, this adaptive algorithm creates the new set of weights given by
(LeakageFactor) w + (StepSize) u*e

where the * operator denotes the complex conjugate.
• “Equalization”

References

[1] Farhang-Boroujeny, B., Adaptive Filters: Theory and Applications, Chichester,
England, John Wiley & Sons, 1998.

[2] Haykin, Simon, Adaptive Filter Theory, Third Ed., Upper Saddle River, NJ, Prentice-
Hall, 1996.

[3] Kurzweil, Jack, An Introduction to Digital Communications, New York, John Wiley &
Sons, 2000.

[4] Proakis, John G., Digital Communications, Fourth Ed., New York, McGraw-Hill,
2001.

See Also
signlms | normlms | varlms | rls | cma | lineareq | dfe | equalize

1 Functions — Alphabetical List

1-408

log
Logarithm in Galois field

Syntax

y = log(x)

Description

y = log(x) computes the logarithm of each element in the Galois array x. y is an
integer array that solves the equation A.^y = x, where A is the primitive element used
to represent elements in x. More explicitly, the base A of the logarithm is gf(2,x.m) or
gf(2,x.m,x.prim_poly). All elements in x must be nonzero because the logarithm of
zero is undefined.

Examples

The code below illustrates how the logarithm operation inverts exponentiation.

m = 4; x = gf([8 1 6; 3 5 7; 4 9 2],m);

y = log(x);

primel = gf(2,m); % Primitive element in the field

z = primel .^ y; % This is now the same as x.

ck = isequal(x,z)

The output is

ck =

 1

The code below shows that the logarithm of 1 is 0 and that the logarithm of the base
(primel) is 1.

m = 4; primel = gf(2,m);

yy = log([1, primel])

 log

1-409

The output is

yy =

 0 1

1 Functions — Alphabetical List

1-410

lteZadoffChuSeq

Generate root Zadoff-Chu sequence of complex symbols

Syntax

SEQ = lteZadoffChuSeq(R,N)

Description

SEQ = lteZadoffChuSeq(R,N) generates the Rth root Zadoff-Chu sequence with
length N, as defined in the LTE specifications [1]. The output SEQ is an N-length column
vector of complex symbols.

The function generates the actual sequence using the following algorithm:

seq m j R m m N for m N() exp(() /), , ...,+ = - ◊ ◊ ◊ ◊ + = -1 1 0 1p

This function uses a negative polarity on the argument of the exponent or a clockwise
sequence of phases.

Examples

Examine the Correlation Properties of a Zadoff-Chu Sequence

Generate the 25th root length-139 Zadoff-Chu sequence.

Use lteZadoffChuSeq to generate the sequence and then plot its absolute values.

seq = lteZadoffChuSeq(25,139);

plot(abs(xcorr(seq)./length(seq)))

 lteZadoffChuSeq

1-411

Input Arguments

R — Root of the Zadoff-Chu sequence
positive integer scalar

Example: 25

Data Types: single | double
Complex Number Support: Yes

N — Length of the Zadof-Chu sequence
positive integer scalar

1 Functions — Alphabetical List

1-412

Example: 139

Data Types: single | double
Complex Number Support: Yes

Output Arguments

SEQ — Zadoff-Chu output sequence
complex double-type column vector

The output sequence is a complex-valued column vector that contains the Rth root
Zadoff-Chu sequence of length N.

References

[1] 3rd Generation Partnership Project: Technical Specification Group Radio Access
Network. “Evolved Universal Terrestrial Radio Access (E-UTRA),” Physical
Channels and Modulation, Release 10, 2010–2012, TS 36.211, Vol. 10.0.0.

See Also
comm.GoldSequence | comm.PNSequence

 marcumq

1-413

marcumq
Generalized Marcum Q function

Syntax

Q = marcumq(a,b)

Q = marcumq(a,b,m)

Description

Q = marcumq(a,b) computes the Marcum Q function of a and b, defined by

Q a b x
x a

I ax dx

b

(,) exp ()= -
+Ê

Ë
ÁÁ

ˆ

¯
˜̃

•

Ú
2 2

0
2

where a and b are nonnegative real numbers. In this expression, I0 is the modified Bessel
function of the first kind of zero order.

Q = marcumq(a,b,m) computes the generalized Marcum Q, defined by

Q a b
a

x
x a

I ax dx
m

m

b

m(,) exp ()= -
+Ê

Ë
ÁÁ

ˆ

¯
˜̃

-

•

-Ú
1

21

2 2

1

where a and b are nonnegative real numbers, and m is a positive integer. In this
expression, Im-1 is the modified Bessel function of the first kind of order m-1.

If any of the inputs is a scalar, it is expanded to the size of the other inputs.

Examples

Generate and Plot Marcum Q Function Data

This example shows how to use the marcumq function.

1 Functions — Alphabetical List

1-414

Create an input vector, x.

x = (0:0.1:10)';

Generate two output vectors for a=0 and a=2.

Q1 = marcumq(0,x);

Q2 = marcumq(2,x);

Plot the resultant Marcum Q functions.

plot(x,[Q1 Q2])

 marcumq

1-415

References

[1] Cantrell, P. E., and A. K. Ojha, “Comparison of Generalized Q-Function Algorithms,”
IEEE Transactions on Information Theory, Vol. IT-33, July, 1987, pp. 591–596.

[2] Marcum, J. I., “A Statistical Theory of Target Detection by Pulsed Radar:
Mathematical Appendix,” RAND Corporation, Santa Monica, CA, Research
Memorandum RM-753, July 1, 1948. Reprinted in IRE Transactions on
Information Theory, Vol. IT-6, April, 1960, pp. 59–267.

1 Functions — Alphabetical List

1-416

[3] Shnidman, D. A., “The Calculation of the Probability of Detection and the Generalized
Marcum Q-Function,” IEEE Transactions on Information Theory, Vol. IT-35,
March, 1989, pp. 389–400.

See Also
besseli

 mask2shift

1-417

mask2shift

Convert mask vector to shift for shift register configuration

Syntax

shift = mask2shift(prpoly,mask)

Description

shift = mask2shift(prpoly,mask) returns the shift that is equivalent to a mask,
for a linear feedback shift register whose connections are specified by the primitive
polynomial prpoly. The prpoly input can have one of these formats:

• A binary vector that lists the coefficients of the primitive polynomial in order of
descending powers

• An integer scalar whose binary representation gives the coefficients of the primitive
polynomial, where the least significant bit is the constant term

The mask input is a binary vector whose length is the degree of the primitive polynomial.

Note: To save time, mask2shift does not check that prpoly is primitive. If it is not
primitive, the output is not meaningful. To find primitive polynomials, use primpoly or
see [2].

For more information about how masks and shifts are related to pseudonoise sequence
generators, see shift2mask.

Definition of Equivalent Shift

If A is a root of the primitive polynomial and m(A) is the mask polynomial evaluated at
A, the equivalent shift s solves the equation As = m(A). To interpret the vector mask as a
polynomial, treat mask as a list of coefficients in order of descending powers.

1 Functions — Alphabetical List

1-418

Examples

The first command below converts a mask of x3 + 1 into an equivalent shift for the linear
feedback shift register whose connections are specified by the primitive polynomial
x4 + x3 + 1. The second command shows that a mask of 1 is equivalent to a shift of 0. In
both cases, notice that the length of the mask vector is one less than the length of the
prpoly vector.

s = mask2shift([1 1 0 0 1],[1 0 0 1])

s2 = mask2shift([1 1 0 0 1],[0 0 0 1])

The output is below.

s =

 4

s2 =

 0

References

[1] Lee, J. S., and L. E. Miller, CDMA Systems Engineering Handbook, Boston, Artech
House, 1998.

[2] Simon, Marvin K., Jim K. Omura, et al., Spread Spectrum Communications
Handbook, New York, McGraw-Hill, 1994.

See Also
shift2mask | primpoly | log | isprimitive

 matdeintrlv

1-419

matdeintrlv
Restore ordering of symbols by filling matrix by columns and emptying it by rows

Syntax

deintrlvd = matdeintrlv(data,Nrows,Ncols)

Description

deintrlvd = matdeintrlv(data,Nrows,Ncols) rearranges the elements in data
by filling a temporary matrix with the elements column by column and then sending the
matrix contents, row by row, to the output. Nrows and Ncols are the dimensions of the
temporary matrix. If data is a vector, it must have Nrows*Ncols elements. If data is
a matrix with multiple rows and columns, data must have Nrows*Ncols rows and the
function processes the columns independently.

To use this function as an inverse of the matintrlv function, use the same Nrows and
Ncols inputs in both functions. In that case, the two functions are inverses in the sense
that applying matintrlv followed by matdeintrlv leaves data unchanged.

Examples

The code below illustrates the inverse relationship between matintrlv and
matdeintrlv.

Nrows = 2; Ncols = 3;

data = [1 2 3 4 5 6; 2 4 6 8 10 12]';

a = matintrlv(data,Nrows,Ncols); % Interleave.

b = matdeintrlv(a,Nrows,Ncols) % Deinterleave.

The output below shows that b is the same as data.

b =

 1 2

 2 4

1 Functions — Alphabetical List

1-420

 3 6

 4 8

 5 10

 6 12

More About
• “Interleaving”

See Also
matintrlv

 matintrlv

1-421

matintrlv
Reorder symbols by filling matrix by rows and emptying it by columns

Syntax
intrlvd = matintrlv(data,Nrows,Ncols)

Description
intrlvd = matintrlv(data,Nrows,Ncols) rearranges the elements in data by
filling a temporary matrix with the elements row by row and then sending the matrix
contents, column by column, to the output. Nrows and Ncols are the dimensions of the
temporary matrix. If data is a vector, it must have Nrows*Ncols elements. If data is
a matrix with multiple rows and columns, data must have Nrows*Ncols rows and the
function processes the columns independently.

Examples
The command below rearranges each of two columns of a matrix.

b = matintrlv([1 2 3 4 5 6; 2 4 6 8 10 12]',2,3)

b =

 1 2

 4 8

 2 4

 5 10

 3 6

 6 12

To form the first column of the output, the function creates the temporary 2-by-3 matrix
[1 2 3; 4 5 6]. Then the function reads down each column of the temporary matrix to
get [1 4 2 5 3 6].

More About
• “Interleaving”

1 Functions — Alphabetical List

1-422

See Also
matdeintrlv

 minpol

1-423

minpol
Find minimal polynomial of Galois field element

Syntax

pl = minpol(x)

Description

pl = minpol(x) finds the minimal polynomial of each element in the Galois column
vector, x. The output pl is an array in GF(2). The kth row of pl lists the coefficients, in
order of descending powers, of the minimal polynomial of the kth element of x.

Note: The output is in GF(2) even if the input is in a different Galois field.

Examples

The code below uses m = 4 and finds that the minimal polynomial of gf(2,m) is just the
primitive polynomial used for the field GF(2^m). This is true for any value of m, not just
the value used in the example.

m = 4;

A = gf(2,m)

pl = minpol(A)

The output is below. Notice that the row vector [1 0 0 1 1] represents the polynomial
D^4 + D + 1.

A = GF(2^4) array. Primitive polynomial = D^4+D+1 (19 decimal)

Array elements =

 2

1 Functions — Alphabetical List

1-424

pl = GF(2) array.

Array elements =

 1 0 0 1 1

Another example is in “Minimal Polynomials”.

More About
• “Polynomials over Galois Fields”

See Also
cosets

 mldivide

1-425

mldivide
Matrix left division \ of Galois arrays

Syntax

x = A\B

Description

x = A\B divides the Galois array A into B to produce a particular solution of the linear
equation A*x = B. In the special case when A is a nonsingular square matrix, x is the
unique solution, inv(A)*B, to the equation.

Examples

The code below shows that A \ eye(size(A)) is the inverse of the nonsingular square
matrix A.

m = 4; A = gf([8 1 6; 3 5 7; 4 9 2],m);

Id = gf(eye(size(A)),m);

X = A \ Id;

ck1 = isequal(X*A, Id)

ck2 = isequal(A*X, Id)

The output is below.

ck1 =

 1

ck2 =

 1

Other examples are in “Solving Linear Equations”.

1 Functions — Alphabetical List

1-426

Limitations

The matrix A must be one of these types:

• A nonsingular square matrix
• A tall matrix such that A'*A is nonsingular
• A wide matrix such that A*A' is nonsingular

More About

Algorithms

If A is an M-by-N tall matrix where M > N, A \ B is the same as (A'*A) \ (A'*B).

If A is an M-by-N wide matrix where M < N, A \ B is the same as A' * ((A*A') \ B).
This solution is not unique.
• “Linear Algebra in Galois Fields”

 mlseeq

1-427

mlseeq
Equalize linearly modulated signal using Viterbi algorithm

Syntax
y = mlseeq(x,chcffs,const,tblen,opmode)

y = mlseeq(x,chcffs,const,tblen,opmode,nsamp)

y = mlseeq(...,'rst',nsamp,preamble,postamble)

y = mlseeq(...,'cont',nsamp,...init_metric,init_states,init_inputs)

[y,final_metric,final_states,final_inputs]

= ...mlseeq(...,'cont',...)

Description
y = mlseeq(x,chcffs,const,tblen,opmode) equalizes the baseband signal
vector x using the Viterbi algorithm. chcffs is a vector that represents the channel
coefficients. const is a complex vector that lists the points in the ideal signal
constellation, in the same sequence that the system's modulator uses. tblen is the
traceback depth. The equalizer traces back from the state with the best metric. opmode
denotes the operation mode of the equalizer; the choices are described in the following
table.

Value of opmode Typical Usage

'rst' Enables you to specify a preamble and postamble
that accompany your data. The function processes x
independently of data from any other invocations of this
function. This mode incurs no output delay.

'cont' Enables you to save the equalizer's internal state
information for use in a subsequent invocation of this
function. Repeated calls to this function are useful if your
data is partitioned into a series of smaller vectors that you
process within a loop, for example. This mode incurs an
output delay of tblen symbols.

y = mlseeq(x,chcffs,const,tblen,opmode,nsamp) specifies the number of
samples per symbol in x, that is, the oversampling factor. The vector length of x must

1 Functions — Alphabetical List

1-428

be a multiple of nsamp. When nsamp > 1, the chcffs input represents the oversampled
channel coefficients.

Preamble and Postamble in Reset Operation Mode

y = mlseeq(...,'rst',nsamp,preamble,postamble) specifies the preamble and
postamble that you expect to precede and follow, respectively, the data in the input
signal. The vectors preamble and postamble consist of integers between 0 and M-1,
where M is the order of the modulation, that is, the number of elements in const. To
omit a preamble or postamble, specify [].

When the function applies the Viterbi algorithm, it initializes state metrics in a way that
depends on whether you specify a preamble and/or postamble:

• If the preamble is nonempty, the function decodes the preamble and assigns a metric
of 0 to the decoded state. If the preamble does not decode to a unique state (that is,
if the length of the preamble is less than the channel memory), the decoder assigns a
metric of 0 to all states that can be represented by the preamble. The traceback path
ends at one of the states represented by the preamble.

• If the preamble is unspecified or empty, the decoder initializes the metrics of all states
to 0.

• If the postamble is nonempty, the traceback path begins at the smallest of all possible
decoded states that are represented by the postamble.

• If the postamble is unspecified or empty, the traceback path starts at the state with
the smallest metric.

Additional Syntaxes in Continuous Operation Mode

y = mlseeq(...,'cont',nsamp,...init_metric,init_states,init_inputs)

causes the equalizer to start with its state metrics, traceback states, and traceback
inputs specified by init_metric, init_states, and init_inputs, respectively. These
three inputs are typically the extra outputs from a previous call to this function, as
in the syntax below. Each real number in init_metric represents the starting state
metric of the corresponding state. init_states and init_inputs jointly specify the
initial traceback memory of the equalizer. The table below shows the valid dimensions
and values of the last three inputs, where numStates is ML-1, M is the order of the
modulation, and L is the number of symbols in the channel's impulse response (with no
oversampling). To use default values for all of the last three arguments, specify them as
[],[],[].

 mlseeq

1-429

Input Argument Meaning Matrix Size Range of Values

init_metric State metrics 1 row, numStates
columns

Real numbers

init_states Traceback states numStates rows,
tblen columns

Integers between 0 and
numStates-1

init_inputs Traceback inputs numStates rows,
tblen columns

Integers between 0 and
M-1

[y,final_metric,final_states,final_inputs]

= ...mlseeq(...,'cont',...) returns the normalized state metrics, traceback
states, and traceback inputs, respectively, at the end of the traceback decoding process.
final_metric is a vector with numStates elements that correspond to the final state
metrics. final_states and final_inputs are both matrices of size numStates-
by-tblen.

Examples

The example below illustrates how to use reset operation mode on an upsampled signal.

% Use 2-PAM.

M = 2; hMod = comm.PAMModulator(M); hDemod = comm.PAMDemodulator(M);

hChan = comm.AWGNChannel('NoiseMethod', 'Signal to noise ratio (SNR)', ...

 'SNR',5);

const = step(hMod,(0:M-1)'); % PAM constellation

tblen = 10; % Traceback depth for equalizer

nsamp = 2; % Number of samples per symbol

msgIdx = randi([0 M-1],1000,1); % Random bits

msg = upsample(step(hMod,msgIdx),nsamp); % Modulated message

chcoeffs = [.986; .845; .237; .12345+.31i]; % Channel coefficients

chanest = chcoeffs; % Channel estimate

hMLSEE = comm.MLSEEqualizer('TracebackDepth',tblen,...

 'Channel',chanest, 'Constellation',const, 'SamplesPerSymbol', nsamp);

filtmsg = filter(chcoeffs,1,msg); % Introduce channel distortion.

msgRx = step(hChan,filtmsg); % Add Gaussian noise.

msgEq = step(hMLSEE,msgRx); % Equalize.

msgEqIdx = step(hDemod,msgEq); % Demodulate.

%Calculate BER

hErrorCalc = comm.ErrorRate;

berVec = step(hErrorCalc, msgIdx, msgEqIdx);

1 Functions — Alphabetical List

1-430

ber = berVec(1)

nerrs = berVec(2)

The output is shown below. Your results might vary because this example uses random
numbers.

nerrs =

 1

ber =

 0.0010

The example in “Example: Continuous Operation Mode” illustrates how to use the final
state and initial state arguments when invoking mlseeq repeatedly.

The example in “Use a Preamble in MATLAB” illustrates how to use a preamble.

More About
• “MLSE Equalizers”

References

[1] Proakis, John G., Digital Communications, Fourth Edition, New York, McGraw-Hill,
2001.

[2] Steele, Raymond, Ed., Mobile Radio Communications, Chichester, England, John
Wiley & Sons, 1996.

See Also
equalize

 modnorm

1-431

modnorm
Scaling factor for normalizing modulation output

Syntax

scale = modnorm(const, 'avpow', avpow)

scale = modnorm(const, 'peakpow', peakpow)

Description

scale = modnorm(const, 'avpow', avpow) returns a scale factor for normalizing
a PAM or QAM modulator output such that its average power is avpow (watts). const
is a vector specifying the reference constellation used to generate the scale factor. The
function assumes that the signal to be normalized has a minimum distance of 2.

scale = modnorm(const, 'peakpow', peakpow) returns a scale factor for
normalizing a PAM or QAM modulator output such that its peak power is peakpow
(watts).

Examples

The code below illustrates how to use modnorm to transmit a quadrature amplitude
modulated signal having a peak power of one watt.

M = 16; % Alphabet size

% QAM Modulation

hMod = comm.RectangularQAMModulator(M);

hDemod = comm.RectangularQAMDemodulator(M);

% AWGNChannel System object

hChan = comm.AWGNChannel('NoiseMethod', 'Signal to noise ratio (SNR)', ...

 'SNR', 10);

const = step(hMod,(0:M-1)'); % Generate the constellation.

x = randi([0 M-1], 100,1);

scale = modnorm(const,'peakpow',1); % Compute scale factor.

y = scale * step(hMod,x); % Modulate and scale.

hChan.SignalPower = (y' * y)/ length(y); % Calculate Signal Power

1 Functions — Alphabetical List

1-432

ynoisy = step(hChan,y); % Transmit along noisy channel.

ynoisy_unscaled = ynoisy/scale; % Unscale at receiver end.

z = step(hDemod,ynoisy_unscaled); % Demodulate.

% See how scaling affects constellation.

h = scatterplot(const,1,0,'ro'); % Unscaled constellation

hold on; % Next plot will be in same figure window.

scatterplot(const*scale,1,0,'bx',h); % Scaled constellation

hold off;

In the plot below, the plotting symbol o marks points on the original QAM signal
constellation, and the plotting symbol x marks points on the signal constellation as
scaled by the output of the modnorm function. The channel in this example carries points
from the scaled constellation.

More About
• “Digital Modulation”

See Also
pammod | pamdemod | qammod | qamdemod

 mskdemod

1-433

mskdemod
Minimum shift keying demodulation

Syntax

z = mskdemod(y,nsamp)

z = mskdemod(y,nsamp,dataenc)

z = mskdemod(y,nsamp,dataenc,ini_phase)

z = mskdemod(y,nsamp,dataenc,ini_phase,ini_state)

[z,phaseout] = mskdemod(...)

[z,phaseout,stateout] = mskdemod(...)

Description

Warning This function is obsolete and may be removed in the future. We strongly
recommend that you use the comm.MSKDemodulator System object instead.

z = mskdemod(y,nsamp) demodulates the complex envelope y of a signal using
the differentially encoded minimum shift keying (MSK) method. nsamp denotes the
number of samples per symbol and must be a positive integer. The initial phase of the
demodulator is 0. If y is a matrix with multiple rows and columns, the function treats the
columns as independent channels and processes them independently.

z = mskdemod(y,nsamp,dataenc) specifies the method of encoding data for MSK.
dataenc can be either 'diff' for differentially encoded MSK or 'nondiff' for
nondifferentially encoded MSK.

z = mskdemod(y,nsamp,dataenc,ini_phase) specifies the initial phase of the
demodulator. ini_phase is a row vector whose length is the number of channels in y
and whose values are integer multiples of pi/2. To avoid overriding the default value of
dataenc, set dataenc to [].

z = mskdemod(y,nsamp,dataenc,ini_phase,ini_state) specifies the initial state
of the demodulator. ini_state contains the last half symbol of the previously received
signal. ini_state is an nsamp-by-C matrix, where C is the number of channels in y.

1 Functions — Alphabetical List

1-434

[z,phaseout] = mskdemod(...) returns the final phase of y, which is important for
demodulating a future signal. The output phaseout has the same dimensions as the
ini_phase input, and assumes the values 0, pi/2, pi, and 3*pi/2.

[z,phaseout,stateout] = mskdemod(...) returns the final nsamp values of y,
which is useful for demodulating the first symbol of a future signal. stateout has the
same dimensions as the ini_state input.

Examples

The example below illustrates how to modulate and demodulate within a loop. To provide
continuity from one iteration to the next, the syntaxes for mskmod and mskdemod use
initial phases and/or state as both input and output arguments.

% Define parameters.

numbits = 99; % Number of bits per iteration

numchans = 2; % Number of channels (columns) in signal

nsamp = 16; % Number of samples per symbol

% Initialize.

numerrs = 0; % Number of bit errors seen so far

demod_ini_phase = zeros(1,numchans); % Modulator phase

mod_ini_phase = zeros(1,numchans); % Demodulator phase

ini_state = complex(zeros(nsamp,numchans)); % Demod. state

% Main loop

for iRuns = 1 : 10

 x = randi([0 1],numbits,numchans); % Binary signal

 [y,phaseout] = mskmod(x,nsamp,[],mod_ini_phase);

 mod_ini_phase = phaseout; % For next mskmod command

 [z, phaseout, stateout] = ...

 mskdemod(y,nsamp,[],demod_ini_phase,ini_state);

 ini_state = stateout; % For next mskdemod command

 demod_ini_phase = phaseout; % For next mskdemod command

 numerrs = numerrs + biterr(x,z); % Cumulative bit errors

end

disp(['Total number of bit errors = ' num2str(numerrs)])

The output is as follows.

Total number of bit errors = 0

 mskdemod

1-435

More About
• “Digital Modulation”

References

[1] Pasupathy, Subbarayan, “Minimum Shift Keying: A Spectrally Efficient Modulation,”
IEEE Communications Magazine, July, 1979, pp. 14–22.

See Also
mskmod | fskmod | fskdemod

1 Functions — Alphabetical List

1-436

mskmod
Minimum shift keying modulation

Syntax

y = mskmod(x,nsamp)

y = mskmod(x,nsamp,dataenc)

y = mskmod(x,nsamp,dataenc,ini_phase)

[y,phaseout] = mskmod(...)

Description

Warning This function is obsolete and may be removed in the future. We strongly
recommend that you use the comm.MSKModulator System object instead.

y = mskmod(x,nsamp) outputs the complex envelope y of the modulation of the
message signal x using differentially encoded minimum shift keying (MSK) modulation.
The elements of x must be 0 or 1. nsamp denotes the number of samples per symbol in
y and must be a positive integer. The initial phase of the MSK modulator is 0. If x is a
matrix with multiple rows and columns, the function treats the columns as independent
channels and processes them independently.

y = mskmod(x,nsamp,dataenc) specifies the method of encoding data for MSK.
dataenc can be either 'diff' for differentially encoded MSK or 'nondiff' for
nondifferentially encoded MSK.

y = mskmod(x,nsamp,dataenc,ini_phase) specifies the initial phase of the MSK
modulator. ini_phase is a row vector whose length is the number of channels in y and
whose values are integer multiples of pi/2. To avoid overriding the default value of
dataenc, set dataenc to [].

[y,phaseout] = mskmod(...) returns the final phase of y. This is useful for
maintaining phase continuity when you are modulating a future bit stream with
differentially encoded MSK. phaseout has the same dimensions as the ini_phase
input, and assumes the values 0, pi/2, pi, and 3*pi/2.

 mskmod

1-437

Examples

Create an eye diagram from an MSK signal.

x = randi([0 1],99,1); % Random signal

y = mskmod(x,8,[],pi/2);

y = awgn(y,30,'measured');

eyediagram(y,16);

The example on the reference page for mskdemod also uses this function.

References

[1] Pasupathy, Subbarayan, “Minimum Shift Keying: A Spectrally Efficient Modulation,”
IEEE Communications Magazine, July, 1979, pp. 14–22.

See Also
mskdemod | fskmod | fskdemod

1 Functions — Alphabetical List

1-438

muxdeintrlv
Restore ordering of symbols using specified shift registers

Syntax

deintrlved = muxdeintrlv(data,delay)

[deintrlved,state] = muxdeintrlv(data,delay)

[deintrlved,state] = muxdeintrlv(data,delay,init_state)

Description

deintrlved = muxdeintrlv(data,delay) restores the ordering of elements in
data by using a set of internal shift registers, each with its own delay value. delay is a
vector whose entries indicate how many symbols each shift register can hold. The length
of delay is the number of shift registers. Before the function begins to process data,
it initializes all shift registers with zeros. If data is a matrix with multiple rows and
columns, the function processes the columns independently.

[deintrlved,state] = muxdeintrlv(data,delay) returns a structure that
holds the final state of the shift registers. state.value stores any unshifted symbols.
state.index is the index of the next register to be shifted.

[deintrlved,state] = muxdeintrlv(data,delay,init_state) initializes the
shift registers with the symbols contained in init_state.value and directs the first
input symbol to the shift register referenced by init_state.index. The structure
init_state is typically the state output from a previous call to this same function,
and is unrelated to the corresponding interleaver.

Using an Interleaver-Deinterleaver Pair

To use this function as an inverse of the muxintrlv function, use the same delay input
in both functions. In that case, the two functions are inverses in the sense that applying
muxintrlv followed by muxdeintrlv leaves data unchanged, after you take their
combined delay of length(delay)*max(delay) into account. To learn more about
delays of convolutional interleavers, see “Delays of Convolutional Interleavers”.

 muxdeintrlv

1-439

Examples

The example below illustrates how to use the state input and output when invoking
muxdeintrlv repeatedly. Notice that [deintrlved1; deintrlved2] is the same as
deintrlved.
delay = [0 4 8 12]; % Delays in shift registers

symbols = 100; % Number of symbols to process

% Interleave random data.

intrlved = muxintrlv(randi([0 1],symbols,1),delay);

% Deinterleave some of the data, recording state for later use.

[deintrlved1,state] = muxdeintrlv(intrlved(1:symbols/2),delay);

% Deinterleave the rest of the data, using state as an input argument.

deintrlved2 = muxdeintrlv(intrlved(symbols/2+1:symbols),delay,state);

% Deinterleave all data in one step.

deintrlved = muxdeintrlv(intrlved,delay);

isequal(deintrlved,[deintrlved1; deintrlved2])

The output is below.

ans =

 1

Another example using this function is in “Convolutional Interleaving and
Deinterleaving Using a Sequence of Consecutive Integers in MATLAB”.

More About
• “Interleaving”

References

[1] Heegard, Chris, and Stephen B. Wicker, Turbo Coding, Boston, Kluwer Academic
Publishers, 1999.

See Also
muxintrlv

1 Functions — Alphabetical List

1-440

muxintrlv

Permute symbols using shift registers with specified delays

Syntax

intrlved = muxintrlv(data,delay)

[intrlved,state] = muxintrlv(data,delay)

[intrlved,state] = muxintrlv(data,delay,init_state)

Description

intrlved = muxintrlv(data,delay) permutes the elements in data by using
internal shift registers, each with its own delay value. delay is a vector whose entries
indicate how many symbols each shift register can hold. The length of delay is the
number of shift registers. Before the function begins to process data, it initializes all shift
registers with zeros. If data is a matrix with multiple rows and columns, the function
processes the columns independently.

[intrlved,state] = muxintrlv(data,delay) returns a structure that holds
the final state of the shift registers. state.value stores any unshifted symbols.
state.index is the index of the next register to be shifted.

[intrlved,state] = muxintrlv(data,delay,init_state) initializes the shift
registers with the symbols contained in init_state.value and directs the first
input symbol to the shift register referenced by init_state.index. The structure
init_state is typically the state output from a previous call to this same function,
and is unrelated to the corresponding deinterleaver.

Examples

The examples in “Convolutional Interleaving and Deinterleaving Using a Sequence
of Consecutive Integers in MATLAB” and on the reference page for the convintrlv
function use muxintrlv.

 muxintrlv

1-441

The example on the reference page for muxdeintrlv illustrates how to use the state
output and init_state input with that function; the process is analogous for this
function.

More About
• “Interleaving”

References

[1] Heegard, Chris, and Stephen B. Wicker, Turbo Coding, Boston, Kluwer Academic
Publishers, 1999.

See Also
muxdeintrlv | convintrlv | helintrlv

1 Functions — Alphabetical List

1-442

noisebw

Equivalent noise bandwidth of filter

Syntax

bw = noisebw(num, den, numsamp, Fs)

Description

bw = noisebw(num, den, numsamp, Fs) returns the two-sided equivalent noise
bandwidth, in Hz, of a digital lowpass filter given in descending powers of z by numerator
vector num and denominator vector den. The bandwidth is calculated over numsamp
samples of the impulse response. Fs is the sampling rate of the signal that the filter
would process; this is used as a scaling factor to convert a normalized unitless quantity
into a bandwidth in Hz.

Examples

This example computes the equivalent noise bandwidth of a Butterworth filter over 100
samples of the impulse response.

Fs = 16; % Sampling rate

Fnyq = Fs/2; % Nyquist frequency

Fc = 0.5; % Carrier frequency

[num,den] = butter(2,Fc/Fnyq); % Butterworth filter

bw = noisebw(num,den,100,Fs)

The output is below.

bw =

 1.1049

 noisebw

1-443

More About

Algorithms

The two-sided equivalent noise bandwidth is

Fs h i

h i

i

N

i

N

()

()

2

1

1

2

=

=

Â

Â

where h is the impulse response of the filter described by num and den, and N is
numsamp.

References

[1] Jeruchim, Michel C., Philip Balaban, and K. Sam Shanmugan, Simulation of
Communication Systems, New York, Plenum Press, 1992.

1 Functions — Alphabetical List

1-444

normlms

Construct normalized least mean square (LMS) adaptive algorithm object

Syntax

alg = normlms(stepsize)

alg = normlms(stepsize,bias)

Description

The normlms function creates an adaptive algorithm object that you can use with the
lineareq function or dfe function to create an equalizer object. You can then use the
equalizer object with the equalize function to equalize a signal. To learn more about
the process for equalizing a signal, see “Adaptive Algorithms”.

alg = normlms(stepsize) constructs an adaptive algorithm object based on the
normalized least mean square (LMS) algorithm with a step size of stepsize and a bias
parameter of zero.

alg = normlms(stepsize,bias) sets the bias parameter of the normalized LMS
algorithm. bias must be between 0 and 1. The algorithm uses the bias parameter to
overcome difficulties when the algorithm's input signal is small.

Properties

The table below describes the properties of the normalized LMS adaptive algorithm
object. To learn how to view or change the values of an adaptive algorithm object, see
“Access Properties of an Adaptive Algorithm”.

Property Description

AlgType Fixed value, 'Normalized LMS'
StepSize LMS step size parameter, a nonnegative

real number

 normlms

1-445

Property Description

LeakageFactor LMS leakage factor, a real number between
0 and 1. A value of 1 corresponds to a
conventional weight update algorithm,
while a value of 0 corresponds to a
memoryless update algorithm.

Bias Normalized LMS bias parameter, a
nonnegative real number

Examples

For an example that uses this function, see “Delays from Equalization”.

More About

Algorithms

Referring to the schematics presented in “Equalizer Structure”, define w as the vector
of all weights wi and define u as the vector of all inputs ui. Based on the current set of
weights, w, this adaptive algorithm creates the new set of weights given by

()
()

*

LeakageFactor
StepSize

Bias

w
u e

u u
H

+

+

where the * operator denotes the complex conjugate and H denotes the Hermitian
transpose.
• “Equalization”

References

[1] Farhang-Boroujeny, B., Adaptive Filters: Theory and Applications, Chichester,
England, John Wiley & Sons, 1998.

1 Functions — Alphabetical List

1-446

See Also
lms | signlms | varlms | rls | cma | lineareq | dfe | equalize

 oct2dec

1-447

oct2dec
Convert octal to decimal numbers

Syntax

d = oct2dec(c)

Description

d = oct2dec(c) converts an octal matrix c to a decimal matrix d, element by element.
In both octal and decimal representations, the rightmost digit is the least significant.

Examples

The command below converts a 2-by-2 octal matrix.

d = oct2dec([12 144;0 25])

d =

 10 100

 0 21

For instance, the octal number 144 is equivalent to the decimal number 100 because 144
(octal) = 1*82 + 4*81 + 4*80 = 64 + 32 + 4 = 100.

See Also
bi2de

1 Functions — Alphabetical List

1-448

oqpskdemod
Offset quadrature phase shift keying demodulation

Syntax

z = oqpskdemod(y)

z = oqpskdemod(y,ini_phase)

Description

z = oqpskdemod(y) demodulates the complex envelope y of an OQPSK modulated
signal. The function implicitly downsamples by a factor of 2 because OQPSK does not
permit an odd number of samples per symbol. If y is a matrix with multiple rows, the
function processes the columns independently.

z = oqpskdemod(y,ini_phase) specifies the phase offset of the modulated signal in
radians.

More About
• “Digital Modulation”

See Also
oqpskmod | pskmod | pskdemod | qammod | qamdemod | modnorm

 oqpskmod

1-449

oqpskmod
Offset quadrature phase shift keying modulation

Syntax

y = oqpskmod(x)

y = oqpskmod(x,ini_phase)

Description

y = oqpskmod(x) outputs the complex envelope y of the modulation of the message
signal x using offset quadrature phase shift keying (OQPSK) modulation. The message
signal must consist of integers between 0 and 3. The function implicitly upsamples by a
factor of 2 because OQPSK does not permit an odd number of samples per symbol. If x is
a matrix with multiple rows, the function processes the columns independently.

y = oqpskmod(x,ini_phase) specifies the phase offset of the modulated signal in
radians.

More About
• “Digital Modulation”

See Also
oqpskdemod | pskmod | pskdemod | qammod | qamdemod | modnorm

1 Functions — Alphabetical List

1-450

pamdemod
Pulse amplitude demodulation

Syntax

z = pamdemod(y,M)

z = pamdemod(y,M,ini_phase)

z = pamdemod(y,M,ini_phase,symbol_order)

Description

z = pamdemod(y,M) demodulates the complex envelope y of a pulse amplitude
modulated signal. M is the alphabet size. The ideal modulated signal should have a
minimum Euclidean distance of 2.

z = pamdemod(y,M,ini_phase) specifies the initial phase of the modulated signal in
radians.

z = pamdemod(y,M,ini_phase,symbol_order) specifies how the function assigns
binary words to corresponding integers. If symbol_order is set to 'bin' (default), the
function uses a natural binary-coded ordering. If symbol_order is set to 'gray', it uses
a Gray-coded ordering.

Examples

Demodulate PAM Signal

Modulate and demodulate random integers using pulse amplitude modulation. Verify
that the output data matches the original data.

Set the modulation order and generate 100 M-ary data symbols.

M = 12;

dataIn = randi([0 M-1],100,1);

Perform modulation and demodulation operations.

 pamdemod

1-451

modData = pammod(dataIn,M);

dataOut = pamdemod(modData,M);

Compare the first five symbols.

[dataIn(1:5) dataOut(1:5)]

ans =

 9 9

 10 10

 1 1

 10 10

 7 7

Verify that there are no symbol errors in the entire sequence.

symErrors = symerr(dataIn,dataOut)

symErrors =

 0

More About
• “Digital Modulation”
• “Comparing Theoretical and Empirical Error Rates”

See Also
pammod | qamdemod | qammod | pskdemod | pskmod

1 Functions — Alphabetical List

1-452

pammod

Pulse amplitude modulation

Syntax

y = pammod(x,M)

y = pammod(x,M,ini_phase)

y = pammod(x,M,ini_phase,symbol_order)

Description

y = pammod(x,M) outputs the complex envelope y of the modulation of the message
signal x using pulse amplitude modulation. M is the alphabet size. The message signal
must consist of integers between 0 and M-1. The modulated signal has a minimum
Euclidean distance of 2. If x is a matrix with multiple rows, the function processes the
columns independently.

y = pammod(x,M,ini_phase) specifies the initial phase of the modulated signal in
radians.

y = pammod(x,M,ini_phase,symbol_order) specifies how the function assigns
binary words to corresponding integers. If symbol_order is set to 'bin' (default), the
function uses a natural binary-coded ordering. If symbol_order is set to 'gray', it uses
a Gray constellation ordering.

Examples

Modulate Data Symbols with PAM

Generate random data symbols and apply pulse amplitude modulation.

Set the modulation order.

M = 8;

 pammod

1-453

Generate random integers and apply PAM modulation having an initial phase of /4.

data = randi([0 M-1],100,1);

modData = pammod(data,M,pi/4);

Display the PAM constellation diagram.

scatterplot(modData)

1 Functions — Alphabetical List

1-454

More About
• “Digital Modulation”

 pammod

1-455

• “Comparing Theoretical and Empirical Error Rates”

See Also
pamdemod | qammod | qamdemod | pskmod | pskdemod

1 Functions — Alphabetical List

1-456

plot (channel)
Plot channel characteristics with channel visualization tool

Syntax

plot(h)

Description

plot(h), where h is a channel object, launches the channel visualization tool. This
GUI tool allows you to plot channel characteristics in various ways. See “Channel
Visualization” for details.

Examples

Examples using this plotting tool are found in “Examples of Using the Channel
Visualization Tool”.

See Also
filter | rayleighchan | ricianchan

 pmdemod

1-457

pmdemod
Phase demodulation

Syntax

z = pmdemod(y,Fc,Fs,phasedev)

z = pmdemod(y,Fc,Fs,phasedev,ini_phase)

Description

z = pmdemod(y,Fc,Fs,phasedev) demodulates the phase-modulated signal y at
the carrier frequency Fc (hertz). z and the carrier signal have sampling rate Fs (hertz),
where Fs must be at least 2*Fc. The phasedev argument is the phase deviation of the
modulated signal, in radians.

z = pmdemod(y,Fc,Fs,phasedev,ini_phase) specifies the initial phase of the
modulated signal, in radians.

Examples

The example in “Analog Modulation with Additive White Gaussian Noise (AWGN) Using
MATLAB” uses pmdemod.

More About
• “Digital Modulation”

See Also
pmmod | fmmod | fmdemod

1 Functions — Alphabetical List

1-458

pmmod
Phase modulation

Syntax

y = pmmod(x,Fc,Fs,phasedev)

y = pmmod(x,Fc,Fs,phasedev,ini_phase)

Description

y = pmmod(x,Fc,Fs,phasedev) modulates the message signal x using phase
modulation. The carrier signal has frequency Fc (hertz) and sampling rate Fs (hertz),
where Fs must be at least 2*Fc. The phasedev argument is the phase deviation of the
modulated signal in radians.

y = pmmod(x,Fc,Fs,phasedev,ini_phase) specifies the initial phase of the
modulated signal in radians.

Examples

The example in “Analog Modulation with Additive White Gaussian Noise (AWGN) Using
MATLAB” uses pmmod.

More About
• “Digital Modulation”

See Also
pmdemod | fmmod | fmdemod

 poly2trellis

1-459

poly2trellis
Convert convolutional code polynomials to trellis description

Syntax

trellis = poly2trellis(ConstraintLength,CodeGenerator)

trellis = poly2trellis(ConstraintLength,CodeGenerator,...

FeedbackConnection)

Description

The poly2trellis function accepts a polynomial description of a convolutional
encoder and returns the corresponding trellis structure description. The output of
poly2trellis is suitable as an input to the convenc and vitdec functions, and as a
mask parameter for the Convolutional Encoder, Viterbi Decoder, and APP Decoder blocks
in Communications System Toolbox software.

trellis = poly2trellis(ConstraintLength,CodeGenerator) performs the
conversion for a rate k/n feedforward encoder. ConstraintLength is a 1-by-k vector
that specifies the delay for the encoder's k input bit streams. CodeGenerator is a k-by-n
matrix of octal numbers that specifies the n output connections for each of the encoder's k
input bit streams.

trellis = poly2trellis(ConstraintLength,CodeGenerator,...

FeedbackConnection) is the same as the syntax above, except that it applies to a
feedback, not feedforward, encoder. FeedbackConnection is a 1-by-k vector of octal
numbers that specifies the feedback connections for the encoder's k input bit streams.

For both syntaxes, the output is a MATLAB structure whose fields are as in the table
below.

Fields of the Output Structure trellis for a Rate k/n Code

Field in trellis Structure Dimensions Meaning

numInputSymbols Scalar Number of input symbols to
the encoder: 2k

1 Functions — Alphabetical List

1-460

Field in trellis Structure Dimensions Meaning

numOutputSymbols Scalar Number of output symbols
from the encoder: 2n

numStates Scalar Number of states in the
encoder

nextStates numStates-by-2k matrix Next states for all
combinations of current state
and current input

outputs numStates-by-2k matrix Outputs (in octal) for all
combinations of current state
and current input

For more about this structure, see the reference page for the istrellis function.

Examples

An example of a rate 1/2 encoder is in “Polynomial Description of a Convolutional Code”.

As another example, consider the rate 2/3 feedforward convolutional encoder depicted in
the figure below. The reference page for the convenc function includes an example that
uses this encoder.

 poly2trellis

1-461

Z
-1

Z
-1

Z
-1

Z
-1

Z
-1

Z
-1

Z
-1

For this encoder, the ConstraintLength vector is [5,4] and the CodeGenerator matrix
is [23,35,0; 0,5,13]. The output below reveals part of the corresponding trellis structure
description of this encoder.

trellis = poly2trellis([5 4],[23 35 0; 0 5 13])

trellis =

 numInputSymbols: 4

 numOutputSymbols: 8

 numStates: 128

 nextStates: [128x4 double]

 outputs: [128x4 double]

The scalar field trellis.numInputSymbols has the value 4 because the combination
of two input bit streams can produce four different input symbols. Similarly,
trellis.numOutputSymbols is 8 because the three output bit streams can produce
eight different output symbols.

The scalar field trellis.numStates is 128 (that is, 27) because each of the encoder's
seven memory registers can have one of two binary values.

1 Functions — Alphabetical List

1-462

To get details about the matrix fields trellis.nextStates and trellis.outputs,
inquire specifically about them. As an example, the command below displays the first five
rows of the 128-by-4 matrix trellis.nextStates.

trellis.nextStates(1:5,:)

ans =

 0 64 8 72

 0 64 8 72

 1 65 9 73

 1 65 9 73

 2 66 10 74

This first row indicates that if the encoder starts in the zeroth state and receives input
bits of 00, 01, 10, or 11, respectively, the next state will be the 0th, 64th, 8th, or 72nd
state, respectively. The 64th state means that the bottom-left memory register in the
diagram contains the value 1, while the other six memory registers contain zeros.

More About
• “Convolutional Codes”

See Also
istrellis | convenc | vitdec

 primpoly

1-463

primpoly
Find primitive polynomials for Galois field

Syntax
pr = primpoly(m)

pr = primpoly(m,opt)

pr = primpoly(m...,'nodisplay')

Description
pr = primpoly(m) returns the primitive polynomial for GF(2^m), where m is an
integer between 2 and 16. The Command Window displays the polynomial using "D"
as an indeterminate quantity. The output argument pr is an integer whose binary
representation indicates the coefficients of the polynomial.

pr = primpoly(m,opt) returns one or more primitive polynomials for GF(2^m). The
output pol depends on the argument opt as shown in the table below. Each element
of the output argument pr is an integer whose binary representation indicates the
coefficients of the corresponding polynomial. If no primitive polynomial satisfies the
constraints, pr is empty.

opt Meaning of pr

'min' One primitive polynomial for GF(2^m)
having the smallest possible number of
nonzero terms

'max' One primitive polynomial for GF(2^m)
having the greatest possible number of
nonzero terms

'all' All primitive polynomials for GF(2^m)
Positive integer k All primitive polynomials for GF(2^m) that

have k nonzero terms

pr = primpoly(m...,'nodisplay') prevents the function from displaying the result
as polynomials in "D" in the Command Window. The output argument pr is unaffected by
the 'nodisplay' option.

1 Functions — Alphabetical List

1-464

Examples

The first example below illustrates the formats that primpoly uses in the Command
Window and in the output argument pr. The subsequent examples illustrate the display
options and the use of the opt argument.

pr = primpoly(4)

pr1 = primpoly(5,'max','nodisplay')

pr2 = primpoly(5,'min')

pr3 = primpoly(5,2)

pr4 = primpoly(5,3);

The output is below.

Primitive polynomial(s) =

D^4+D^1+1

pr =

 19

pr1 =

 61

Primitive polynomial(s) =

D^5+D^2+1

pr2 =

 37

No primitive polynomial satisfies the given constraints.

 primpoly

1-465

pr3 =

 []

Primitive polynomial(s) =

D^5+D^2+1

D^5+D^3+1

More About
• “Galois Field Computations”

See Also
isprimitive

1 Functions — Alphabetical List

1-466

pskdemod

Phase shift keying demodulation

Syntax

z = pskdemod(y,M)

z = pskdemod(y,M,ini_phase)

z = pskdemod(y,M,ini_phase,symbol_order)

Description

z = pskdemod(y,M) demodulates the complex envelope y of a PSK modulated
signal. M is the alphabet size and must be an integer power of 2. The initial phase of
the modulation is zero. If y is a matrix with multiple rows and columns, the function
processes the columns independently.

z = pskdemod(y,M,ini_phase) specifies the initial phase of the modulation in
radians.

z = pskdemod(y,M,ini_phase,symbol_order) specifies how the function assigns
binary words to corresponding integers. If symbol_order is set to 'bin' (default), the
function uses a natural binary-coded ordering. If symbol_order is set to 'gray', it uses
a Gray-coded ordering.

Examples

Compare Phase Noise Effects on PSK and PAM Signals

This example shows how to compare PSK and PAM to demonstrate that PSK is more
sensitive to phase noise. This is the expected result because the PSK constellation is
circular while the PAM constellation is linear.

len = 10000; % Number of symbols

M = 16; % Modulation order

 pskdemod

1-467

msg = randi([0 M-1],len,1); % Original signal

Modulate using both PSK and PAM to compare the two methods.

txpsk = pskmod(msg,M);

txpam = pammod(msg,M);

Perturb the phase of the modulated signals by applying a random phase rotation.

phasenoise = randn(len,1)*.015;

rxpsk = txpsk.*exp(2i*pi*phasenoise);

rxpam = txpam.*exp(2i*pi*phasenoise);

Create scatter plots of the received signals.

scatterplot(rxpsk);

title('Noisy PSK Scatter Plot')

scatterplot(rxpam);

title('Noisy PAM Scatter Plot')

1 Functions — Alphabetical List

1-468

 pskdemod

1-469

Demodulate the received signals.

recovpsk = pskdemod(rxpsk,M);

recovpam = pamdemod(rxpam,M);

1 Functions — Alphabetical List

1-470

Compute number of symbol errors in each case. You can see that the number of errors for
the PSK signal is much greater than the number of errors for the PAM signal.

numerrs_psk = symerr(msg,recovpsk);

numerrs_pam = symerr(msg,recovpam);

[numerrs_psk numerrs_pam]

ans =

 343 1

More About
• “Digital Modulation”

See Also
pskmod | qamdemod | qammod | dpskmod | dpskdemod | modnorm

 pskmod

1-471

pskmod
Phase shift keying modulation

Syntax
y = pskmod(x,M)

y = pskmod(x,M,ini_phase)

y = pskmod(x,M,ini_phase,symbol_order)

Description
y = pskmod(x,M) outputs the complex envelope y of the modulation of the message
signal x using phase shift keying modulation. M is the alphabet size and must be an
integer power of 2. The message signal must consist of integers between 0 and M-1. The
initial phase of the modulation is zero. If x is a matrix with multiple rows and columns,
the function processes the columns independently.

y = pskmod(x,M,ini_phase) specifies the initial phase of the modulation in radians.

y = pskmod(x,M,ini_phase,symbol_order) specifies how the function assigns
binary words to corresponding integers. If symbol_order is set to 'bin' (default), the
function uses a natural binary-coded ordering. If symbol_order is set to 'gray', it uses
a Gray constellation ordering.

Examples
The example on the pskdemod reference page uses this function.

More About
• “Digital Modulation”

See Also
dpskmod | dpskdemod | pskdemod | pammod | pamdemod | qammod | qamdemod |
modnorm

1 Functions — Alphabetical List

1-472

qamdemod
Quadrature amplitude demodulation

Syntax

z = qamdemod(y,M)

z = qamdemod(y,M,ini_phase)

z = qamdemod(y,M,ini_phase,symbol_order)

Description

z = qamdemod(y,M) demodulates the complex envelope y of a quadrature amplitude
modulated signal. M is the alphabet size and must be an integer power of 2. The
constellation is the same as in qammod. If y is a matrix with multiple rows, the function
processes the columns independently.

z = qamdemod(y,M,ini_phase) specifies the initial phase of the modulated signal in
radians.

z = qamdemod(y,M,ini_phase,symbol_order) specifies how the function assigns
binary words to corresponding integers. If symbol_order is set to 'bin' (default), the
function uses a natural binary-coded ordering. If symbol_order is set to 'gray', it uses
a Gray-coded ordering.

Examples

Demodulate an 8-QAM Signal

Demodulate an 8-QAM signal and plot the points corresponding to symbols 0 and 3.

Generate random 8-ary data symbols.

data = randi([0 7],1000,1);

Apply 8-QAM with an initial phase of /8.

 qamdemod

1-473

txSig = qammod(data,8,pi/8);

Pass the modulated signal through an AWGN channel.

rxSig = awgn(txSig,18,'measured');

Demodulate the received signal using an initial phase of /8.

rxData = qamdemod(rxSig,8,pi/8);

Generate the reference constellation points.

refpts = qammod((0:7)',8,pi/8);

Plot the received signal points corresponding to symbols 0 and 3 and overlay the
reference constellation. Only the received data corresponding to those symbols is
displayed.

plot(rxSig(rxData==0),'g.');

hold on

plot(rxSig(rxData==3),'c.');

plot(refpts,'r*')

text(real(refpts)+0.1,imag(refpts),num2str((0:7)'))

xlabel('In-Phase')

ylabel('Quadrature')

legend('Points corresponding to 0','Points corresponding to 3', ...

 'Reference Constellation','location','nw');

1 Functions — Alphabetical List

1-474

Estimate Bit Error Rate for 64-QAM in AWGN

Demodulate a noisy 64-QAM signal and estimate the bit error rate (BER) for a range of
Eb/No values. Compare the BER estimate to theoretical values.

Set the simulation parameters.

M = 64; % Modulation order

k = log2(M); % Bits per symbol

EbNoVec = (5:15)'; % Eb/No values (dB)

numSymPerFrame = 100; % Number of QAM symbols per frame

Initialize the results vector.

berEst = zeros(size(EbNoVec));

 qamdemod

1-475

The main processing loop executes the following steps:

• Generate binary data and convert to 64-ary symbols
• QAM modulate the data symbols
• Pass the modulated signal through an AWGN channel
• Demodulate the received signal
• Convert the demoduated symbols into binary data
• Calculate the number of bit errors

The while loop continues to process data until either 200 errors are encountered or 1e7
bits are transmitted.

for n = 1:length(EbNoVec)

 % Convert Eb/No to SNR

 snrdB = EbNoVec(n) + 10*log10(k);

 % Reset the error and bit counters

 numErrs = 0;

 numBits = 0;

 while numErrs < 200 && numBits < 1e7

 % Generate binary data and convert to symbols

 dataIn = randi([0 1],numSymPerFrame,k);

 dataSym = bi2de(dataIn);

 % QAM modulate using 'Gray' symbol mapping

 txSig = qammod(dataSym,M,0,'gray');

 % Pass through AWGN channel

 rxSig = awgn(txSig,snrdB,'measured');

 % Demodulate the noisy signal

 rxSym = qamdemod(rxSig,M,0,'gray');

 % Convert received symbols to bits

 dataOut = de2bi(rxSym,k);

 % Calculate the number of bit errors

 nErrors = biterr(dataIn,dataOut);

 % Increment the error and bit counters

 numErrs = numErrs + nErrors;

 numBits = numBits + numSymPerFrame*k;

 end

1 Functions — Alphabetical List

1-476

 % Estimate the BER

 berEst(n) = numErrs/numBits;

end

Determine the theoretical BER curve using berawgn.

berTheory = berawgn(EbNoVec,'qam',M);

Plot the estimated and theoretical BER data. The estimated BER data points are well
aligned with the theoretical curve.

semilogy(EbNoVec,berEst,'*')

hold on

semilogy(EbNoVec,berTheory)

grid

legend('Estimated BER','Theoretical BER')

xlabel('Eb/No (dB)')

ylabel('Bit Error Rate')

 qamdemod

1-477

More About
• “Digital Modulation”
• “Compute the Symbol Error Rate”

See Also
qammod | genqamdemod | genqammod | pamdemod | modnorm

1 Functions — Alphabetical List

1-478

qammod

Quadrature amplitude modulation

Syntax

y = qammod(x,M)

y = qammod(x,M,ini_phase)

y = qammod(x,M,ini_phase,symbol_order)

Description

y = qammod(x,M) outputs the complex envelope y of the modulation of the message
signal x using quadrature amplitude modulation. M is the alphabet size and must be an
integer power of 2. The message signal must consist of integers between 0 and M-1. The
signal constellation is rectangular or cross-shaped, and the nearest pair of points in the
constellation is separated by 2. If x is a matrix with multiple rows, the function processes
the columns independently.

y = qammod(x,M,ini_phase) specifies the initial phase of the modulated signal in
radians.

y = qammod(x,M,ini_phase,symbol_order) specifies how the function assigns
binary words to corresponding integers. If symbol_order is set to 'bin' (default), the
function uses a natural binary-coded ordering. If symbol_order is set to 'gray', it uses
a Gray constellation ordering.

Examples

Modulate Data using QAM

Modulate data using QAM and display the result in a scatter plot.

Set the modulation order to 16 and create a data vector containing each of the possible
symbols.

 qammod

1-479

M = 16;

x = (0:M-1)';

QAM modulate the data using the qammod function.

y = qammod(x,M);

Display the modulated signal constellation using the scatterplot function.

scatterplot(y)

1 Functions — Alphabetical List

1-480

Modulate the data with an initial phase of /4 and display its scatter plot. The
constellation is shifted by 45 degrees.

y = qammod(x,M,pi/4);

scatterplot(y)

 qammod

1-481

Set the modulation order to 256 and display the scatter plot of the modulated signal.

M = 256;

x = (0:M-1)';

y = qammod(x,M);

1 Functions — Alphabetical List

1-482

scatterplot(y)

 qammod

1-483

Normalize QAM Signal by Average and Peak Power

QAM modulate random data symbols and normalize the modulator output by the average
and peak power.

1 Functions — Alphabetical List

1-484

Set the modulation order and generate random data.

M = 64;

x = randi([0 M-1],1000,1);

Modulate the data.

y = qammod(x,M);

Determine the average and peak power for the modulated signal.

meanPower = mean(abs(y).^2);

peakPower = max(abs(y).^2);

Normalize the modulated signal, y, and plot the resulting constellations.

yAvg = y/sqrt(meanPower);

yPeak = y/sqrt(peakPower);

scatterplot(yAvg)

title('64-QAM, Average Power = 1 W')

scatterplot(yPeak)

title('64-QAM, Peak Power = 1 W')

 qammod

1-485

1 Functions — Alphabetical List

1-486

More About
• “Digital Modulation”

 qammod

1-487

• “Compute the Symbol Error Rate”

See Also
qamdemod | genqammod | genqamdemod | pammod | pamdemod | modnorm

1 Functions — Alphabetical List

1-488

qfunc
Q function

Syntax

y = qfunc(x)

Description

y = qfunc(x) is one minus the cumulative distribution function of the standardized
normal random variable, evaluated at each element of the real array x. For a scalar x,
the formula is

Q x t dt

x

() exp(/)= -
•

Ú
1

2
22

p

The Q function is related to the complementary error function, erfc, according to

Q x
x

() =
Ê

Ë
Á

ˆ

¯
˜

1

2 2
erfc

Examples

The example below computes the Q function on a matrix, element by element.

x = [0 1 2; 3 4 5];

format short e % Switch to floating point format for displays.

y = qfunc(x)

format % Return to default format for displays.

The output is below.

y =

 qfunc

1-489

 5.0000e-001 1.5866e-001 2.2750e-002

 1.3499e-003 3.1671e-005 2.8665e-007

See Also
qfuncinv | erf | erfc | erfcx | erfinv | erfcinv

1 Functions — Alphabetical List

1-490

qfuncinv
Inverse Q function

Syntax

y = qfuncinv(x)

Description

y = qfuncinv(x) returns the argument of the Q function at which the Q function's
value is x. The input x must be a real array with elements between 0 and 1, inclusive.

For a scalar x, the Q function is one minus the cumulative distribution function of the
standardized normal random variable, evaluated at x. The Q function is defined as

Q x t dt

x

() exp(/)= -
•

Ú
1

2
22

p

The Q function is related to the complementary error function, erfc, according to

Q x
x

() =
Ê

Ë
Á

ˆ

¯
˜

1

2 2
erfc

Examples

The example below illustrates the inverse relationship between qfunc and qfuncinv.

x1 = [0 1 2; 3 4 5];

y1 = qfuncinv(qfunc(x1)) % Invert qfunc to recover x1.

x2 = 0:.2:1;

y2 = qfunc(qfuncinv(x2)) % Invert qfuncinv to recover x2.

The output is below.

 qfuncinv

1-491

y1 =

 0 1 2

 3 4 5

y2 =

 0 0.2000 0.4000 0.6000 0.8000 1.0000

See Also
qfunc | erf | erfc | erfcx | erfinv | erfcinv

1 Functions — Alphabetical List

1-492

quantiz

Produce quantization index and quantized output value

Syntax

index = quantiz(sig,partition)

[index,quants] = quantiz(sig,partition,codebook)

[index,quants,distor] = quantiz(sig,partition,codebook)

Description

index = quantiz(sig,partition) returns the quantization levels in the real vector
signal sig using the parameter partition. partition is a real vector whose entries
are in strictly ascending order. If partition has length n, index is a vector whose kth
entry is

• 0 if sig(k) ≤ partition(1)
• m if partition(m) < sig(k) ≤ partition(m+1)
• n if partition(n) < sig(k)

[index,quants] = quantiz(sig,partition,codebook) is the same as the syntax
above, except that codebook prescribes a value for each partition in the quantization
and quants contains the quantization of sig based on the quantization levels and
prescribed values. codebook is a vector whose length exceeds the length of partition
by one. quants is a row vector whose length is the same as the length of sig. quants is
related to codebook and index by

quants(ii) = codebook(index(ii)+1);

where ii is an integer between 1 and length(sig).

[index,quants,distor] = quantiz(sig,partition,codebook) is the same
as the syntax above, except that distor estimates the mean square distortion of this
quantization data set.

 quantiz

1-493

Examples

The command below rounds several numbers between 1 and 100 up to the nearest
multiple of 10. quants contains the rounded numbers, and index tells which
quantization level each number is in.

[index,quants] = quantiz([3 34 84 40 23],10:10:90,10:10:100)

The output is below.

index =

 0 3 8 3 2

quants =

 10 40 90 40 30

More About
• “Quantize a Signal”

See Also
lloyds | dpcmenco | dpcmdeco

1 Functions — Alphabetical List

1-494

randdeintrlv

Restore ordering of symbols using random permutation

Syntax

deintrlvd = randdeintrlv(data,state)

Description

deintrlvd = randdeintrlv(data,state) restores the original ordering of the
elements in data by inverting a random permutation. The state parameter initializes
the random number generator that the function uses to determine the permutation.
state is either a scalar or a 35x1 vector, and is described in the rand function, which is
used in randintrlv. The function is predictable for a given state, but different states
produce different permutations. If data is a matrix with multiple rows and columns, the
function processes the columns independently.

To use this function as an inverse of the randintrlv function, use the same state
input in both functions. In that case, the two functions are inverses in the sense that
applying randintrlv followed by randdeintrlv leaves data unchanged.

This function uses, by default, the Mersenne Twister algorithm by Nishimura and
Matsumoto.

Note: Using the state parameter causes this function to switch random generators to
use the 'state' algorithm of the rand function.

See rand for details on the generator algorithm.

Examples

For an example using random interleaving and deinterleaving, see “Improve Error Rate
Using Block Interleaving in MATLAB”.

 randdeintrlv

1-495

More About
• “Interleaving”

See Also
rand | randintrlv

1 Functions — Alphabetical List

1-496

randerr
Generate bit error patterns

Syntax

out = randerr(m)

out = randerr(m,n)

out = randerr(m,n,errors)

out = randerr(m,n,prob,state)

out = randerr(m,n,prob,s)

Description

For all syntaxes, randerr treats each row of out independently.

out = randerr(m) generates an m-by-m binary matrix, each row of which has exactly
one nonzero entry in a random position. Each allowable configuration has an equal
probability.

out = randerr(m,n) generates an m-by-n binary matrix, each row of which has exactly
one nonzero entry in a random position. Each allowable configuration has an equal
probability.

out = randerr(m,n,errors) generates an m-by-n binary matrix, where errors
determines how many nonzero entries are in each row:

• If errors is a scalar, it is the number of nonzero entries in each row.
• If errors is a row vector, it lists the possible number of nonzero entries in each row.
• If errors is a matrix having two rows, the first row lists the possible number of

nonzero entries in each row and the second row lists the probabilities that correspond
to the possible error counts.

Once randerr determines the number of nonzero entries in a given row, each
configuration of that number of nonzero entries has equal probability.

out = randerr(m,n,prob,state) is the same as the syntax above, except that it first
resets the state of the uniform random number generator rand to the integer state.

 randerr

1-497

Note: This usage is deprecated and may be removed in a future release. Instead of
state, use s, as in the following example.

This function uses, by default, the Mersenne Twister algorithm by Nishimura and
Matsumoto.

Note: Using the state parameter causes this function to switch random generators to
use the 'state' algorithm of the rand function.

See rand for details on the generator algorithm.

out = randerr(m,n,prob,s) causes rand to use the random stream s. See
RandStream for more details.

Examples

The examples below generate an 8-by-7 binary matrix, each row of which is equally likely
to have either zero or two nonzero entries, and then alter the scenario by making it three
times as likely that a row has two nonzero entries. Notice in the latter example that the
second row of the error parameter sums to one.

out = randerr(8,7,[0 2])

out2 = randerr(8,7,[0 2; .25 .75])

Sample output is below.

out =

 0 0 0 0 0 0 0

 0 0 0 0 0 0 0

 0 0 1 0 0 0 1

 1 0 1 0 0 0 0

 0 0 0 0 0 0 0

 0 0 0 0 0 0 0

 0 0 0 0 1 1 0

 1 0 1 0 0 0 0

1 Functions — Alphabetical List

1-498

out2 =

 0 0 0 0 0 0 0

 1 0 0 0 0 0 1

 1 0 0 0 0 0 1

 0 0 0 1 0 1 0

 0 0 0 0 0 0 0

 0 1 0 0 0 0 1

 0 0 0 0 0 0 0

 1 0 0 0 1 0 0

More About
• “Sources and Sinks”

See Also
rand | randsrc | randi

 randintrlv

1-499

randintrlv
Reorder symbols using random permutation

Syntax

intrlvd = randintrlv(data,state)

Description

intrlvd = randintrlv(data,state) rearranges the elements in data using a
random permutation. The state parameter initializes the random number generator
that the function uses to determine the permutation. state is either a scalar or a 35x1
vector, and is described in the rand function, which is used in randintrlv. The function
is predictable and invertible for a given state, but different states produce different
permutations. If data is a matrix with multiple rows and columns, the function processes
the columns independently.

This function uses, by default, the Mersenne Twister algorithm by Nishimura and
Matsumoto.

Note: Using the state parameter causes this function to switch random generators to
use the 'state' algorithm of therand function.

See rand for details on the generator algorithm.

Examples

For an example using random interleaving and deinterleaving, see “Improve Error Rate
Using Block Interleaving in MATLAB”.

More About
• “Interleaving”

1 Functions — Alphabetical List

1-500

See Also
rand | randdeintrlv

 randseed

1-501

randseed
Generate prime numbers for use as random number seeds

Syntax
out = randseed

out = randseed(state)

out = randseed(state,m)

out = randseed(state,m,n)

out = randseed(state,m,n,rmin)

out = randseed(state,m,n,rmin,rmax)

Description
The randseed function produces random prime numbers that work well as seeds for
random source blocks or noisy channel blocks in Communications System Toolbox
software. It is recommended you use the randseed function when specifying the initial
seed parameters of the following blocks: Gaussian, Rayleigh, and Rician Noise Generator.

Note: The randseed function uses a local stream of numbers that is independent from
the global stream of numbers in the MATLAB software. Use of this function does not
affect the state of the global random number stream.

out = randseed generates a random prime number between 31 and 217-1, using the
MATLAB function rand.

out = randseed(state) generates a random prime number after setting the state
of rand to the positive integer state. This syntax produces the same output for a
particular value of state.

out = randseed(state,m) generates a column vector of m random primes.

out = randseed(state,m,n) generates an m-by-n matrix of random primes.

out = randseed(state,m,n,rmin) generates an m-by-n matrix of random primes
between rmin and 217-1.

1 Functions — Alphabetical List

1-502

out = randseed(state,m,n,rmin,rmax) generates an m-by-n matrix of random
primes between rmin and rmax.

Examples

To generate a two-element sample-based row vector of random bits using the Bernoulli
Random Binary Generator block, you can set Probability of a zero to [0.1 0.5] and
set Initial seed to randseed(391,1,2).

To generate three streams of random data from three different blocks in a single model,
you can define out = randseed(93,3) in the MATLAB workspace and then set the
three blocks' Initial seed parameters to out(1), out(2), and out(3), respectively.

See Also
rand | primes

 randsrc

1-503

randsrc
Generate random matrix using prescribed alphabet

Syntax
out = randsrc

out = randsrc(m)

out = randsrc(m,n)

out = randsrc(m,n,alphabet)

out = randsrc(m,n,[alphabet; prob])

out = randsrc(m,n,...,state);

out = randsrc(m,n,...,s);

Description
out = randsrc generates a random scalar that is either -1 or 1, with equal probability.

out = randsrc(m) generates an m-by-m matrix, each of whose entries independently
takes the value -1 with probability 1/2, and 1 with probability 1/2.

out = randsrc(m,n) generates an m-by-n matrix, each of whose entries independently
takes the value -1 with probability 1/2, and 1 with probability 1/2.

out = randsrc(m,n,alphabet) generates an m-by-n matrix, each of whose entries
is independently chosen from the entries in the row vector alphabet. Each entry in
alphabet occurs in out with equal probability. Duplicate values in alphabet are
ignored.

out = randsrc(m,n,[alphabet; prob]) generates an m-by-n matrix, each of whose
entries is independently chosen from the entries in the row vector alphabet. Duplicate
values in alphabet are ignored. The row vector prob lists corresponding probabilities,
so that the symbol alphabet(k) occurs with probability prob(k), where k is any
integer between one and the number of columns of alphabet. The elements of prob
must add up to 1.

out = randsrc(m,n,...,state); is the same as the two preceding syntaxes, except
that it first resets the state of the uniform random number generator rand to the integer
state.

1 Functions — Alphabetical List

1-504

Note: This usage is deprecated and may be removed in a future release. Instead of
state, use s, as in the following example.

This function uses, by default, the Mersenne Twister algorithm by Nishimura and
Matsumoto.

Note: Using the state parameter causes this function to switch random generators to
use the 'state' algorithm of the rand function.

See rand for details on the generator algorithm.

out = randsrc(m,n,...,s); causes rand to use the random stream s. See
RandStream for more details.

Examples

To generate a 10-by-10 matrix whose elements are uniformly distributed among
members of the set {-3,-1,1,3}, you can use either of these commands.

out = randsrc(10,10,[-3 -1 1 3]);

out = randsrc(10,10,[-3 -1 1 3; .25 .25 .25 .25]);

To skew the probability distribution so that -1 and 1 each occur with probability .3, while
-3 and 3 each occur with probability .2, use this command.

out = randsrc(10,10,[-3 -1 1 3; .2 .3 .3 .2]);

See Also
rand | randi | randerr

 rayleighchan

1-505

rayleighchan
Construct Rayleigh fading channel object

Syntax

chan = rayleighchan(ts,fd)

chan = rayleighchan(ts,fd,tau,pdb)

chan = rayleighchan

Description

chan = rayleighchan(ts,fd) constructs a frequency-flat (“single path”) Rayleigh
fading channel object. ts is the sample time of the input signal, in seconds. fd is the
maximum Doppler shift, in hertz. You can model the effect of the channel on a signal x
by using the syntax y = filter(chan,x).

chan = rayleighchan(ts,fd,tau,pdb) constructs a frequency-selective (“multiple
path”) fading channel object that models each discrete path as an independent Rayleigh
fading process. tau is a vector of path delays, each specified in seconds. pdb is a vector of
average path gains, each specified in dB.

With the above two syntaxes, a smaller fd (a few hertz to a fraction of a hertz) leads to
slower variations, and a larger fd (a couple hundred hertz) to faster variations.

chan = rayleighchan constructs a frequency-flat Rayleigh channel object with no
Doppler shift. This is a static channel. The sample time of the input signal is irrelevant
for frequency-flat static channels.

Properties

The tables below describe the properties of the channel object, chan, that you can set and
that MATLAB technical computing software sets automatically. To learn how to view or
change the values of a channel object, see “Display Object Properties” or “Change Object
Properties”.

Writeable Properties

1 Functions — Alphabetical List

1-506

Property Description

InputSamplePeriod Sample period of the signal on which the
channel acts, measured in seconds.

DopplerSpectrum Doppler spectrum object(s). The default is a
Jakes Doppler object.

MaxDopplerShift Maximum Doppler shift of the channel, in
hertz (applies to all paths of a channel).

PathDelays Vector listing the delays of the discrete
paths, in seconds.

AvgPathGaindB Vector listing the average gain of the
discrete paths, in decibels.

NormalizePathGains If 1, the Rayleigh fading process is
normalized such that the expected value of
the path gains' total power is 1.

StoreHistory If this value is 1, channel state information
needed by the channel visualization tool
is stored as the channel filter function
processes the signal. The default value is 0.

StorePathGains If set to 1, the complex path gain vector
is stored as the channel filter function
processes the signal. The default value is 0.

ResetBeforeFiltering If 1, each call to filter resets the state
of chan before filtering. If 0, the fading
process maintains continuity from one call
to the next.

Read-Only Properties

Property Description When MATLAB Sets or
Updates Value

ChannelType Fixed value, 'Rayleigh' When you create object
PathGains Complex vector listing the

current gains of the discrete
paths. When you create or
reset chan, PathGains is
a random vector influenced

When you create object,
reset object, or use it to
filter a signal

 rayleighchan

1-507

Property Description When MATLAB Sets or
Updates Value

by AvgPathGaindB and
NormalizePathGains.

ChannelFilterDelay Delay of the channel filter,
measured in samples.
The ChannelFilterDelay
property returns a delay value
that is valid only if the first
value of the PathGain is the
biggest path gain. In other
words, main channel energy is
in the first path.

When you create object
or change ratio of
InputSamplePeriod to
PathDelays

NumSamplesProcessed Number of samples the channel
processed since the last reset.
When you create or reset chan,
this property value is 0.

When you create object,
reset object, or use it to
filter a signal

Relationships Among Properties

The PathDelays and AvgPathGaindB properties of the channel object must always
have the same vector length, because this length equals the number of discrete paths of
the channel. The DopplerSpectrum property must either be a single Doppler object or a
vector of Doppler objects with the same length as PathDelays.

If you change the length of PathDelays, MATLAB truncates or zero-pads the value
of AvgPathGaindB if necessary to adjust its vector length (MATLAB may also change
the values of read-only properties such as PathGains and ChannelFilterDelay).
If DopplerSpectrum is a vector of Doppler objects, and you increase or decrease the
length of PathDelays, MATLAB will add Jakes Doppler objects or remove elements
from DopplerSpectrum, respectively, to make it the same length as PathDelays.

If StoreHistory is set to 1 (the default is 0), the object stores channel state information
as the channel filter function processes the signal. You can then visualize this state
information through a GUI using the plot (channel) method.

1 Functions — Alphabetical List

1-508

Note: Setting StoreHistory to 1 will result in a slower simulation. If you do not want
to visualize channel state information using plot (channel), but want to access the
complex path gains, then set StorePathGains to 1, while keeping StoreHistory as 0.

Visualization of Channel

The characteristics of a channel can be plotted using the channel visualization tool. You
can use the channel visualization tool in Normal mode and Accelerator mode. For more
information, see “Channel Visualization”.

Examples

Several examples using this function are in “Fading Channels”.

The example below illustrates that when you change the value of PathDelays, MATLAB
automatically changes the values of other properties to make their vector lengths
consistent with that of the new value of PathDelays.

c1 = rayleighchan(1e-5,130) % Create object.

c1.PathDelays = [0 1e-6] % Change the number of delays.

% MATLAB automatically changes the size of c1.AvgPathGaindB,

% c1.PathGains, and c1.ChannelFilterDelay.

The output below displays all the properties of the channel object before and after the
change in the value of the PathDelays property. In the second listing of properties, the
AvgPathGaindB, PathGains, and ChannelFilterDelay properties all have different
values compared to the first listing of properties.

c1 =

 ChannelType: 'Rayleigh'

 InputSamplePeriod: 1.0000e-005

 DopplerSpectrum: [1x1 doppler.jakes]

 MaxDopplerShift: 130

 PathDelays: 0

 AvgPathGaindB: 0

 NormalizePathGains: 1

 StoreHistory: 0

 PathGains: 0.2035 + 0.1014i

 ChannelFilterDelay: 0

 rayleighchan

1-509

 ResetBeforeFiltering: 1

 NumSamplesProcessed: 0

c1 =

 ChannelType: 'Rayleigh'

 InputSamplePeriod: 1.0000e-005

 DopplerSpectrum: [1x1 doppler.jakes]

 MaxDopplerShift: 130

 PathDelays: [0 1.0000e-006]

 AvgPathGaindB: [0 0]

 NormalizePathGains: 1

 StoreHistory: 0

 PathGains: [0.6108 - 0.4688i 0.1639 - 0.0027i]

 ChannelFilterDelay: 4

 ResetBeforeFiltering: 1

 NumSamplesProcessed: 0

More About

Algorithms

The methodology used to simulate fading channels is described in “Methodology for
Simulating Multipath Fading Channels:”. The properties of the channel object are related
to the quantities of the latter section as follows:

• The InputSamplePeriod property contains the value of T
s .

• The PathDelays vector property contains the values of tk{ } , where 1 £ £k K .

• The PathGains read-only property contains the values of ak{ } , where 1 £ £k K .

•
The AvgPathGaindB vector property contains the values of 10 10

2
log E ak

È
ÎÍ

˘
˚̇{ } , where

1 £ £k K , and E ◊[] denotes statistical expectation.

• The ChannelFilterDelay read-only property contains the value of N
1 .

• “Fading Channels”

1 Functions — Alphabetical List

1-510

References

[1] Jeruchim, Michel C., Philip Balaban, and K. Sam Shanmugan, Simulation of
Communication Systems, Second Edition, New York, Kluwer Academic/Plenum,
2000.

See Also
ricianchan | reset | filter | plot (channel)

 rectpulse

1-511

rectpulse
Rectangular pulse shaping

Syntax

y = rectpulse(x,nsamp)

Description

y = rectpulse(x,nsamp) applies rectangular pulse shaping to x to produce an
output signal having nsamp samples per symbol. Rectangular pulse shaping means that
each symbol from x is repeated nsamp times to form the output y. If x is a matrix with
multiple rows, the function treats each column as a channel and processes the columns
independently.

Note: To insert zeros between successive samples of x instead of repeating the samples of
x, use the upsample function instead.

Examples

An example in “Combine Pulse Shaping and Filtering with Modulation” uses this
function in conjunction with modulation.

The code below processes two independent channels, each containing three symbols of
data. In the pulse-shaped matrix y, each symbol contains four samples.

nsamp = 4; % Number of samples per symbol

nsymb = 3; % Number of symbols

s = RandStream('mt19937ar', 'Seed', 0);

ch1 = randi(s, [0 1], nsymb, 1); % Random binary channel

ch2 = [1:nsymb]';

x = [ch1 ch2] % Two-channel signal

y = rectpulse(x,nsamp)

The output is below. In y, each column corresponds to one channel and each row
corresponds to one sample. Also, the first four rows of y correspond to the first symbol,

1 Functions — Alphabetical List

1-512

the next four rows of y correspond to the second symbol, and the last four rows of y
correspond to the last symbol.

x =

 1 1

 1 2

 0 3

y =

 1 1

 1 1

 1 1

 1 1

 1 2

 1 2

 1 2

 1 2

 0 3

 0 3

 0 3

 0 3

See Also
intdump | upsample

 reset (channel)

1-513

reset (channel)
Reset channel object

Syntax

reset(chan)

reset(chan,randstate)

Description

reset(chan) resets the channel object chan, initializing the PathGains and
NumSamplesProcessed properties as well as internal filter states. This syntax is useful
when you want the effect of creating a new channel.

reset(chan,randstate) resets the channel object chan and initializes the state of the
random number generator that the channel uses. randstate is a two-element column
vector. This syntax is useful when you want to repeat previous numerical results that
started from a particular state.

Note: reset(chan,randstate) will not support randstate in a future release. See
the legacychannelsim function for more information.

Examples

The example below shows how to obtain repeatable results. The example chooses a state
for the random number generator immediately after defining the channel object and later
resets the random number generator to that state.

% Set up channel.

% Assume you want to maintain continuity

% from one filtering operation to the next, except

% when you explicitly reset the channel.

c = rayleighchan(1e-4,100);

c.ResetBeforeFiltering = 0;

1 Functions — Alphabetical List

1-514

% Filter all ones.

sig = ones(100,1);

y1 = [filter(c,sig(1:50)); filter(c,sig(51:end))];

% Reset the channel and filter all ones.

reset(c); % Generate an independent channel

y2 = [filter(c,sig(1:50)); filter(c,sig(51:end))];

% Plot the magnitude of the channel output

plot(abs([y1; y2]),'*')

grid on

This example generates the following figure.

More About
• “Fading Channels”

See Also
rayleighchan | filter | ricianchan

 reset (equalizer)

1-515

reset (equalizer)
Reset equalizer object

Syntax

reset(eqobj)

Description

reset(eqobj) resets the equalizer object eqobj, initializing the Weights,
WeightInputs, and NumSamplesProcessed properties and the adaptive algorithm
states. If eqobj is a CMA equalizer, reset does not change the Weights property.

More About
• “Equalization”

See Also
dfe | equalize | lineareq

1 Functions — Alphabetical List

1-516

ricianchan

Construct Rician fading channel object

Syntax

chan = ricianchan(ts,fd,k)

chan = ricianchan(ts,fd,k,tau,pdb)

chan = ricianchan(ts,fd,k,tau,pdb,fdLOS)

chan = ricianchan

Description

chan = ricianchan(ts,fd,k) constructs a frequency-flat (single path) Rician fading-
channel object. ts is the sample time of the input signal, in seconds. fd is the maximum
Doppler shift, in hertz. k is the Rician K-factor in linear scale. You can model the effect of
the channel chan on a signal x by using the syntax y = filter(chan,x). See filter
for more information.

chan = ricianchan(ts,fd,k,tau,pdb) constructs a frequency-selective (multiple
paths) fading-channel object. If k is a scalar, then the first discrete path is a Rician
fading process (it contains a line-of-sight component) with a K-factor of k, while the
remaining discrete paths are independent Rayleigh fading processes (no line-of-sight
component). If k is a vector of the same size as tau, then each discrete path is a Rician
fading process with a K-factor given by the corresponding element of the vector k. tau is
a vector of path delays, each specified in seconds. pdb is a vector of average path gains,
each specified in dB.

chan = ricianchan(ts,fd,k,tau,pdb,fdLOS) specifies fdlos as the Doppler
shift(s) of the line-of-sight component(s) of the discrete path(s), in hertz. fdlos must
be the same size as k. If k and fdlos are scalars, the line-of-sight component of the
first discrete path has a Doppler shift of fdlos, while the remaining discrete paths
are independent Rayleigh fading processes. If fdlos is a vector of the same size as
k, the line-of-sight component of each discrete path has a Doppler shift given by the
corresponding element of the vector fdlos. By default, fdlos is 0. The initial phase(s) of
the line-of-sight component(s) can be set through the property DirectPathInitPhase.

 ricianchan

1-517

chan = ricianchan sets the maximum Doppler shift to 0, the Rician K-factor to 1,
and the Doppler shift and initial phase of the line-of-sight component to 0. This syntax
models a static frequency-flat channel, and, in this trivial case, the sample time of the
signal is unimportant.

Properties

The following tables describe the properties of the channel object, chan, that you can
set and that MATLAB technical computing software sets automatically. To learn how to
view or change the values of a channel object, see “Display Object Properties” or “Change
Object Properties”.

Writeable Properties

Property Description

InputSamplePeriod Sample period of the signal on which the
channel acts, measured in seconds.

DopplerSpectrum Doppler spectrum object(s). The default is a
Jakes doppler object.

MaxDopplerShift Maximum Doppler shift of the channel, in
hertz (applies to all paths of a channel).

KFactor Rician K-factor (scalar or vector). The
default value is 1 (line-of-sight component
on the first path only).

PathDelays Vector listing the delays of the discrete
paths, in seconds.

AvgPathGaindB Vector listing the average gain of the
discrete paths, in decibels.

DirectPathDopplerShift Doppler shift(s) of the line-of-sight
component(s) in hertz. The default value is
0.

DirectPathInitPhase Initial phase(s) of line-of-sight
component(s) in radians. The default value
is 0.

NormalizePathGains If this value is 1, the Rayleigh fading
process is normalized such that the

1 Functions — Alphabetical List

1-518

Property Description

expected value of the path gains' total
power is 1.

StoreHistory If this value is 1, channel state information
needed by the channel visualization tool
is stored as the channel filter function
processes the signal. The default value is 0.

StorePathGains If this value is 1, the complex path gain
vector is stored as the channel filter
function processes the signal. The default
value is 0.

ResetBeforeFiltering If this value is 1, each call to filter resets
the state of chan before filtering. If it is
0, the fading process maintains continuity
from one call to the next.

Read-Only Properties

Property Description When MATLAB Sets or
Updates Value

ChannelType Fixed value, 'Rician'. When you create object.
PathGains Complex vector listing the

current gains of the discrete
paths. When you create or
reset chan, PathGains is
a random vector influenced
by AvgPathGaindB and
NormalizePathGains.

When you create object,
reset object, or use it to
filter a signal.

ChannelFilterDelay Delay of the channel filter,
measured in samples.
The ChannelFilterDelay
property returns a delay value
that is valid only if the first
value of the PathGain is the
biggest path gain. In other
words, main channel energy is
in the first path.

When you create object
or change ratio of
InputSamplePeriod to
PathDelays.

 ricianchan

1-519

Property Description When MATLAB Sets or
Updates Value

NumSamplesProcessed Number of samples the channel
processed since the last reset.
When you create or reset chan,
this property value is 0.

When you create object,
reset object, or use it to
filter a signal.

Relationships Among Properties

Changing the length of PathDelays also changes the length of AvgPathGaindB, the
length of KFactor if KFactor is a vector (no change if it is a scalar), and the length of
DopplerSpectrum if DopplerSpectrum is a vector (no change if it is a single object).

DirectPathDopplerShift and DirectPathInitPhase both follow changes in
KFactor.

The PathDelays and AvgPathGaindB properties of the channel object must always
have the same vector length, because this length equals the number of discrete paths of
the channel. The DopplerSpectrum property must either be a single Doppler object or a
vector of Doppler objects with the same length as PathDelays.

If you change the length of PathDelays, MATLAB truncates or zero-pads the value
of AvgPathGaindB if necessary to adjust its vector length (MATLAB may also change
the values of read-only properties such as PathGains and ChannelFilterDelay).
If DopplerSpectrum is a vector of Doppler objects, and you increase or decrease the
length of PathDelays, MATLAB will add Jakes Doppler objects or remove elements
from DopplerSpectrum, respectively, to make it the same length as PathDelays.

If StoreHistory is set to 1 (the default is 0), the object stores channel state information
as the channel filter function processes the signal. You can then visualize this state
information through a GUI using the plot (channel) method.

Note: Setting StoreHistory to 1 will result in a slower simulation. If you do not want
to visualize channel state information using plot (channel), but want to access the
complex path gains, then set StorePathGains to 1, while keeping StoreHistory as 0.

1 Functions — Alphabetical List

1-520

Reset Method

If MaxDopplerShift is set to 0 (the default), the channel object, chan, models a static
channel.

Use the syntax reset(chan) to generate a new channel realization.

Algorithm

The methodology used to simulate fading channels is described in “Methodology
for Simulating Multipath Fading Channels:”, where the properties specific to the
Rician channel object are related to the quantities of this section as follows (see the
rayleighchan reference page for properties common to both Rayleigh and Rician
channel objects):

• The Kfactor property contains the value of K
r
 (if it’s a scalar) or K

r k,{ } , 1£ £k K

(if it’s a vector).
• The DirectPathDopplerShift property contains the value of f d LOS,

 (if it’s a scalar)

or fd LOS k, ,
{ } , 1£ £k K (if it’s a vector).

• The DirectPathInitPhase property contains the value of q
LOS

 (if it’s a scalar) or

q
LOS k,{ } , 1£ £k K (if it’s a vector).

Channel Visualization

The characteristics of a channel can be plotted using the channel visualization tool. You
can use the channel visualization tool in Normal mode and Accelerator mode. For more
information, see “Channel Visualization”.

Examples

The example in “Quasi-Static Channel Modeling” uses this function.

 ricianchan

1-521

More About
• “Fading Channels”

References

[1] Jeruchim, M., Balaban, P., and Shanmugan, K., Simulation of Communication
Systems, Second Edition, New York, Kluwer Academic/Plenum, 2000.

See Also
rayleighchan | reset | filter | plot (channel)

1 Functions — Alphabetical List

1-522

rls
Construct recursive least squares (RLS) adaptive algorithm object

Syntax

alg = rls(forgetfactor)

alg = rls(forgetfactor,invcorr0)

Description

The rls function creates an adaptive algorithm object that you can use with the
lineareq function or dfe function to create an equalizer object. You can then use the
equalizer object with the equalize function to equalize a signal. To learn more about
the process for equalizing a signal, see “Adaptive Algorithms”.

alg = rls(forgetfactor) constructs an adaptive algorithm object based on the
recursive least squares (RLS) algorithm. The forgetting factor is forgetfactor, a real
number between 0 and 1. The inverse correlation matrix is initialized to a scalar value.

alg = rls(forgetfactor,invcorr0) sets the initialization parameter for the
inverse correlation matrix. This scalar value is used to initialize or reset the diagonal
elements of the inverse correlation matrix.

Properties

The table below describes the properties of the RLS adaptive algorithm object. To learn
how to view or change the values of an adaptive algorithm object, see “Access Properties
of an Adaptive Algorithm”.

Property Description

AlgType Fixed value, 'RLS'
ForgetFactor Forgetting factor
InvCorrInit Scalar value used to initialize or reset the

diagonal elements of the inverse correlation
matrix

 rls

1-523

Also, when you use this adaptive algorithm object to create an equalizer object (via
the lineareq function or dfe function), the equalizer object has an InvCorrMatrix
property that represents the inverse correlation matrix for the RLS algorithm. The initial
value of InvCorrMatrix is InvCorrInit*eye(N), where N is the total number of
equalizer weights.

Examples

For examples that use this function, see “Defining an Equalizer Object” and “Example:
Adaptive Equalization Within a Loop”.

More About

Algorithms

Referring to the schematics presented in “Equalizer Structure”, define w as the vector
of all weights wi and define u as the vector of all inputs ui. Based on the current set of
inputs, u, and the current inverse correlation matrix, P, this adaptive algorithm first
computes the Kalman gain vector, K

K
Pu

u Pu
H

=

+()ForgetFactor

where H denotes the Hermitian transpose.

Then the new inverse correlation matrix is given by
(ForgetFactor)-1(P – KuHP)

and the new set of weights is given by
w + K*e

where the * operator denotes the complex conjugate.
• “Equalization”

1 Functions — Alphabetical List

1-524

References

[1] Farhang-Boroujeny, B., Adaptive Filters: Theory and Applications, Chichester,
England, John Wiley & Sons, 1998.

[2] Haykin, S., Adaptive Filter Theory, Third Ed., Upper Saddle River, NJ, Prentice-Hall,
1996.

[3] Kurzweil, J., An Introduction to Digital Communications, New York, John Wiley &
Sons, 2000.

[4] Proakis, John G., Digital Communications, Fourth Ed., New York, McGraw-Hill,
2001.

See Also
lms | signlms | normlms | varlms | lineareq | dfe | equalize

 rsdec

1-525

rsdec
Reed-Solomon decoder

Syntax

decoded = rsdec(code,n,k)

decoded = rsdec(code,n,k,genpoly)

decoded = rsdec(...,paritypos)

[decoded,cnumerr] = rsdec(...)

[decoded,cnumerr,ccode] = rsdec(...)

Description

decoded = rsdec(code,n,k) attempts to decode the received signal in code using
an [n,k] Reed-Solomon decoding process with the narrow-sense generator polynomial.
code is a “Galois array” of symbols having m bits each. Each n-element row of code
represents a corrupted systematic codeword, where the parity symbols are at the end and
the leftmost symbol is the most significant symbol. n is at most 2m-1. If n is not exactly
2m-1, rsdec assumes that code is a corrupted version of a shortened code.

In the Galois array decoded, each row represents the attempt at decoding the
corresponding row in code. A decoding failure occurs if rsdec detects more than
(n-k)/2 errors in a row of code. In this case, rsdec forms the corresponding row of
decoded by merely removing n-k symbols from the end of the row of code.

decoded = rsdec(code,n,k,genpoly) is the same as the syntax above, except that a
nonempty value of genpoly specifies the generator polynomial for the code. In this case,
genpoly is a Galois row vector that lists the coefficients, in order of descending powers,
of the generator polynomial. The generator polynomial must have degree n-k. To use the
default narrow-sense generator polynomial, set genpoly to [].

decoded = rsdec(...,paritypos) specifies whether the parity symbols in code
were appended or prepended to the message in the coding operation. The string
paritypos can be either 'end' or 'beginning'. The default is 'end'. If paritypos
is 'beginning', a decoding failure causes rsdec to remove n-k symbols from the
beginning rather than the end of the row.

1 Functions — Alphabetical List

1-526

[decoded,cnumerr] = rsdec(...) returns a column vector cnumerr, each element
of which is the number of corrected errors in the corresponding row of code. A value of
-1 in cnumerr indicates a decoding failure in that row in code.

[decoded,cnumerr,ccode] = rsdec(...) returns ccode, the corrected version of
code. The Galois array ccode has the same format as code. If a decoding failure occurs
in a certain row of code, the corresponding row in ccode contains that row unchanged.

Examples

The example below encodes three message words using a (7,3) Reed-Solomon encoder. It
then corrupts the code by introducing one error in the first codeword, two errors in the
second codeword, and three errors in the third codeword. Then rsdec tries to decode the
corrupted code.

m = 3; % Number of bits per symbol

n = 2^m-1; k = 3; % Word lengths for code

msg = gf([2 7 3; 4 0 6; 5 1 1],m); % Three rows of m-bit symbols

code = rsenc(msg,n,k);

errors = gf([2 0 0 0 0 0 0; 3 4 0 0 0 0 0; 5 6 7 0 0 0 0],m);

noisycode = code + errors;

[dec,cnumerr] = rsdec(noisycode,n,k)

The output is below.

dec = GF(2^3) array. Primitive polynomial = D^3+D+1 (11 decimal)

Array elements =

 2 7 3

 4 0 6

 0 7 6

cnumerr =

 1

 2

 -1

The output shows that rsdec successfully corrects the errors in the first two codewords
and recovers the first two original message words. However, a (7,3) Reed-Solomon code

 rsdec

1-527

can correct at most two errors in each word, so rsdec cannot recover the third message
word. The elements of the vector cnumerr indicate the number of corrected errors in the
first two words and also indicate the decoding failure in the third word.

For additional examples, see “Create and Decode Reed-Solomon Codes”.

Limitations

n and k must differ by an even integer. n must be between 3 and 65535.

More About

Algorithms

rsdec uses the Berlekamp-Massey decoding algorithm. For information about this
algorithm, see the works listed in “References” on page 1-527 below.
• “Block Codes”

References

[1] Wicker, S. B., Error Control Systems for Digital Communication and Storage, Upper
Saddle River, NJ, Prentice Hall, 1995.

[2] Berlekamp, E. R., Algebraic Coding Theory, New York, McGraw-Hill, 1968.

See Also
rsenc | gf | rsgenpoly

1 Functions — Alphabetical List

1-528

rsenc
Reed-Solomon encoder

Syntax

code = rsenc(msg,n,k)

code = rsenc(msg,n,k,genpoly)

code = rsenc(...,paritypos)

Description

code = rsenc(msg,n,k) encodes the message in msg using an [n,k] Reed-Solomon
code with the narrow-sense generator polynomial. msg is a “Galois array” of symbols
having m bits each. Each k-element row of msg represents a message word, where the
leftmost symbol is the most significant symbol. n is at most 2m-1. If n is not exactly 2m-1,
rsenc uses a shortened Reed-Solomon code. Parity symbols are at the end of each word
in the output Galois array code.

code = rsenc(msg,n,k,genpoly) is the same as the syntax above, except that a
nonempty value of genpoly specifies the generator polynomial for the code. In this case,
genpoly is a Galois row vector that lists the coefficients, in order of descending powers,
of the generator polynomial. The generator polynomial must have degree n-k. To use the
default narrow-sense generator polynomial, set genpoly to [].

code = rsenc(...,paritypos) specifies whether rsenc appends or prepends the
parity symbols to the input message to form code. The string paritypos can be either
'end' or 'beginning'. The default is 'end'.

Examples

The example below encodes two message words using a (7,3) Reed-Solomon encoder.

m = 3; % Number of bits per symbol

n = 2^m-1; k = 3; % Word lengths for code

msg = gf([2 7 3; 4 0 6],m); % Two rows of m-bit symbols

 rsenc

1-529

code = rsenc(msg,n,k)

The output is below.

code = GF(2^3) array. Primitive polynomial = D^3+D+1 (11 decimal)

Array elements =

 2 7 3 3 6 7 6

 4 0 6 4 2 2 0

For additional examples, see “Represent Words for Reed-Solomon Codes” and “Create
and Decode Reed-Solomon Codes”.

Limitations

n and k must differ by an integer. n between 7 and 65535.

More About
• “Block Codes”

See Also
rsdec | gf | rsgenpoly

1 Functions — Alphabetical List

1-530

rsgenpoly
Generator polynomial of Reed-Solomon code

Syntax

genpoly = rsgenpoly(n,k)

genpoly = rsgenpoly(n,k,prim_poly)

genpoly = rsgenpoly(n,k,prim_poly,b)

[genpoly,t] = rsgenpoly(...)

Description

genpoly = rsgenpoly(n,k) returns the narrow-sense generator polynomial of a
Reed-Solomon code with codeword length n and message length k. The codeword length n
must have the form 2m-1 for some integer m between 3 and 16.

, and n-k must be an even integer. The output genpoly is a Galois row vector that
represents the coefficients of the generator polynomial in order of descending powers.
The narrow-sense generator polynomial is (X - Alpha1)(X - Alpha2)...(X - Alpha2t) where:

• Alpha represents a root of the default primitive polynomial for the field GF(n+1),
• and t represents the code's error-correction capability, (n-k)/2.

genpoly = rsgenpoly(n,k,prim_poly) is the same as the syntax above, except
that prim_poly specifies the primitive polynomial for GF(n+1) that has Alpha as a root.
prim_poly is an integer whose binary representation indicates the coefficients of the
primitive polynomial. To use the default primitive polynomial GF(n+1), set prim_poly
to [].

genpoly = rsgenpoly(n,k,prim_poly,b) returns the generator polynomial
(X - Alphab)(X - Alphab+1)...(X - Alphab+2t-1), where:

• b is an integer,
• Alpha is a root of prim_poly,
• and t is the code's error-correction capability, (n-k)/2.

 rsgenpoly

1-531

[genpoly,t] = rsgenpoly(...) returns t, the error-correction capability of the code.

Examples

The examples below create Galois row vectors that represent generator polynomials
for a [7,3] Reed-Solomon code. The vectors g and g2 both represent the narrow-
sense generator polynomial, but with respect to different primitive elements A. More
specifically, g2 is defined such that A is a root of the primitive polynomial D3 + D2 + 1 for
GF(8), not of the default primitive polynomial D3 + D + 1. The vector g3 represents the
generator polynomial (X - A3)(X - A4)(X - A5)(X - A6), where A is a root of D3 + D2 + 1 in
GF(8).

g = rsgenpoly(7,3)

g2 = rsgenpoly(7,3,13) % Use nondefault primitive polynomial.

g3 = rsgenpoly(7,3,13,3) % Use b = 3.

The output is below.

g = GF(2^3) array. Primitive polynomial = D^3+D+1 (11 decimal)

Array elements =

 1 3 1 2 3

g2 = GF(2^3) array. Primitive polynomial = D^3+D^2+1 (13 decimal)

Array elements =

 1 4 5 1 5

g3 = GF(2^3) array. Primitive polynomial = D^3+D^2+1 (13 decimal)

Array elements =

 1 7 1 6 7

As another example, the command below shows that the default narrow-sense generator
polynomial for a [15,11] Reed-Solomon code is X4 + (A3 + A2 + 1)X3 + (A3 + A2)X2 + A3X +
(A2 + A + 1), where A is a root of the default primitive polynomial for GF(16).

1 Functions — Alphabetical List

1-532

gp = rsgenpoly(15,11)

gp = GF(2^4) array. Primitive polynomial = D^4+D+1 (19 decimal)

Array elements =

 1 13 12 8 7

For additional examples, see “Parameters for Reed-Solomon Codes”.

Limitations

n and k must differ by an even integer. The maximum allowable value of n is 65535.

More About
• “Block Codes”

See Also
gf | rsenc | rsdec

 rsgenpolycoeffs

1-533

rsgenpolycoeffs
Generator polynomial coefficients of Reed-Solomon code

Syntax

x = rsgenpolycoeffs(...)

[x,t] = rsgenpolycoeffs(...)

Description

x = rsgenpolycoeffs(...) returns the coefficients for the generator polynomial of
the Reed-Solomon code. The output is identical to genpoly = rsgenpoly(...); x = genpoly.x.

[x,t] = rsgenpolycoeffs(...) returns t, the error-correction capability of the code.

Examples

Generate Polynomial Coefficients for a Reed-Solomon Code

This example shows how to generate polynomial coefficients for a (15,11) Reed-Solomon
code.

Generate the coefficients using rsgenpolycoeffs.

genpoly = rsgenpolycoeffs(15,11)

genpoly =

 1 13 12 8 7

See Also
rsgenpoly | gf | rsenc | rsdec

1 Functions — Alphabetical List

1-534

scatterplot
Generate scatter plot

Syntax

scatterplot(x)

scatterplot(x,n)

scatterplot(x,n,offset)

scatterplot(x,n,offset,plotstring)

scatterplot(x,n,offset,plotstring,h)

h = scatterplot(...)

Description

scatterplot(x) produces a scatter plot for the signal x. The interpretation of x
depends on its shape and complexity:

• If x is a real two-column matrix, scatterplot interprets the first column as in-phase
components and the second column as quadrature components.

• If x is a complex vector, scatterplot interprets the real part as in-phase
components and the imaginary part as quadrature components.

• If x is a real vector, scatterplot interprets it as a real signal.

scatterplot(x,n) is the same as the first syntax, except that the function plots every
nth value of the signal, starting from the first value. That is, the function decimates x by
a factor of n before plotting.

scatterplot(x,n,offset) is the same as the first syntax, except that the function
plots every nth value of the signal, starting from the (offset+1)st value in x.

scatterplot(x,n,offset,plotstring) is the same as the syntax above, except
that plotstring determines the plotting symbol, line type, and color for the plot.
plotstring is a string whose format and meaning are the same as in the plot function.

scatterplot(x,n,offset,plotstring,h) is the same as the syntax above, except
that the scatter plot is in the figure whose handle is h, rather than a new figure. h must

 scatterplot

1-535

be a handle to a figure that scatterplot previously generated. To plot multiple signals
in the same figure, use hold on.

h = scatterplot(...) is the same as the earlier syntaxes, except that h is the handle
to the figure that contains the scatter plot.

Examples

See the example on the reference page for qamdemod. The example illustrates how to plot
multiple signals in a single scatter plot.

For an online demonstration, type showdemo scattereyedemo.

More About
• scattereyedemo
• “Scatter Plots and Constellation Diagrams”

See Also
eyediagram | plot | scatter

1 Functions — Alphabetical List

1-536

semianalytic

Calculate bit error rate (BER) using semianalytic technique

Syntax

ber = semianalytic(txsig,rxsig,modtype,M,Nsamp)

ber = semianalytic(txsig,rxsig,modtype,M,Nsamp,num,den)

ber = semianalytic(txsig,rxsig,modtype,M,Nsamp,EbNo)

ber = semianalytic(txsig,rxsig,modtype,M,Nsamp,num,den,EbNo)

[ber,avgampl,avgpower] = semianalytic(...)

Alternatives

As an alternative to the semianalytic function, invoke the BERTool GUI (bertool)
and use the Semianalytic tab.

Description

ber = semianalytic(txsig,rxsig,modtype,M,Nsamp) returns the bit error rate
(BER) of a system that transmits the complex baseband vector signal txsig and receives
the noiseless complex baseband vector signal rxsig. Each of these signals has Nsamp
samples per symbol. Nsamp is also the sampling rate of txsig and rxsig, in Hz. The
function assumes that rxsig is the input to the receiver filter, and the function filters
rxsig with an ideal integrator. modtype is the modulation type of the signal and M is
the alphabet size. The table below lists the valid values for modtype and M.

Modulation Scheme Value of modtype Valid Values of M

Differential phase shift
keying (DPSK)

'dpsk' 2, 4

Minimum shift keying
(MSK) with differential
encoding

'msk/diff' 2

 semianalytic

1-537

Modulation Scheme Value of modtype Valid Values of M

Minimum shift keying
(MSK) with nondifferential
encoding

'msk/nondiff' 2

Phase shift keying (PSK)
with differential encoding,
where the phase offset of
the constellation is 0

'psk/diff' 2, 4

Phase shift keying (PSK)
with nondifferential
encoding, where the phase
offset of the constellation is
0

'psk/nondiff' 2, 4, 8, 16, 32, or 64

Offset quaternary phase
shift keying (OQPSK)

'oqpsk' 4

Quadrature amplitude
modulation (QAM)

'qam' 4, 8, 16, 32, 64, 128, 256, 512,
1024

'msk/diff' is equivalent to conventional MSK (setting the 'Precoding' property of
the MSK object to 'off'), while 'msk/nondiff' is equivalent to precoded MSK (setting
the 'Precoding' property of the MSK object to 'on').

Note: The output ber is an upper bound on the BER in these cases:

• DQPSK (modtype = 'dpsk', M = 4)

• Cross QAM (modtype = 'qam', M not a perfect square). In this case, note that the
upper bound used here is slightly tighter than the upper bound used for cross QAM in
the berawgn function.

When the function computes the BER, it assumes that symbols are Gray-coded. The
function calculates the BER for values of Eb/N0 in the range of [0:20] dB and returns a
vector of length 21 whose elements correspond to the different Eb/N0 levels.

Note: You must use a sufficiently long vector txsig, or else the calculated BER
will be inaccurate. If the system's impulse response is L symbols long, the length of

1 Functions — Alphabetical List

1-538

txsig should be at least ML. A common approach is to start with an augmented binary
pseudonoise (PN) sequence of total length (log2M)ML. An augmented PN sequence is
a PN sequence with an extra zero appended, which makes the distribution of ones and
zeros equal.

ber = semianalytic(txsig,rxsig,modtype,M,Nsamp,num,den) is the same as
the previous syntax, except that the function filters rxsig with a receiver filter instead
of an ideal integrator. The transfer function of the receiver filter is given in descending
powers of z by the vectors num and den.

ber = semianalytic(txsig,rxsig,modtype,M,Nsamp,EbNo) is the same as the
first syntax, except that EbNo represents Eb/N0, the ratio of bit energy to noise power
spectral density, in dB. If EbNo is a vector, then the output ber is a vector of the same
size, whose elements correspond to the different Eb/N0 levels.

ber = semianalytic(txsig,rxsig,modtype,M,Nsamp,num,den,EbNo) combines
the functionality of the previous two syntaxes.

[ber,avgampl,avgpower] = semianalytic(...) returns the mean complex signal
amplitude and the mean power of rxsig after filtering it by the receiver filter and
sampling it at the symbol rate.

Examples
A typical procedure for implementing the semianalytic technique is in “Procedure for
the Semianalytic Technique”. Sample code is in “Example: Using the Semianalytic
Technique”.

Limitations
The function makes several important assumptions about the communication system.
See “When to Use the Semianalytic Technique” to find out whether your communication
system is suitable for the semianalytic technique and the semianalytic function.

More About
• “Performance Results via the Semianalytic Technique”

 semianalytic

1-539

References

[1] Jeruchim, M. C., P. Balaban, and K. S. Shanmugan, Simulation of Communication
Systems, New York, Plenum Press, 1992.

[2] Pasupathy, S., “Minimum Shift Keying: A Spectrally Efficient Modulation,” IEEE
Communications Magazine, July, 1979, pp. 14–22.

See Also
noisebw | qfunc

1 Functions — Alphabetical List

1-540

shift2mask

Convert shift to mask vector for shift register configuration

Syntax

mask = shift2mask(prpoly,shift)

Description

mask = shift2mask(prpoly,shift) returns the mask that is equivalent to the shift
(or offset) specified by shift, for a linear feedback shift register whose connections are
specified by the primitive polynomial prpoly. The prpoly input can have one of these
formats:

• A binary vector that lists the coefficients of the primitive polynomial in order of
descending powers

• An integer scalar whose binary representation gives the coefficients of the primitive
polynomial, where the least significant bit is the constant term

The shift input is an integer scalar.

Note: To save time, shift2mask does not check that prpoly is primitive. If it is not
primitive, the output is not meaningful. To find primitive polynomials, use primpoly or
see [2].

Definition of Equivalent Mask

The equivalent mask for the shift s is the remainder after dividing the polynomial xs

by the primitive polynomial. The vector mask represents the remainder polynomial by
listing the coefficients in order of descending powers.

 shift2mask

1-541

Shifts, Masks, and Pseudonoise Sequence Generators

Linear feedback shift registers are part of an implementation of a pseudonoise sequence
generator. Below is a schematic diagram of a pseudonoise sequence generator. All adders
perform addition modulo 2.

m mm

+

g 1g r-1
g r-2

+ +

g r
g 0

Output

0r-1 r-2

The primitive polynomial determines the state of each switch labeled gk, and the mask
determines the state of each switch labeled mk. The lower half of the diagram shows the
implementation of the shift, which delays the starting point of the output sequence. If the
shift is zero, the m0 switch is closed while all other mk switches are open. The table below
indicates how the shift affects the shift register's output.

T = 0 T = 1 T = 2 ... T = s T = s+1

Shift = 0 x0 x1 x2 ... xs xs+1

Shift = s > 0 xs xs+1 xs+2 ... x2s x2s+1

If you have Communications System Toolbox software and want to generate a
pseudonoise sequence in a Simulink® model, see the PN Sequence Generator block
reference page.

1 Functions — Alphabetical List

1-542

Examples

The command below converts a shift of 5 into the equivalent mask x3 +x + 1, for the
linear feedback shift register whose connections are specified by the primitive polynomial
x4 + x3 + 1.

mk = shift2mask([1 1 0 0 1],5)

mk =

 1 0 1 1

References

[1] Lee, J. S., and L. E. Miller, CDMA Systems Engineering Handbook, Boston, Artech
House, 1998.

[2] Simon, Marvin K., Jim K. Omura, et al., Spread Spectrum Communications
Handbook, New York, McGraw-Hill, 1994.

See Also
mask2shift | primpoly | deconv | isprimitive

 signlms

1-543

signlms

Construct signed least mean square (LMS) adaptive algorithm object

Syntax

alg = signlms(stepsize)

alg = signlms(stepsize,algtype)

Description

The signlms function creates an adaptive algorithm object that you can use with the
lineareq function or dfe function to create an equalizer object. You can then use the
equalizer object with the equalize function to equalize a signal. To learn more about
the process for equalizing a signal, see “Adaptive Algorithms”.

alg = signlms(stepsize) constructs an adaptive algorithm object based on the
signed least mean square (LMS) algorithm with a step size of stepsize.

alg = signlms(stepsize,algtype) constructs an adaptive algorithm object of type
algtype from the family of signed LMS algorithms. The table below lists the possible
values of algtype.

Value of algtype Type of Signed LMS Algorithm

'Sign LMS' Sign LMS (default)
'Signed Regressor LMS' Signed regressor LMS
'Sign Sign LMS' Sign-sign LMS

Properties

The table below describes the properties of the signed LMS adaptive algorithm object.
To learn how to view or change the values of an adaptive algorithm object, see “Access
Properties of an Adaptive Algorithm”.

1 Functions — Alphabetical List

1-544

Property Description

AlgType Type of signed LMS algorithm,
corresponding to the algtype input
argument. You cannot change the value of
this property after creating the object.

StepSize LMS step size parameter, a nonnegative
real number

LeakageFactor LMS leakage factor, a real number between
0 and 1. A value of 1 corresponds to a
conventional weight update algorithm,
while a value of 0 corresponds to a
memoryless update algorithm.

Examples

Create a Linear Equalizer using Signed LMS Algorithm

This example shows to use a signed least mean square (LMS) algorithm to create an
adaptive equalizer object.

Set the number of weights and the step size for the equalizer.

nWeights = 2;

stepSize = 0.05;

Create the adaptive algorithm object using the signed regressor LMS algorithm type.

alg = signlms(stepSize,'Signed Regressor LMS');

Construct a linear equalizer using the algorithm object.

eqObj = lineareq(nWeights,alg)

eqObj =

 EqType: 'Linear Equalizer'

 AlgType: 'Signed Regressor LMS'

 nWeights: 2

 nSampPerSym: 1

 RefTap: 1

 signlms

1-545

 SigConst: [-1 1]

 StepSize: 0.0500

 LeakageFactor: 1

 Weights: [0 0]

 WeightInputs: [0 0]

 ResetBeforeFiltering: 1

 NumSamplesProcessed: 0

More About

Algorithms

Referring to the schematics presented in “Equalizer Structure”, define w as the vector
of all weights wi and define u as the vector of all inputs ui. Based on the current set of
weights, w, this adaptive algorithm creates the new set of weights given by

• (LeakageFactor) w + (StepSize) u
*
sgn(Re(e)), for sign LMS

• (LeakageFactor) w + (StepSize) sgn(Re(u)) Re(e), for signed regressor
LMS

• (LeakageFactor) w + (StepSize) sgn(Re(u)) sgn(Re(e)), for sign-sign
LMS

where the * operator denotes the complex conjugate and sgn denotes the signum
function (sign in MATLAB technical computing software).
• “Equalization”

References

[1] Farhang-Boroujeny, B., Adaptive Filters: Theory and Applications, Chichester,
England, John Wiley & Sons, 1998.

[2] Kurzweil, J., An Introduction to Digital Communications, New York, John Wiley &
Sons, 2000.

See Also
lms | normlms | varlms | rls | cma | lineareq | dfe | equalize

1 Functions — Alphabetical List

1-546

ssbdemod
Single sideband amplitude demodulation

Syntax

z = ssbdemod(y,Fc,Fs)

z = ssbdemod(y,Fc,Fs,ini_phase)

z = ssbdemod(y,Fc,Fs,ini_phase,num,den)

Description

For All Syntaxes

z = ssbdemod(y,Fc,Fs) demodulates the single sideband amplitude modulated
signal y from the carrier signal having frequency Fc (Hz). The carrier signal and y have
sampling rate Fs (Hz). The modulated signal has zero initial phase, and can be an upper-
or lower-sideband signal. The demodulation process uses the lowpass filter specified by
[num,den] = butter(5,Fc*2/Fs).

Note: The Fc and Fs arguments must satisfy Fs > 2(Fc + BW), where BW is the bandwidth
of the original signal that was modulated.

z = ssbdemod(y,Fc,Fs,ini_phase) specifies the initial phase of the modulated
signal in radians.

z = ssbdemod(y,Fc,Fs,ini_phase,num,den) specifies the numerator and
denominator of the lowpass filter used in the demodulation.

Examples

The code below shows that ssbdemod can demodulate an upper-sideband or lower-
sideband signal.

 ssbdemod

1-547

Fc = 12000; Fs = 270000;

t = [0:1/Fs:0.01]';

s = sin(2*pi*300*t)+2*sin(2*pi*600*t);

y1 = ssbmod(s,Fc,Fs,0); % Lower-sideband modulated signal

y2 = ssbmod(s,Fc,Fs,0,'upper'); % Upper-sideband modulated signal

s1 = ssbdemod(y1,Fc,Fs); % Demodulate lower sideband

s2 = ssbdemod(y2,Fc,Fs); % Demodulate upper sideband

% Plot results to show that the curves overlap.

figure; plot(t,s1,'r-',t,s2,'k--');

legend('Demodulation of upper sideband','Demodulation of lower sideband')

More About
• “Digital Modulation”

See Also
ssbmod | amdemod

1 Functions — Alphabetical List

1-548

ssbmod
Single sideband amplitude modulation

Syntax

y = ssbmod(x,Fc,Fs)

y = ssbmod(x,Fc,Fs,ini_phase)

y = ssbmod(x,fc,fs,ini_phase,'upper')

Description

y = ssbmod(x,Fc,Fs) uses the message signal x to modulate a carrier signal with
frequency Fc (Hz) using single sideband amplitude modulation in which the lower
sideband is the desired sideband. The carrier signal and x have sample frequency Fs
(Hz). The modulated signal has zero initial phase.

y = ssbmod(x,Fc,Fs,ini_phase) specifies the initial phase of the modulated signal
in radians.

y = ssbmod(x,fc,fs,ini_phase,'upper') uses the upper sideband as the desired
sideband.

Examples

An example using ssbmod is on the reference page for ammod.

More About
• “Digital Modulation”

See Also
ssbdemod | ammod

 stdchan

1-549

stdchan
Construct channel object from set of standardized channel models

Syntax

chan = stdchan(ts,fd,chantype)

[chan, chanprofile] = stdchan(...)

chan = stdchan(ts,fd,chantype, trms)

Description

chan = stdchan(ts,fd,chantype) constructs a fading channel object chan according
to the specified chantype. The input string chantype is chosen from the set of
standardized channel profiles listed below. ts is the sample time of the input signal, in
seconds. fd is the maximum Doppler shift, in Hertz.

[chan, chanprofile] = stdchan(...) also returns a structure chanprofile
containing the parameters of the channel profile specified by chantype.

chan = stdchan(ts,fd,chantype, trms) is used to create a channel object, chan,
when chantype is any one of '802.11a', '802.11b' or '802.11g'. When using
'802.11a', '802.11b' or '802.11g' channels, you must specify TRMS, which is the
RMS delay spread of the channel model. As per 802.11 specifications, TS should not be
larger than TRMS/2.

Channel Models

COST 207 channel models (The Rician K factors for the cases cost207RAx4 and
cost207RAx6 are chosen as in 3GPP TS 45.005 V7.9.0 (2007-2)):

Channel model Profile

cost207RAx4 Rural Area (RAx), 4 taps
cost207RAx6 Rural Area (RAx), 6 taps
cost207TUx6 Typical Urban (TUx), 6 taps

1 Functions — Alphabetical List

1-550

Channel model Profile

cost207TUx6alt Typical Urban (TUx), 6 taps, alternative
cost207TUx12 Typical Urban (TUx), 12 taps
cost207TUx12alt Typical Urban (TUx), 12 taps, alternative
cost207BUx6 Bad Urban (BUx), 6 taps
cost207BUx6alt Bad Urban (BUx), 6 taps, alternative
cost207BUx12 Bad Urban (BUx), 12 taps
cost207BUx12alt Bad Urban (BUx), 12 taps, alternative
cost207HTx6 Hilly Terrain (HTx), 6 taps
cost207HTx6alt Hilly Terrain (HTx), 6 taps, alternative
cost207HTx12 Hilly Terrain (HTx), 12 taps
cost207HTx12alt Hilly Terrain (HTx), 12 taps, alternative

GSM/EDGE channel models (3GPP TS 45.005 V7.9.0 (2007-2), 3GPP TS 05.05 V8.20.0
(2005-11)):

Channel model Profile

gsmRAx6c1 Typical case for rural area (RAx), 6 taps,
case 1

gsmRAx4c2 Typical case for rural area (RAx), 4 taps,
case 2

gsmHTx12c1 Typical case for hilly terrain (HTx), 12
taps, case 1

gsmHTx12c2 Typical case for hilly terrain (HTx), 12
taps, case 2

gsmHTx6c1 Typical case for hilly terrain (HTx), 6 taps,
case 1

gsmHTx6c2 Typical case for hilly terrain (HTx), 6 taps,
case 2

gsmTUx12c1 Typical case for urban area (TUx), 12 taps,
case 1

gsmTUx12c1 Typical case for urban area (TUx), 12 taps,
case 2

 stdchan

1-551

Channel model Profile

gsmTUx6c1 Typical case for urban area (TUx), 6 taps,
case 1

gsmTUx6c2 Typical case for urban area (TUx), 6 taps,
case 2

gsmEQx6 Profile for equalization test (EQx), 6 taps
gsmTIx2 Typical case for very small cells (TIx), 2

taps

3GPP channel models for deployment evaluation (3GPP TR 25.943 V6.0.0 (2004-12)):

Channel model Profile

3gppTUx Typical Urban channel model (TUx)
3gppRAx Rural Area channel model (RAx)
3gppHTx Hilly Terrain channel model (HTx)

ITU-R 3G channel models (ITU-R M.1225 (1997-2)):

Channel model Profile

itur3GIAx Indoor office, channel A
itur3GIBx Indoor office, channel B
itur3GPAx Outdoor to indoor and pedestrian, channel

A
itur3GPBx Outdoor to indoor and pedestrian, channel

B
itur3GVAx Vehicular - high antenna, channel A
itur3GVBx Vehicular - high antenna, channel B
itur3GSAxLOS Satellite, channel A, LOS
itur3GSAxNLOS Satellite, channel A, NLOS
itur3GSBxLOS Satellite, channel B, LOS
itur3GSBxNLOS Satellite, channel B, NLOS
itur3GSCxLOS Satellite, channel C, LOS
itur3GSCxNLOS Satellite, channel C, NLOS

1 Functions — Alphabetical List

1-552

ITU-R HF channel models (ITU-R F.1487 (2000)) (FD must be 1 to obtain the correct
frequency spreads for these models.):

Channel model Profile

iturHFLQ Low latitudes, Quiet conditions
iturHFLM Low latitudes, Moderate conditions
iturHFLD Low latitudes, Disturbed conditions
iturHFMQ Medium latitudes, Quiet conditions
iturHFMM Medium latitudes, Moderate conditions
iturHFMD Medium latitudes, Disturbed conditions
iturHFMDV Medium latitudes, Disturbed conditions

near vertical incidence
iturHFHQ High latitudes, Quiet conditions
iturHFHM High latitudes, Moderate conditions
iturHFHD High latitudes, Disturbed conditions

JTC channel models:

Channel model Profile

jtcInResA Indoor residential A
jtcInResB Indoor residential B
jtcInResC Indoor residential C
jtcInOffA Indoor office A
jtcInOffB Indoor office B
jtcInOffC Indoor office C
jtcInComA Indoor commercial A
jtcInComB Indoor commercial B
jtcInComC Indoor commercial C
jtcOutUrbHRLAA Outdoor urban high-rise areas - Low

antenna A
jtcOutUrbHRLAB Outdoor urban high-rise areas - Low

antenna B

 stdchan

1-553

Channel model Profile

jtcOutUrbHRLAC Outdoor urban high-rise areas - Low
antenna C

jtcOutUrbLRLAA Outdoor urban low-rise areas - Low
antenna A

jtcOutUrbLRLAB Outdoor urban low-rise areas - Low
antenna B

jtcOutUrbLRLAC Outdoor urban low-rise areas - Low
antenna C

jtcOutResLAA Outdoor residential areas - Low antenna A
jtcOutResLAB Outdoor residential areas - Low antenna B
jtcOutResLAC Outdoor residential areas - Low antenna C
jtcOutUrbHRHAA Outdoor urban high-rise areas - High

antenna A
jtcOutUrbHRHAB Outdoor urban high-rise areas - High

antenna B
jtcOutUrbHRHAC Outdoor urban high-rise areas - High

antenna C
jtcOutUrbLRHAA Outdoor urban low-rise areas - High

antenna A
jtcOutUrbLRHAB Outdoor urban low-rise areas - High

antenna B
jtcOutUrbLRHAC Outdoor urban low-rise areas - High

antenna C
jtcOutResHAA Outdoor residential areas - High antenna A
jtcOutResHAB Outdoor residential areas - High antenna B
jtcOutResHAC Outdoor residential areas - High antenna C

HIPERLAN/2 channel models:

Channel model Profile

hiperlan2A Model A
hiperlan2B Model B

1 Functions — Alphabetical List

1-554

Channel model Profile

hiperlan2C Model C
hiperlan2D Model D
hiperlan2E Model E

802.11a/b/g channel models:

802.11a/b/g channel models share a common multipath delay profile

Note: TS should not be larger than TRMS/2, as per 802.11 specifications.

Channel model

802.11a

802.11b

802.11g

Examples

ts = 0.1e-4; fd = 200;

chan = stdchan(ts, fd, 'cost207TUx6');

chan.NormalizePathGains = 1;

chan.StoreHistory = 1;

y = filter(chan, ones(1,5e4));

plot(chan);

See Also
doppler | rayleighchan | ricianchan

 symerr

1-555

symerr
Compute number of symbol errors and symbol error rate

Syntax

[number,ratio] = symerr(x,y)

[number,ratio] = symerr(x,y,flg)

[number,ratio,loc] = symerr(...)

Description

For All Syntaxes

The symerr function compares binary representations of elements in x with those in y.
The schematics below illustrate how the shapes of x and y determine which elements
symerr compares.

(a) Compares x1 with y1,
 x2 with y2, and so on.

(b) Compares column vector y with
 each column of matrix x

(c) Compares row vector y with
 each row of matrix x

x1 x4

x2 x5

x3 x6

y1 y4

y2 y5 x y

y3 y6

x

y

The output number is a scalar or vector that indicates the number of elements that
differ. The size of number is determined by the optional input flg and by the dimensions
of x and y. The output ratio equals number divided by the total number of elements in
the smaller input.

For Specific Syntaxes

[number,ratio] = symerr(x,y) compares the elements in x and y. The sizes of x
and y determine which elements are compared:

1 Functions — Alphabetical List

1-556

• If x and y are matrices of the same dimensions, then symerr compares x and y
element by element. number is a scalar. See schematic (a) in the figure.

• If one is a row (respectively, column) vector and the other is a two-dimensional
matrix, then symerr compares the vector element by element with each row (resp.,
column) of the matrix. The length of the vector must equal the number of columns
(resp., rows) in the matrix. number is a column (resp., row) vector whose mth entry
indicates the number of elements that differ when comparing the vector with the mth
row (resp., column) of the matrix. See schematics (b) and (c) in the figure.

[number,ratio] = symerr(x,y,flg) is similar to the previous syntax, except that
flg can override the defaults that govern which elements symerr compares and how
symerr computes the outputs. The values of flg are 'overall', 'column-wise',
and 'row-wise'. The table below describes the differences that result from various
combinations of inputs. In all cases, ratio is number divided by the total number of
elements in y.

Comparing a Two-Dimensional Matrix x with Another Input y

Shape of y flg Type of Comparison number

'overall' (default) Element by element Total number of
symbol errors

'column-wise' mth column of x vs.
mth column of y

Row vector whose
entries count symbol
errors in each
column

Two-dim. matrix

'row-wise' mth row of x vs. mth
row of y

Column vector whose
entries count symbol
errors in each row

'overall' y vs. each column of
x

Total number of
symbol errors

Column vector

'column-wise'

(default)
y vs. each column of
x

Row vector whose
entries count symbol
errors in each
column of x

'overall' y vs. each row of x Total number of
symbol errors

Row vector

'row-wise'

(default)
y vs. each row of x Column vector whose

entries count symbol

 symerr

1-557

Shape of y flg Type of Comparison number

errors in each row of
x

[number,ratio,loc] = symerr(...) returns a binary matrix loc that indicates
which elements of x and y differ. An element of loc is zero if the corresponding
comparison yields no discrepancy, and one otherwise.

Examples

On the reference page for biterr, the last example uses symerr.

The command below illustrates how symerr works when one argument is a vector and
the other is a matrix. It compares the vector [1,2,3]' to the columns

1

3

3

1

2

3

3

2

8

1

2

3

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

È

Î

Í
Í
Í

˘

, , , and

˚̊

˙
˙
˙

of the matrix.

num = symerr([1 2 3]',[1 1 3 1;3 2 2 2; 3 3 8 3])

num =

 1 0 2 0

As another example, the command below illustrates the use of flg to override the default
row-by-row comparison. Notice that number and ratio are scalars.

format rat;

[number,ratio,loc] = symerr([1 2; 3 4],[1 3],'overall')

The output is below.

number =

 3

1 Functions — Alphabetical List

1-558

ratio =

 3/4

loc =

 0 1

 1 1

See Also
alignsignals | biterr | finddelay

 syndtable

1-559

syndtable
Produce syndrome decoding table

Syntax

t = syndtable(h)

Description

t = syndtable(h) returns a decoding table for an error-correcting binary code having
codeword length n and message length k. h is an (n-k)-by-n parity-check matrix for the
code. t is a 2n-k-by-n binary matrix. The rth row of t is an error pattern for a received
binary codeword whose syndrome has decimal integer value r-1. (The syndrome of a
received codeword is its product with the transpose of the parity-check matrix.) In other
words, the rows of t represent the coset leaders from the code's standard array.

When converting between binary and decimal values, the leftmost column is interpreted
as the most significant digit. This differs from the default convention in the bi2de and
de2bi commands.

Examples

An example is in “Decoding Table”.

More About
• “Block Codes”

References

[1] Clark, George C., Jr., and J. Bibb Cain, Error-Correction Coding for Digital
Communications, New York, Plenum, 1981.

1 Functions — Alphabetical List

1-560

See Also
decode | hammgen | gfcosets

 testconsole.Results

1-561

testconsole.Results
Gets results from test console simulations

Description
The getResults method of the Error Rate Test Console returns an instance of a
testconsole.Results object containing simulation results data. You use methods of the
results object to retrieve and plot simulations results data.

Properties
A testconsole.Results object has the properties shown on the following table. All
properties are writable except for the ones explicitly noted otherwise.

Property Description

TestConsoleName Error Rate Test Console. This property is
not writable.

System Under Test Name Name of the system under test for which
the Error Rate Test Console obtained
results. This property is not writable.

IterationMode Iteration mode the Error Rate Test Console
used for obtaining results. This property is
not writable.

TestPoint Specify the name of the registered test
point for which the results object parses
results. The getData, plot, and semilogy
methods of the Results object return data
or create a plot for the test point that the
TestPoint property specifies.

Metric Specify the name of the test metric for
which the results object parses results. The
getData, plot, and semilogy methods of the
Results object returns data or creates a
plot for the metric that the Metric property
specifies.

1 Functions — Alphabetical List

1-562

Property Description

TestParameter1 Specifies the name of the first independent
variable for which the results object parses
results.

TestParameter2 Specifies the name of the second
independent variable for which the results
object parses results.

Methods

A testconsole.Results object has the following methods.

getData

d = getData(r) returns results data matrix, d, available in the results object r. The
returned results correspond to the test point currently specified in the TestPoint
property of r, and to the test metric currently specified in the Metric property of r.

If IterationMode is 'Combinatorial' then d is a matrix containing results for all
the sweep values available in the test parameters specified in the TestParameter1
and TestParameter2 properties. The rows of the matrix correspond to results
for all the sweep values available in TestParameter1. The columns of the matrix
correspond to results for all sweep values available in TestParameter2. If more than
two test parameters are registered to the Error Rate Test Console, d contains results
corresponding to the first value in the sweep vector of all parameters that are not
TestParameter1 or TestParameter2.

If IterationMode is 'Indexed', then d is a vector of results corresponding to each
indexed combination of all the test parameter values registered to the Error Rate Test
Console.

plot

plot(r) creates a plot for the results available in the results object r. The plot
corresponds to the test point and test metric, specified by the TestPoint and Metric
properties of r

 testconsole.Results

1-563

If IterationMode is 'Combinatorial' then the plot contains a set of curves. The sweep
values in TestParameter1 control the x-axis and the number of sweep values for
TestParameter2 specifies how many curves the plot contains. If more than two test
parameters are registered to the Error Rate Test Console, the curves correspond to
results obtained with the first value in the sweep vector of all parameters that are not
TestParameter1, or TestParameter2.

No plots are available when 'IterationMode' is 'Indexed'.

semilogy

semilogy(...) is the same as plot(...), except that the Y-Axis uses a logarithmic
(base 10) scale.

surf

surf(r) creates a 3-D, color, surface plot for the results available in the results object, r.
The surface plot corresponds to following items:

• The test point you specify using the TestPoint property of the results object
• The test metric currently you specify in the Metric property of the results object

You can specify parameter/value pairs for the results object, which establishes
additional properties of the surface plot.

When you select 'Combinatorial' for the IterationMode, the sweep values available in
the test parameter you specify for the TestParameter1 property control the x-axis of
the surface plot. The sweep values available in the test parameter you specify for the
TestParameter2 property control the y-axis.

If more than two test parameters are registered to the test console, the surface plot
corresponds to the results obtained with the parameter sweep values previously specified
with the setParsingValues method of the results object.

You display the current parsing values by calling the getParsingValues method of
the results object. The parsing values default to the first value in the sweep vector of
each test parameter. By default, the surf method ignores the parsing values for any
parameters currently set as TestParameter1 or TestParameter2.

No surface plots are available if the IterationMode is 'Indexed', when less than two
registered test parameters exist, or TestParameter2 is set to 'None'.

1 Functions — Alphabetical List

1-564

setParsingValues

setParsingValues(R,'ParameterName1', 'Value1', ... 'ParameterName2',

'Value2', ...) sets the parsing values to the values you specify using the parameter-
value pairs. Parameter name inputs must correspond to names of registered test
parameters, and value inputs must correspond to a valid test parameter sweep value.

You use this method for specifying single sweep values for test parameters that differ
from the values for TestParameter1 and TestParameter2. When you define this method,
the results object returns the data values or plots corresponding to the sweep values
you set for the setParsingValues method. The parsing values default to the first value in
the sweep vector of each test parameter.

You display the current parsing values by calling the getParsingValues method of
the results object. You may set parsing values for parameters in TestParameter1 and
TestParameter2, but the results object ignores the values when getting data or returning
plots.

Parsing values are irrelevant when IterationMode is 'Indexed'.

getParsingValues

getParsingValues displays the current parsing values for the Error Rate Test Console.

s = getParsingValues(r) returns a structure, s, with field names equal to the
registered test parameter names and with values corresponding to the current parsing
values.

Parsing values are irrelevant when IterationMode is 'Indexed'.

See Also
commtest.ErrorRate

 varlms

1-565

varlms
Construct variable-step-size least mean square (LMS) adaptive algorithm object

Syntax

alg = varlms(initstep,incstep,minstep,maxstep)

Description

The varlms function creates an adaptive algorithm object that you can use with the
lineareq function or dfe function to create an equalizer object. You can then use the
equalizer object with the equalize function to equalize a signal. To learn more about
the process for equalizing a signal, see “Adaptive Algorithms”.

alg = varlms(initstep,incstep,minstep,maxstep) constructs an adaptive
algorithm object based on the variable-step-size least mean square (LMS) algorithm.
initstep is the initial value of the step size parameter. incstep is the increment by
which the step size changes from iteration to iteration. minstep and maxstep are the
limits between which the step size can vary.

Properties

The table below describes the properties of the variable-step-size LMS adaptive
algorithm object. To learn how to view or change the values of an adaptive algorithm
object, see “Access Properties of an Adaptive Algorithm”.

Property Description

AlgType Fixed value, 'Variable Step Size
LMS'

LeakageFactor LMS leakage factor, a real number between
0 and 1. A value of 1 corresponds to a
conventional weight update algorithm,
while a value of 0 corresponds to a
memoryless update algorithm.

1 Functions — Alphabetical List

1-566

Property Description

InitStep Initial value of step size when the
algorithm starts

IncStep Increment by which the step size changes
from iteration to iteration

MinStep Minimum value of step size
MaxStep Maximum value of step size

Also, when you use this adaptive algorithm object to create an equalizer object (via the
lineareq or dfe function), the equalizer object has a StepSize property. The property
value is a vector that lists the current step size for each weight in the equalizer.

Examples

For an example that uses this function, see “Linked Properties of an Equalizer Object”.

More About

Algorithms

Referring to the schematics presented in “Equalizer Structure”, define w as the vector
of all current weights wi and define u as the vector of all inputs ui. Based on the current
step size, μ, this adaptive algorithm first computes the quantity
μ0 = μ + (IncStep) Re(ggprev)

where g = ue*, gprev is the analogous expression from the previous iteration, and the *
operator denotes the complex conjugate.

Then the new step size is given by

• μ0, if it is between MinStep and MaxStep
• MinStep, if μ0 < MinStep
• MaxStep, if μ0 > MaxStep

The new set of weights is given by

 varlms

1-567

(LeakageFactor) w + 2 μ g*

• “Equalization”

References

[1] Farhang-Boroujeny, B., Adaptive Filters: Theory and Applications, Chichester,
England, Wiley, 1998.

See Also
lms | signlms | normlms | rls | cma | lineareq | dfe | equalize

1 Functions — Alphabetical List

1-568

vec2mat
Convert vector into matrix

Syntax

mat = vec2mat(vec,matcol)

mat = vec2mat(vec,matcol,padding)

[mat,padded] = vec2mat(...)

Description

mat = vec2mat(vec,matcol) converts the vector vec into a matrix with
matcol columns, creating one row at a time. If the length of vec is not a multiple
of matcol, then extra zeros are placed in the last row of mat. The matrix mat has
ceil(length(vec)/matcol) rows.

mat = vec2mat(vec,matcol,padding) is the same as the first syntax, except that
the extra entries placed in the last row of mat are not necessarily zeros. The extra entries
are taken from the matrix padding, in order. If padding has fewer entries than are
needed, then the last entry is used repeatedly.

[mat,padded] = vec2mat(...) returns an integer padded that indicates how many
extra entries were placed in the last row of mat.

Note: vec2mat is similar to the built-in MATLAB function reshape. However, given
a vector input, reshape creates a matrix one column at a time instead of one row at a
time. Also, reshape requires the input and output matrices to have the same number of
entries, whereas vec2mat places extra entries in the output matrix if necessary.

Examples
vec = [1 2 3 4 5];

[mat,padded] = vec2mat(vec,3)

[mat2,padded2] = vec2mat(vec,4)

 vec2mat

1-569

mat3 = vec2mat(vec,4,[10 9 8; 7 6 5; 4 3 2])

The output is below.

mat =

 1 2 3

 4 5 0

padded =

 1

mat2 =

 1 2 3 4

 5 0 0 0

padded2 =

 3

mat3 =

 1 2 3 4

 5 10 7 4

See Also
reshape

1 Functions — Alphabetical List

1-570

vitdec
Convolutionally decode binary data using Viterbi algorithm

Syntax

decoded = vitdec(code,trellis,tblen,opmode,dectype)

decoded = vitdec(code,trellis,tblen,opmode,'soft',nsdec)

decoded = ... vitdec(code,trellis,tblen,opmode,dectype,puncpat)

decoded = ...

vitdec(code,trellis,tblen,opmode,dectype,puncpat,eraspat)

decoded = ...

vitdec(...,'cont',...,initmetric,initstates,initinputs)

[decoded,finalmetric,finalstates,finalinputs] = ...

vitdec(...,'cont',...)

Description

decoded = vitdec(code,trellis,tblen,opmode,dectype) decodes the
vector code using the Viterbi algorithm. The MATLAB structure trellis specifies
the convolutional encoder that produced code; the format of trellis is described
in “Trellis Description of a Convolutional Code” and the reference page for the
istrellis function. code contains one or more symbols, each of which consists of
log2(trellis.numOutputSymbols) bits. Each symbol in the vector decoded consists
of log2(trellis.numInputSymbols) bits. tblen is a positive integer scalar that
specifies the traceback depth. If the code rate is 1/2, a typical value for tblen is about
five times the constraint length of the code.

The string opmode indicates the decoder's operation mode and its assumptions about the
corresponding encoder's operation. Choices are in the table below.

Values of opmode Input

Value Meaning

'cont' The encoder is assumed to have started at the all-zeros state. The
decoder traces back from the state with the best metric. A delay
equal to tblen symbols elapses before the first decoded symbol

 vitdec

1-571

Value Meaning

appears in the output. This mode is appropriate when you invoke
this function repeatedly and want to preserve continuity between
successive invocations. See the continuous operation mode syntaxes
below.

'term' The encoder is assumed to have both started and ended at the all-
zeros state, which is true for the default syntax of the convenc
function. The decoder traces back from the all-zeros state. This
mode incurs no delay. This mode is appropriate when the uncoded
message (that is, the input to convenc) has enough zeros at the
end to fill all memory registers of the encoder. If the encoder
has k input streams and constraint length vector constr (using
the polynomial description of the encoder), “enough” means
k*max(constr-1).

'trunc' The encoder is assumed to have started at the all-zeros state.
The decoder traces back from the state with the best metric. This
mode incurs no delay. This mode is appropriate when you cannot
assume the encoder ended at the all-zeros state and when you do
not want to preserve continuity between successive invocations of
this function.

For the 'term' and 'trunc' mode, the traceback depth (tblen) must be a positive
integer scalar value, not greater than the number of input symbols in code.

The string dectype indicates the type of decision that the decoder makes, and influences
the type of data the decoder expects in code. Choices are in the table below.

Values of dectype Input

Value Meaning

'unquant' code contains real input values, where 1
represents a logical zero and -1 represents
a logical one.

'hard' code contains binary input values.
'soft' For soft-decision decoding, use the syntax

below. nsdec is required for soft-decision
decoding.

1 Functions — Alphabetical List

1-572

Syntax for Soft Decision Decoding

decoded = vitdec(code,trellis,tblen,opmode,'soft',nsdec) decodes the
vector code using soft-decision decoding. code consists of integers between 0 and
2^nsdec-1, where 0 represents the most confident 0 and 2^nsdec-1 represents the
most confident 1. The existing implementation of the functionality supports up to 13 bits
of quantization, meaning nsdec can be set up to 13. For reference, 3 bits of quantization
is about 2 db better than hard decision decoding.

Syntax for Punctures and Erasures

decoded = ... vitdec(code,trellis,tblen,opmode,dectype,puncpat)

denotes the input punctured code, where puncpat is the puncture pattern vector, and
where 0s indicate punctured bits in the input code.

decoded = ...

vitdec(code,trellis,tblen,opmode,dectype,puncpat,eraspat) allows
an erasure pattern vector, eraspat, to be specified for the input code, where the 1s
indicate the corresponding erasures. eraspat and code must be of the same length. If
puncturing is not used, specify puncpat to be []. In the eraspat vector, 1s indicate
erasures in the input code.

Additional Syntaxes for Continuous Operation Mode

Continuous operation mode enables you to save the decoder's internal state information
for use in a subsequent invocation of this function. Repeated calls to this function are
useful if your data is partitioned into a series of smaller vectors that you process within a
loop, for example.

decoded = ...

vitdec(...,'cont',...,initmetric,initstates,initinputs) is the same
as the earlier syntaxes, except that the decoder starts with its state metrics, traceback
states, and traceback inputs specified by initmetric, initstates, and initinputs,
respectively. Each real number in initmetric represents the starting state metric
of the corresponding state. initstates and initinputs jointly specify the initial
traceback memory of the decoder; both are trellis.numStates-by-tblen matrices.
initstates consists of integers between 0 and trellis.numStates-1. If the encoder
schematic has more than one input stream, the shift register that receives the first input
stream provides the least significant bits in initstates, while the shift register that

 vitdec

1-573

receives the last input stream provides the most significant bits in initstates. The
vector initinputs consists of integers between 0 and trellis.numInputSymbols-1.
To use default values for all of the last three arguments, specify them as [],[],[].

[decoded,finalmetric,finalstates,finalinputs] = ...

vitdec(...,'cont',...) is the same as the earlier syntaxes, except that the final
three output arguments return the state metrics, traceback states, and traceback
inputs, respectively, at the end of the decoding process. finalmetric is a vector with
trellis.numStates elements that correspond to the final state metrics. finalstates
and finalinputs are both matrices of size trellis.numStates-by-tblen. The
elements of finalstates have the same format as those of initstates.

Traceback Matrices

The tth column of P1 shows the t-1th time step states given the inputs listed in the input
matrix. For example, the value in the ith row shows the state at time t-1 that transitions
to the i-1 state at time t. The input required for this state transition is given in the ith row
of the tth column of the input matrix.

The P1 output is the states of the traceback matrix. It is a [number of states x traceback
length] matrix. The following example uses a (7,5), rate 1/2 code. This code is easy to
follow:

t = poly2trellis(3,[7 5]);
k = log2(t.numInputSymbols);
msg = [1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0];
code = convenc(msg,t); tblen = 15; [d1 m1 p1 in1]=vitdec(code(1:end/2),t,tblen,'cont','hard')

m1 =

 0 3 2 3

p1 =

 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

 2 3 3 2 2 3 3 2 2 3 3 2 2 3 3

 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

 2 3 3 2 2 3 3 2 2 3 3 2 2 3 3

in1 =

1 Functions — Alphabetical List

1-574

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

In this example, the message makes the encoder states follow the following sequence:

0 2 3 1 / 0 2 3 1 / ...

Since the best state is 0 (column index of smallest metric in m1 –1), the traceback matrix
starts from sate 0, looking at the first row (0th state) of the last column of P1, ([1; 3; 1; 3]),
which is 1. This indicates 1 for the previous state.

Next, the traceback matrix checks in1 ([0; 0; 1; 1]), which indicates 0 for the input. The
second row (1st state) of the 14th column of P1 ([1; 3; 1; 3]) is 3. This indicates 3 for the
previous state.

The traceback matrix checks in1 ([0; 0; 1; 1]), which indicates that the input was 0. The
fourth row (3rd state) of the 13th column of P1 ([0; 2; 0; 2]), is 2. This indicates 2 for the
previous state.

The traceback matrix checks in1 ([0; 0; 1; 1]), which indicates the input was 1. The
third row (2nd state) of the 12th column of P1 ([0; 2; 0; 2]), is 0. This indicates 0 for the
previous state.

The traceback matrix checks in1 ([0; 0; 1; 1]), which indicates the input was 1. The first
row (0th state) of the 11th column of P1 ([1; 3; 1; 3]), is 1. This indicates 1 for the previous
state. Then, the matrix checks in1 ([0; 0; 1; 1]), which indicates 0 for the input.

To determine the best state for a gicen time, use m1. The smallest number in m1
represents the best state.

Examples

The example below encodes random data and adds noise. Then it decodes the noisy code
three times to illustrate the three decision types that vitdec supports. For unquantized
and soft decisions, the output of convenc does not have the same data type that vitdec
expects for the input code, so it is necessary to manipulate ncode before invoking
vitdec. That the bit error rate computations must account for the delay that the
continuous operation mode incurs.

 vitdec

1-575

s = RandStream.create('mt19937ar', 'seed',131);

prevStream = RandStream.setGlobalStream(s); % seed for repeatability

trel = poly2trellis(3,[6 7]); % Define trellis.

msg = randi([0 1],100,1); % Random data

code = convenc(msg,trel); % Encode.

ncode = rem(code + randerr(200,1,[0 1;.95 .05]),2); % Add noise.

tblen = 3; % Traceback length

decoded1 = vitdec(ncode,trel,tblen,'cont','hard'); %Hard decision

% Use unquantized decisions.

ucode = 1-2*ncode; % +1 & -1 represent zero & one, respectively.

decoded2 = vitdec(ucode,trel,tblen,'cont','unquant');

% To prepare for soft-decision decoding, map to decision values.

[x,qcode] = quantiz(1-2*ncode,[-.75 -.5 -.25 0 .25 .5 .75],...

[7 6 5 4 3 2 1 0]); % Values in qcode are between 0 and 2^3-1.

decoded3 = vitdec(qcode',trel,tblen,'cont','soft',3);

% Compute bit error rates, using the fact that the decoder

% output is delayed by tblen symbols.

[n1,r1] = biterr(decoded1(tblen+1:end),msg(1:end-tblen));

[n2,r2] = biterr(decoded2(tblen+1:end),msg(1:end-tblen));

[n3,r3] = biterr(decoded3(tblen+1:end),msg(1:end-tblen));

disp(['The bit error rates are: ',num2str([r1 r2 r3])])

RandStream.setGlobalStream(prevStream); % restore default stream

The following example illustrates how to use the final state and initial state arguments
when invoking vitdec repeatedly. [decoded4;decoded5] is the same as decoded6.

s = RandStream.create('mt19937ar', 'seed',131); % seed for repeatability

prevStream = RandStream.setGlobalStream(s);

trel = poly2trellis(3,[6 7]);

code = convenc(randi([0 1],100,1),trel);

% Decode part of code, recording final state for later use.

[decoded4,f1,f2,f3] = vitdec(code(1:100),trel,3,'cont','hard');

% Decode the rest of code, using state input arguments.

decoded5 = vitdec(code(101:200),trel,3,'cont','hard',f1,f2,f3);

% Decode the entire code in one step.

decoded6 = vitdec(code,trel,3,'cont','hard');

isequal(decoded6,[decoded4; decoded5])

RandStream.setGlobalStream(prevStream); % restore default stream

For additional examples, see “Convolutional Codes”.

For some commonly used puncture patterns for specific rates and polynomials, see the
last three references below.

1 Functions — Alphabetical List

1-576

More About
• viterbisim
• “Convolutional Codes”

References

[1] Clark, G. C. Jr. and J. Bibb Cain., Error-Correction Coding for Digital
Communications, New York, Plenum Press, 1981.

[2] Gitlin, Richard D., Jeremiah F. Hayes, and Stephen B. Weinstein, Data
Communications Principles, New York, Plenum, 1992.

[3] Heller, J. A. and I. M. Jacobs, “Viterbi Decoding for Satellite and Space
Communication,” IEEE Transactions on Communication Technology, Vol.
COM-19, October 1971, pp 835–848.

[4] Yasuda, Y., et. al., “High rate punctured convolutional codes for soft decision Viterbi
decoding,” IEEE Transactions on Communications, vol. COM-32, No. 3, pp 315–
319, Mar. 1984.

[5] Haccoun, D., and G. Begin, “High-rate punctured convolutional codes for Viterbi and
sequential decoding,” IEEE Transactions on Communications, vol. 37, No. 11, pp
1113–1125, Nov. 1989.

[6] G. Begin, et.al., “Further results on high-rate punctured convolutional codes for
Viterbi and sequential decoding,” IEEE Transactions on Communications, vol. 38,
No. 11, pp 1922–1928, Nov. 1990.

See Also
convenc | poly2trellis | istrellis

 wgn

1-577

wgn
Generate white Gaussian noise

Syntax

y = wgn(m,n,p)

y = wgn(m,n,p,imp)

y = wgn(m,n,p,imp,state)

y = wgn(...,powertype)

y = wgn(...,outputtype)

Description

y = wgn(m,n,p) generates an m-by-n matrix of white Gaussian noise. p specifies the
power of y in decibels relative to a watt. The default load impedance is 1 ohm.

y = wgn(m,n,p,imp) is the same as the previous syntax, except that imp specifies the
load impedance in ohms.

y = wgn(m,n,p,imp,s) uses s, which is a random stream handle, to generate random noise
samples with randn. This syntax is useful to generate repeatable outputs. Type help
RandStream for more information.

y = wgn(m,n,p,imp,state) is the same as the previous syntax, except that wgn first
resets the state of the normal random number generator randn to the integer state.

Note: This usage is deprecated and may be removed in a future release. Instead of
state, use s, as in the previous example.

y = wgn(...,powertype) is the same as the previous syntaxes, except that the string
powertype specifies the units of p. Choices for powertype are 'dBW', 'dBm', and
'linear'.

y = wgn(...,outputtype) is the same as the previous syntaxes, except that
the string outputtype specifies whether the noise is real or complex. Choices for

1 Functions — Alphabetical List

1-578

outputtype are 'real' and 'complex'. If outputtype is 'complex', then the real
and imaginary parts of y each have a noise power of p/2.

Note: The unit of measure for the output of the wgn function is Volts. For power
calculations, it is assumed that there is a load of 1 Ohm.

Examples

To generate a column vector of length 100 containing real white Gaussian noise of power
0 dBW, use this command:

y1 = wgn(100,1,0);

To generate a column vector of length 100 containing complex white Gaussian noise, each
component of which has a noise power of 0 dBW, use this command:

y2 = wgn(100,1,0,'complex');

More About
• “Sources and Sinks”

See Also
randn | awgn

2

Blocks — Alphabetical List

2 Blocks — Alphabetical List

2-2

A-Law Compressor

Implement A-law compressor for source coding

Library

Source Coding

Description

The A-Law Compressor block implements an A-law compressor for the input signal. The
formula for the A-law compressor is

y

A x

A
x x

V

A

V A x V

A
x

V

A

=
+

£ £

+()
+

1
0

1

1

log
sgn()

log(/)

log
sgn()

for

for << £

Ï

Ì

Ô
Ô

Ó

Ô
Ô x V

where A is the A-law parameter of the compressor, V is the peak signal magnitude for x,
log is the natural logarithm, and sgn is the signum function (sign in MATLAB software).

The most commonly used A value is 87.6.

The input can have any shape or frame status. This block processes each vector element
independently.

 A-Law Compressor

2-3

Dialog Box

A value
The A-law parameter of the compressor.

Peak signal magnitude
The peak value of the input signal. This is also the peak value of the output signal.

Supported Data Type

Port Supported Data Types

In • double
Out • double

Pair Block

A-Law Expander

2 Blocks — Alphabetical List

2-4

See Also

Mu-Law Compressor

References

[1] Sklar, Bernard. Digital Communications: Fundamentals and Applications. Englewood
Cliffs, N.J., Prentice-Hall, 1988.

 A-Law Expander

2-5

A-Law Expander

Implement A-law expander for source coding

Library

Source Coding

Description

The A-Law Expander block recovers data that the A-Law Compressor block compressed.
The formula for the A-law expander, shown below, is the inverse of the compressor
function.

x

y A
y

A V
V

A
y

=

+
£ £

+ -()

(log)

exp (log) / sgn()

1
0

1 1

A
for

V

1+logA

y for
V

11+logA
< £

Ï

Ì
ÔÔ

Ó
Ô
Ô

y V

The input can have any shape or frame status. This block processes each vector element
independently.

2 Blocks — Alphabetical List

2-6

Dialog Box

A value
The A-law parameter of the compressor.

Peak signal magnitude
The peak value of the input signal. This is also the peak value of the output signal.

Match these parameters to the ones in the corresponding A-Law Compressor block.

Supported Data Type

Port Supported Data Types

In • double
Out • double

Pair Block

A-Law Compressor

 A-Law Expander

2-7

See Also

Mu-Law Expander

References

[1] Sklar, Bernard. Digital Communications: Fundamentals and Applications. Englewood
Cliffs, N.J., Prentice-Hall, 1988.

2 Blocks — Alphabetical List

2-8

Algebraic Deinterleaver

Restore ordering of input symbols using algebraically derived permutation

Library

Block sublibrary of Interleaving

Description

The Algebraic Deinterleaver block restores the original ordering of a sequence that was
interleaved using the Algebraic Interleaver block. In typical usage, the parameters in the
two blocks have the same values.

The Number of elements parameter, N, indicates how many numbers are in the input
vector. This block accepts a column vector input signal.

The block accepts the following data types: int8, uint8, int16, uint16, int32,
uint32, boolean, single, double, and fixed-point. The output signal inherits its data
type from the input signal.

The Type parameter indicates the algebraic method that the block uses to generate the
appropriate permutation table. Choices are Takeshita-Costello and Welch-Costas.
Each of these methods has parameters and restrictions that are specific to it; these are
described on the reference page for the Algebraic Interleaver block.

 Algebraic Deinterleaver

2-9

Dialog Box

Type
The type of permutation table that the block uses for deinterleaving. Choices are
Takeshita-Costello and Welch-Costas.

Number of elements
The number of elements, N, in the input vector.

Multiplicative factor
The factor the block uses to compute the corresponding interleaver's cycle vector.
This field appears only when you set Type to Takeshita-Costello.

2 Blocks — Alphabetical List

2-10

Cyclic shift
The amount by which the block shifts indices when creating the corresponding
interleaver's permutation table. This field appears only when you set Type to
Takeshita-Costello.

Primitive element
An element of order N in the finite field GF(N+1). This field appears only if Type is
set to Welch-Costas.

Pair Block

Algebraic Interleaver

See Also

General Block Deinterleaver

References

[1] Heegard, Chris and Stephen B. Wicker. Turbo Coding. Boston: Kluwer Academic
Publishers, 1999.

[2] Takeshita, O. Y. and D. J. Costello, Jr. "New Classes Of Algebraic Interleavers for
Turbo-Codes." Proc. 1998 IEEE International Symposium on Information Theory,
Boston, Aug. 16-21, 1998. 419.

 Algebraic Interleaver

2-11

Algebraic Interleaver
Reorder input symbols using algebraically derived permutation table

Library

Block sublibrary of Interleaving

Description

The Algebraic Interleaver block rearranges the elements of its input vector using a
permutation that is algebraically derived. The Number of elements parameter, N,
indicates how many numbers are in the input vector. This block accepts a column vector
input signal.

The block accepts the following data types: int8, uint8, int16, uint16, int32,
uint32, boolean, single, double, and fixed-point. The output signal inherits its data
type from the input signal.

The Type parameter indicates the algebraic method that the block uses to generate the
appropriate permutation table. Choices are Takeshita-Costello and Welch-Costas.
Each of these methods has parameters and restrictions that are specific to it:

• If you set Type to Welch-Costas, then N + 1 must be prime. The Primitive
element parameter is an integer, A, between 1 and N that represents a primitive
element of the finite field GF(N + 1). This means that every nonzero element of GF(N
+ 1) can be expressed as A raised to some integer power.

In a Welch-Costas interleaver, the permutation maps the integer k to mod(Ak,N +
1) - 1.

• If you set Type to Takeshita-Costello, then N must be 2m for some integer m. The
Multiplicative factor parameter, k, must be an odd integer less than N. The Cyclic
shift parameter, h, must be a nonnegative integer less than N.

A Takeshita-Costello interleaver uses a length-N cycle vector whose nth element is

2 Blocks — Alphabetical List

2-12

c n k
n n

N n() mod
()

, ,= ◊ ◊ -Ê
ËÁ

ˆ
¯̃

+1

2
1

for integers n between 1 and N. The intermediate permutation function is obtained by
using the following relationship:

P c n c n()() = +()1

where

n N= 1 :

The interleaver's actual permutation vector is the result of cyclically shifting the
elements of the permutation vector, π, by the Cyclic shift parameter, h.

 Algebraic Interleaver

2-13

Dialog Box

Type
The type of permutation table that the block uses for interleaving.

Number of elements
The number of elements, N, in the input vector.

Multiplicative factor
The factor used to compute the interleaver's cycle vector. This field appears only if
Type is set to Takeshita-Costello.

2 Blocks — Alphabetical List

2-14

Cyclic shift
The amount by which the block shifts indices when creating the permutation table.
This field appears only if Type is set to Takeshita-Costello.

Primitive element
An element of order N in the finite field GF(N+1). This field appears only if Type is
set to Welch-Costas.

Pair Block

Algebraic Deinterleaver

See Also

General Block Interleaver

References

[1] Heegard, Chris and Stephen B. Wicker. Turbo Coding. Boston: Kluwer Academic
Publishers, 1999.

[2] Takeshita, O. Y. and D. J. Costello, Jr. "New Classes Of Algebraic Interleavers for
Turbo-Codes." Proc. 1998 IEEE International Symposium on Information Theory,
Boston, Aug. 16-21, 1998. 419.

 Align Signals

2-15

Align Signals
Align two signals by finding delay between them

Library

Utility Blocks

Description

The Align Signals block aligns two signals by finding the delay between them. This is
useful when you want to compare a transmitted and received signal to determine the
bit error rate, but do not know the delay in the received signal. This block accepts a
column vector or matrix input signal. For a matrix input, the block aligns each channel
independently.

The s1 input port receives the original signal, while the s2 input port receives a delayed
version. The two input signals must have the same dimensions and sample times. The
block calculates the delay between the two signals, and then

• Delays the first signal, s1, by the calculated value, and outputs it through the port
labeled s1 del.

• Outputs the second signal s2 without change through the port labeled s2.
• Outputs the delay value through the port labeled delay.

See “Delays” in the Communications System Toolbox online documentation for more
information about signal delays.

The block's Correlation window length parameter specifies how many samples
of the signals the block uses to calculate the cross-correlation. The delay output is a
nonnegative integer less than the Correlation window length.

As the Correlation window length is increased, the reliability of the computed delay
also increases. However, the processing time to compute the delay increases as well.

2 Blocks — Alphabetical List

2-16

You can make the Align Signals block stop updating the delay after it computes the
same delay value for a specified number of samples. To do so, select Disable recurring
updates, and enter a positive integer in the Number of constant delay outputs to
disable updates field. For example, if you set Number of constant delay outputs to
disable updates to 20, the block will stop recalculating and updating the delay after it
calculates the same value 20 times in succession. Disabling recurring updates causes the
simulation to run faster after the target number of constant delays occurs.

Tips for Using the Block Effectively

• Set the Correlation window length parameter sufficiently large so that the
computed delay eventually stabilizes at a constant value. If the computed delay is not
constant, you should increase Correlation window length. If the increased value
of Correlation window length exceeds the duration of the simulation, then you
should also increase the duration of the simulation accordingly.

• If the cross-correlation between the two signals is broad, then Correlation window
length should be much larger than the expected delay, or else the algorithm
might stabilize at an incorrect value. For example, a CPM signal has a broad
autocorrelation, so it has a broad cross-correlation with a delayed version of itself. In
this case, the Correlation window length value should be much larger than the
expected delay.

• If the block calculates a delay that is greater than 75 percent of Correlation
window length, the signal s1 is probably delayed relative to the signal s2. In this
case, you should switch the signal lines leading into the two input ports.

• If you use the Align Signals block with the Error Rate Calculation block, you should
set the Receive delay parameter of the Error Rate Calculation block to 0 because
the Align Signals block compensates for the delay. Also, you might want to set the
Error Rate Calculation block's Computation delay parameter to a nonzero value to
account for the possibility that the Align Signals block takes a nonzero amount of time
to stabilize on the correct amount by which to delay one of the signals.

Examples

See the “Delays” section of Communications System Toolbox User's Guide for an example
that uses the Align Signals block in conjunction with the Error Rate Calculation block.

See Setting the Correlation Window Length, on the reference page for the Find Delay
block, for an example that illustrates how to set the correlation window length properly.

 Align Signals

2-17

Dialog Box

Correlation window length
The number of samples the block uses to calculate the cross-correlations of the two
signals.

Disable recurring updates
Selecting this option causes the block to stop computing the delay after it computes
the same delay value for a specified number of samples.

Number of constant delay outputs to disable updates
A positive integer specifying how many times the block must compute the same delay
before ceasing to update. This field appears only if Disable recurring updates is
selected.

Algorithm

The Align Signals block finds the delay by calculating the cross-correlations of the first
signal with time-shifted versions of the second signal, and then finding the index at
which the cross-correlation is maximized.

2 Blocks — Alphabetical List

2-18

See Also

Find Delay, Error Rate Calculation

 APP Decoder

2-19

APP Decoder
Decode convolutional code using a posteriori probability (APP) method

Library

Convolutional sublibrary of Error Detection and Correction

Description

The APP Decoder block performs a posteriori probability (APP) decoding of a
convolutional code.

Input Signals and Output Signals

The input L(u) represents the sequence of log-likelihoods of encoder input bits, while the
input L(c) represents the sequence of log-likelihoods of code bits. The outputs L(u) and
L(c) are updated versions of these sequences, based on information about the encoder.

If the convolutional code uses an alphabet of 2n possible symbols, this block's L(c) vectors
have length Q*n for some positive integer Q. Similarly, if the decoded data uses an
alphabet of 2k possible output symbols, then this block's L(u) vectors have length Q*k.

This block accepts a column vector input signal with any positive integer for Q.

If you only need the input L(c) and output L(u), you can attach a Simulink Ground block
to the input L(u) and a Simulink Terminator block to the output L(c).

This block accepts single and double data types. Both inputs, however, must be of the
same type. The output data type is the same as the input data type.

Specifying the Encoder

To define the convolutional encoder that produced the coded input, use the Trellis
structure parameter. This parameter is a MATLAB structure whose format is described

2 Blocks — Alphabetical List

2-20

in “Trellis Description of a Convolutional Code” in the Communications System Toolbox
documentation. You can use this parameter field in two ways:

• If you have a variable in the MATLAB workspace that contains the trellis structure,
enter its name as the Trellis structure parameter. This way is preferable because
it causes Simulink to spend less time updating the diagram at the beginning of each
simulation, compared to the usage described next.

• If you want to specify the encoder using its constraint length, generator polynomials,
and possibly feedback connection polynomials, use a poly2trellis command within
the Trellis structure field. For example, to use an encoder with a constraint length
of 7, code generator polynomials of 171 and 133 (in octal numbers), and a feedback
connection of 171 (in octal), set the Trellis structure parameter to

poly2trellis(7,[171 133],171)

To indicate how the encoder treats the trellis at the beginning and end of each frame,
set the Termination method parameter to either Truncated or Terminated.
The Truncated option indicates that the encoder resets to the all-zeros state at the
beginning of each frame. The Terminated option indicates that the encoder forces the
trellis to end each frame in the all-zeros state. If you use the Convolutional Encoder block
with the Operation mode parameter set to Truncated (reset every frame), use
the Truncated option in this block. If you use the Convolutional Encoder block with the
Operation mode parameter set to Terminate trellis by appending bits, use
the Terminated option in this block.

Specifying Details of the Algorithm

You can control part of the decoding algorithm using the Algorithm parameter. The
True APP option implements a posteriori probability decoding as per equations 20–23 in
section V of [1]. To gain speed, both the Max* and Max options approximate expressions
like

log exp()a
i

i

Â

by other quantities. The Max option uses max(ai) as the approximation, while the Max*
option uses max(ai) plus a correction term given by ln(exp())1 1+ - -

-
a a

i i
 [3].

The Max* option enables the Scaling bits parameter in the dialog box. This parameter
is the number of bits by which the block scales the data it processes internally (multiplies

 APP Decoder

2-21

the input by (2^numScalingBits) and divides the pre-output by the same factor). Use
this parameter to avoid losing precision during the computations.

Dialog Box

Trellis structure
MATLAB structure that contains the trellis description of the convolutional encoder.

Termination method
Either Truncated or Terminated. This parameter indicates how the convolutional
encoder treats the trellis at the beginning and end of frames.

Algorithm
Either True APP, Max*, or Max.

Number of scaling bits

2 Blocks — Alphabetical List

2-22

An integer between 0 and 8 that indicates by how many bits the decoder scales data
in order to avoid losing precision. This field is active only when Algorithm is set to
Max*.

Disable L(c) output port
Select this check box to disable the secondary block output, L(c).

Examples

For an example using this block, see the Iterative Decoding of a Serially Concatenated
Convolutional Code example.

See Also

Viterbi Decoder, Convolutional Encoder;poly2trellis

References

[1] Benedetto, S., G. Montorsi, D. Divsalar, and F. Pollara, “A Soft-Input Soft-Output
Maximum A Posterior (MAP) Module to Decode Parallel and Serial Concatenated
Codes,” JPL TDA Progress Report, Vol. 42-127, November 1996.

[2] Benedetto, Sergio and Guido Montorsi, “Performance of Continuous and Blockwise
Decoded Turbo Codes.” IEEE Communications Letters, Vol. 1, May 1997, 77–79.

[3] Viterbi, Andrew J., “An Intuitive Justification and a Simplified Implementation of
the MAP Decoder for Convolutional Codes,” IEEE Journal on Selected Areas in
Communications, Vol. 16, February 1998, 260–264.

 AGC

2-23

AGC
Adaptively adjust gain for constant signal-level output

Library

RF Impairments Correction

Description

This automatic gain controller (AGC) block adaptively adjusts its gain to achieve a
constant signal level at the output.

Dialog Box

2 Blocks — Alphabetical List

2-24

Detector method
Specify the method that the block uses to perform envelope detection. The default is
Rectifier.

When you select Rectifier, the AGC detector outputs a voltage value proportional
to the envelope amplitude of the output signal. The detector rectifies and then
averages the input signal over the period of gain updates in samples. The AGC
adjusts the gain to obtain unity voltage at the output of the detector.

When you select Square law, the AGC detector outputs a power value that is
proportional to the square of the output voltage. The detector squares and then
averages the input signal over the period of gain updates in samples. The AGC
adjusts the gain to obtain unity power at the output of the detector.

Loop method
Specify the AGC loop implementation that the block uses. The default is Linear.

When you select Linear, the AGC uses the direct value of the detector output to
determine the gain value. Typically, a linear loop responds quickly to increases in the
input signal level. However, the loop’s response to decreases in the input signal level
tends to be slow.

When you select Logarithmic, the AGC uses the logarithm of the detector output to
determine the gain value. Logarithmic loops respond to decreases in the input signal
level much more quickly than linear loops.

Period of gain updates in samples
Specify the period of the gain updates as a double- or single-precision, real, integer-
valued scalar. The default is 100.

The number of input samples must be an integer multiple of this parameter value.
Setting the period greater than 1 increases the speed of the AGC algorithm.

If you increase the period of the gain updates, you may also need to increase the step
size. Similarly, if you decrease the period of the gain updates, you may also need to
decrease the step size.

Step size
Specify the step size for gain updates as a double- or single-precision, real, positive
scalar. The default is 0.1.

If you increase the loop gain, the AGC responds to changes at the input signal level
faster. However, gain pumping also increase.

 AGC

2-25

If you increase the period of the gain updates, you may also need to increase the step
size. Similarly, if you decrease the period of the gain updates, you may also need to
decrease the step size.

Maximum gain in dB
Specify the maximum gain of the AGC in decibels as a positive scalar. The default is
30.

If the input signal to the AGC has a very low signal level, the AGC gain may increase
rapidly. Use this parameter to limit the gain that the AGC applies to the input
signal.

Enable gain output
Select this check box to enable a secondary block output port. This port displays the
gain that the AGC applies to the input signal.

Algorithms

Linear Loop AGC

In a linear loop AGC, the detector uses its output directly to generate an error signal.
After applying a step size, the AGC passes the error signal to an integrator. The output of
the integrator is used as the variable gain. Linear loop AGCs are limited by their decay,
or slew, characteristics. In other words, they respond to input signal increases much
more quickly than they respond to input signal decreases.

2 Blocks — Alphabetical List

2-26

y n g n x n

e n A z m

g n g n K e n

() () ();

() ();

() () ();

= ◊

= -

+ = + ◊1

where

A represents the reference value, which is 1

K represents the step size

e represents the error signal

g represents the gain

x represents the input signal

y represents the output signal

z represents the detector output

 AGC

2-27

Logarithmic Loop AGC

In a logarithmic loop AGC, the logarithm of the ratio of the detector output and the
reference signal represents the error signal. A logarithmic loop uses the exponential of
the integrator output as the gain signal. Logarithmic loop AGCs have the same response
time to both increases or decreases to the input signal amplitude.

The logarithmic loop has longer attack and decay times. However, the gain pumping of
the logarithmic loop is better than that of the linear loop.

2 Blocks — Alphabetical List

2-28

y n e x n

e n ln A z m

g n g n K e n

g n
() ();

() () ln(());

() () ();

()
= ◊

= -

+ = + ◊1

where

A represents the reference value, which is 1

K represents the step size

e represents the error signal

g represents the gain

x represents the input signal

y represents the output signal

z represents the detector output

AGC Detector

Two AGC detectors are available:

Rectifier

z = |y| when the detector represents a rectifier

z m
N

y n
n mN

m N
() ()

()
=

=

+ -

Â
1 1 1

where N represents the period of the gain updates

Square Law

z = |y|2 represents the square law detector

z m
N

y n
n mN

m N
() ()

()
=

=

+ -

Â
1 21 1

 AGC

2-29

where N represents the period of the gain updates

Performance Considerations

There are three performance criteria for AGCs:

• Attack time: The duration it takes the AGC to respond to an increase in the input
amplitude.

• Decay time: The duration it takes the AGC to respond to a decrease in the input
amplitude.

• Gain pumping: The variation in the gain value during steady-state operation.

Increasing the step size decreases the attack time and decay times, but it also increases
gain pumping.

Examples

• To open an example that adaptively adjusts the received signal amplitude to
approximately 1 volt, type doc_agc_received_signal_amplitude at the
MATLAB command line.

• To open an example that compare the performance of an AGC with a rectifier detector
and a square law detector, type doc_agc_compare_rectifier_and_square_law
at the MATLAB command line.

• Top open an example that plots the effect of step size on AGC performance, type
doc_agc_plot_step_size at the MATLAB command line.

• To open an example that plots the effect of maximum gain on burst signals, type
doc_agc_plot_max_gain at the MATLAB command line.

See Also
comm.AGC

2 Blocks — Alphabetical List

2-30

AWGN Channel

Add white Gaussian noise to input signal

Library

Channels

Description

The AWGN Channel block adds white Gaussian noise to a real or complex input signal.
When the input signal is real, this block adds real Gaussian noise and produces a real
output signal. When the input signal is complex, this block adds complex Gaussian noise
and produces a complex output signal. This block inherits its sample time from the input
signal.

This block accepts a scalar-valued, vector, or matrix input signal with a data type of type
single or double. The output signal inherits port data types from the signals that drive
the block.

Note: All values of power assume a nominal impedance of 1 ohm.

Signal Processing and Input Dimensions

This block can process multichannel signals. When you set the Input Processing
parameter to Columns as channels (frame based), the block accepts an M-
by-N input signal. M specifies the number of samples per channel and N specifies the
number of channels. Both M and N can be equal to 1. The block adds frames of length-M
Gaussian noise to each of the N channels, using a distinct random distribution per
channel.

 AWGN Channel

2-31

Specifying the Variance Directly or Indirectly

You can specify the variance of the noise generated by the AWGN Channel block using
one of these modes:

• Signal to noise ratio (Eb/No), where the block calculates the variance from
these quantities that you specify in the dialog box:

• Eb/No, the ratio of bit energy to noise power spectral density
• Number of bits per symbol
• Input signal power, the actual power of the symbols at the input of the block
• Symbol period

• Signal to noise ratio (Es/No), where the block calculates the variance from
these quantities that you specify in the dialog box:

• Es/No, the ratio of signal energy to noise power spectral density
• Input signal power, the actual power of the symbols at the input of the block
• Symbol period

• Signal to noise ratio (SNR), where the block calculates the variance from
these quantities that you specify in the dialog box:

• SNR, the ratio of signal power to noise power
• Input signal power, the actual power of the samples at the input of the block

• Variance from mask, where you specify the variance in the dialog box. The value
must be positive.

• Variance from port, where you provide the variance as an input to the block. The
variance input must be positive, and its sampling rate must equal that of the input
signal.

Changing the symbol period in the AWGN Channel block affects the variance of the noise
added per sample, which also causes a change in the final error rate.

NoiseVariance
SignalPower SymbolPeriod

SampleTime

Es No
=

¥

¥10 10

/

A good rule of thumb for selecting the Symbol period value is to set it to be what you
model as the symbol period in the model. The value would depend upon what constitutes

2 Blocks — Alphabetical List

2-32

a symbol and what the oversampling applied to it is (e.g., a symbol could have 3 bits and
be oversampled by 4).

In both Variance from mask mode and Variance from port mode, these rules
describe how the block interprets the variance:

• If the variance is a scalar, then all signal channels are uncorrelated but share the
same variance.

• If the variance is a vector whose length is the number of channels in the input signal,
then each element represents the variance of the corresponding signal channel.

Note If you apply complex input signals to the AWGN Channel block, then it adds
complex zero-mean Gaussian noise with the calculated or specified variance. The
variance of each of the quadrature components of the complex noise is half of the
calculated or specified value.

Relationship Among Eb/No, Es/No, and SNR Modes

For uncoded complex input signals, the AWGN Channel block relates Eb/N0, Es/N0, and
SNR according to the following equations:
Es/N0 = (Tsym/Tsamp) · SNR
Es/N0 = Eb/N0 + 10log10(k) in dB

where

• Es = Signal energy (Joules)
• Eb = Bit energy (Joules)
• N0 = Noise power spectral density (Watts/Hz)
• Tsym is the Symbol period parameter of the block in Es/No mode
• k is the number of information bits per input symbol
• Tsamp is the inherited sample time of the block, in seconds

For real signal inputs, the AWGN Channel block relates Es/N0 and SNR according to the
following equation:
Es/N0 = 0.5 (Tsym/Tsamp) · SNR

 AWGN Channel

2-33

Note that the equation for the real case differs from the corresponding equation for the
complex case by a factor of 2. This is so because the block uses a noise power spectral
density of N0/2 Watts/Hz for real input signals, versus N0 Watts/Hz for complex signals.

For more information about these quantities, see “AWGN Channel Noise Level” in the
Communications System Toolbox documentation.

Tunable Block Parameters

The following table indicates which parameters are tunable, for different block modes.

Mode Tunable Parameters

Eb/No Eb/No, Input signal power
Es/No Es/No, Input signal power
SNR SNR, Input signal power
Variance from mask Variance

You can tune parameters in normal mode, Accelerator mode and the Rapid Accelerator
mode.

If you use the Simulink Coder™ rapid simulation (RSIM) target to build an RSIM
executable, then you can tune the parameters listed in the previous table without
recompiling the model. This is useful for Monte Carlo simulations in which you run the
simulation multiple times (perhaps on multiple computers) with different amounts of
noise.

2 Blocks — Alphabetical List

2-34

Dialog Box

Input processing
Specify how the block processes the input signal. You can set this parameter to one of
the following options:

• Columns as channels (frame based) — When you select this option, the
block treats each column of the input as a separate channel.

 AWGN Channel

2-35

Note: The Inherited (this choice will be removed - see release
notes) option will be removed in a future release. See “Frame-Based Processing” in
the Communications System Toolbox Release Notes for more information.

Initial seed
The seed for the Gaussian noise generator.

This block uses the DSP System Toolbox Random Source block to generate noise.
Random numbers are generated using the Ziggurat method. The Initial seed
parameter in this block initializes the noise generator. Initial seed can be either a
scalar or a vector with a length that matches the number of channels in the input
signal. Each time you run a simulation, this block outputs the same signal. The first
time you run the simulation, the block randomly selects an initial seed. The block
reuses the same initial seeds every time you rerun the simulation.

This property is a tunable and allows you to specify different seed values for each
DLL build.

Mode
The mode by which you specify the noise variance: Signal to noise ratio (Eb/
No), Signal to noise ratio (Es/No), Signal to noise ratio (SNR),
Variance from mask, or Variance from port.

Eb/No (dB)
The ratio of information (i.e., without channel coding) bit energy per symbol to noise
power spectral density, in decibels. This field appears only if Mode is set to Eb/No.

Es/No (dB)
The ratio of information (i.e., without channel coding) symbol energy per symbol to
noise power spectral density, in decibels. This field appears only if Mode is set to Es/
No.

SNR (dB)
The ratio of signal power to noise power, in decibels. This field appears only if Mode
is set to SNR.

Number of bits per symbol
The number of bits in each input symbol. This field appears only if Mode is set to
Eb/No.

Input signal power, referenced to 1 ohm (watts)

2 Blocks — Alphabetical List

2-36

The mean square power of the input symbols (if Mode is Eb/No or Es/No) or input
samples (if Mode is SNR), in watts. This field appears only if Mode is set to Eb/No,
Es/No, or SNR.

Symbol period (s)
The duration of an information channel (i.e., without channel coding) symbol, in
seconds. This field appears only if Mode is set to Eb/No or Es/No.

Variance
The variance of the white Gaussian noise. This field appears only if Mode is set to
Variance from mask.

Examples

Many documentation examples use this block, including:

• “Gray Coded 8-PSK” (Eb/No mode)
• “LLR vs. Hard Decision Demodulation” (Variance from port mode)
•
• “Reed Solomon Examples with Shortening, Puncturing, and Erasures”

See Also

Random Source (DSP System Toolbox documentation)

Reference

[1] Proakis, John G., Digital Communications, 4th Ed., McGraw-Hill, 2001.

 Barker Code Generator

2-37

Barker Code Generator
Generate Barker Code

Library

Sequence Generators sublibrary of Comm Sources

Description

Barker codes, which are subsets of PN sequences, are commonly used for frame
synchronization in digital communication systems. Barker codes have length at most 13
and have low correlation sidelobes. A correlation sidelobe is the correlation of a codeword
with a time-shifted version of itself. The correlation sidelobe, Ck, for a k-symbol shift of
an N-bit code sequence, {Xj}, is given by

C X Xk j j k

j

N k

= +

=

-

Â
1

where Xj is an individual code symbol taking values +1 or -1 for j=1, 2, 3,..., N, and the
adjacent symbols are assumed to be zero.

The Barker Code Generator block provides the codes listed in the following table:

Code length Barker Code

1 [-1]

2 [-1 1];

3 [-1 -1 1]

4 [-1 -1 1 -1]

5 [-1 -1 -1 1 -1]

7 [-1 -1 -1 1 1 -1 1]

2 Blocks — Alphabetical List

2-38

Code length Barker Code

11 [-1 -1 -1 1 1 1 -1 1 1 -1 1]

13 [-1 -1 -1 -1 -1 1 1 -1 -1 1 -1 1 -1]

Dialog Box

Code length
The length of the Barker code.

Sample time
Period of each element of the output signal.

Frame-based outputs
Determines whether the block's output is frame-based or sample-based.

Samples per frame
The number of samples in a frame-based output signal. This field appears if you
select Frame-based outputs.

Output data type

 Barker Code Generator

2-39

The output type of the block can be specified as an int8 or double. By default, the
block sets this to double.

See Also

PN Sequence Generator

2 Blocks — Alphabetical List

2-40

Baseband PLL
Implement baseband phase-locked loop

Library

Components sublibrary of Synchronization

Description

The Baseband PLL (phase-locked loop) block is a feedback control system that
automatically adjusts the phase of a locally generated signal to match the phase of an
input signal. Unlike the Phase-Locked Loop block, this block uses a baseband method
and does not depend on a carrier frequency.

This PLL has these three components:

• An integrator used as a phase detector.
• A filter. You specify the filter's transfer function using the Lowpass filter

numerator and Lowpass filter denominator parameters. Each is a vector that
gives the respective polynomial's coefficients in order of descending powers of s.

To design a filter, you can use the Signal Processing Toolbox™ functions cheby1, and
cheby2. The default filter is a Chebyshev type II filter whose transfer function arises
from the command below.

[num, den] = cheby2(3,40,100,'s')

• A voltage-controlled oscillator (VCO). You specify the sensitivity of the VCO signal
to its input using the VCO input sensitivity parameter. This parameter, measured
in Hertz per volt, is a scale factor that determines how much the VCO shifts from its
quiescent frequency.

This block accepts a sample-based scalar signal. The input signal represents the received
signal. The three output ports produce:

• The output of the filter

 Baseband PLL

2-41

• The output of the phase detector
• The output of the VCO

This model is nonlinear; for a linearized version, use the Linearized Baseband PLL block.

Dialog Box

Lowpass filter numerator
The numerator of the lowpass filter's transfer function, represented as a vector that
lists the coefficients in order of descending powers of s.

Lowpass filter denominator
The denominator of the lowpass filter's transfer function, represented as a vector that
lists the coefficients in order of descending powers of s.

VCO input sensitivity (Hz/V)
This value scales the input to the VCO and, consequently, the shift from the VCO's
quiescent frequency.

2 Blocks — Alphabetical List

2-42

See Also

Linearized Baseband PLL, Phase-Locked Loop

References

For more information about phase-locked loops, see the works listed in “Selected
Bibliography for Synchronization” in Communications System Toolbox User's Guide.

 BCH Decoder

2-43

BCH Decoder
Decode BCH code to recover binary vector data

Library

Block sublibrary of Error Detection and Correction

Description

The BCH Decoder block recovers a binary message vector from a binary BCH codeword
vector. For proper decoding, the first two parameter values in this block should match
the parameters in the corresponding BCH Encoder block.

This block accepts a column vector input signal with an integer multiple of (N - the
number of punctures) elements. Each group of N input elements represents one codeword
to be decoded. The values of (N + shortening length) and (K + shortening length) must
produce a valid narrow-sense BCH code.

If the decoder is processing multiple codewords per frame, then the same puncture
pattern holds for all codewords.

For a given codeword length N, only specific message lengths K are valid for a BCH
code. For a full length BCH code, N must be of the form 2M-1, where 3 16£ £M . If N is
less than 2M-1, the block assumes that the code has been shortened by length 2M - 1 - N.
However, if N is greater than or equal to 2M-1, Primitive polynomial must be specified
to appropriately set the value of M.

No known analytic formula describes the relationship among the codeword length,
message length, and error-correction capability. For a list of some valid values of K
corresponding to values of N up to 511, see the BCH Encoder reference page in the
Communications System Toolbox documentation.

The primitive and generator polynomials may be specified in their respective fields,
which appear after selecting their corresponding check boxes.

2 Blocks — Alphabetical List

2-44

To have the block output error information, select Output number of corrected
errors. Selecting this option causes a second output port to appear. The second output
is the number of errors detected during decoding of the codeword. A negative integer
indicates that the block detected more errors than it could correct using the coding
scheme.

In the case of a decoder failure, the message portion of the decoder input is returned
unchanged as the decoder output.

The sample times of all input and output signals are equal.

For information about the data types each block port supports, see the “Supported Data
Type” on page 2-47 table on this page.

Punctured Codes

This block supports puncturing when you select Punctured code. This selection
enables the Puncture vector parameter, which takes in a binary vector to specify the
puncturing pattern. For a puncture vector, 1 represents that the data symbol passes
unaltered, and 0 represents that the data symbol gets punctured, or removed, from the
data stream. This convention applies for both the encoder and the decoder. For more
information, see “Shortening, Puncturing, and Erasures”.

Note: 1s and 0s have precisely opposite meanings for the puncture and erasure vectors.
For an erasure vector, 1 means that the data symbol is to be replaced with an erasure
symbol, and 0 means that the data symbol is passed unaltered. This convention is carried
for both the encoder and the decoder.

 BCH Decoder

2-45

Dialog Box

Codeword length, N
The codeword length.

Message length, K
The message length.

Specify primitive polynomial
Selecting this check box enables the Primitive polynomial field.

Primitive polynomial

2 Blocks — Alphabetical List

2-46

A row vector that represents the binary coefficients of the primitive polynomial in
order of descending powers.

This field defaults to de2bi(primpoly(4, 'nodisplay'), 'left-msb'),
corresponding to a (15,5) code.

This parameter appears only when you select Specify primitive polynomial.
Specify generator polynomial

Selecting this check box enables the Generator polynomial field.
Generator polynomial

A row vector that represents the binary coefficients of the generator polynomial in
order of descending powers.

The length of the Generator polynomial must be N-K+1.

This field defaults to bchgenpoly(15,5).

This parameter appears only when you select Specify generator polynomial.
Disable generator polynomial checking

Each time a model initializes, the block performs a polynomial check. This check
verifies that X N + 1 is divisible by the user-defined generator polynomial, where N
represents the full code word length. Selecting this check box disables the polynomial
check. For larger codes, disabling the check speeds up the simulation process. You
should always run the check at least once before disabling this feature.

This check box appears only when you select Specify generator polynomial.
Puncture code

Selecting this check box enables the field Puncture vector.
Puncture vector

This parameter appears only when you select Puncture code.

A column vector of length N-K. In the Puncture vector, a value of 1 represents
that the data symbol passes unaltered, and 0 represents that the data symbol gets
punctured, or removed, from the data stream.

The default value is [ones(8,1); zeros(2,1)].
Enable erasures input port

 BCH Decoder

2-47

Selecting this check box will open the Era port.

Through the Era port, you can input a binary column vector the same size as the
codeword input.

Erasure values of 1 correspond to erased bits in the same position in the codeword,
and values of 0 correspond to bits that are not erased.

Output number of corrected errors
Selecting this check box gives the block an additional output port, Err, which
indicates the number of errors the block corrected in the input codeword.

Supported Data Type

Port Supported Data Types

In • Double-precision floating point
• Single-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Out • Double-precision floating point
• Single-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Era • Double-precision floating point
• Boolean

Err • Double-precision floating point
• Single-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

2 Blocks — Alphabetical List

2-48

Pair Block

BCH Encoder

References

[1] Wicker, Stephen B., Error Control Systems for Digital Communication and Storage,
Upper Saddle River, N.J., Prentice Hall, 1995.

[2] Berlekamp, Elwyn R., Algebraic Coding Theory, New York, McGraw-Hill, 1968.

[3] Clark, George C., Jr., and J. Bibb Cain, Error-Correction Coding for Digital
Communications, New York, Plenum Press, 1981.

See Also

bchdec (in Communications System Toolbox documentation)

 BCH Encoder

2-49

BCH Encoder
Create BCH code from binary vector data

Library

Block sublibrary of Error Detection and Correction

Description

The BCH Encoder block creates a BCH code with message length K and codeword length
(N - number of punctures). You specify both N and K directly in the dialog box.

This block accepts a column vector input signal with an integer multiple of K elements.
Each group of K input elements represents one message word to be encoded.

If the encoder is processing multiple codewords per frame, then the same puncture
pattern holds for all codewords.

For a given codeword length N, only specific message lengths K are valid for a BCH
code. For a full length BCH code, N must be of the form 2M-1, where 3 16£ £M . If N is
less than 2M-1, the block assumes that the code has been shortened by length 2M - 1 - N.
However, if N is greater than or equal to 2M-1, Primitive polynomial must be specified
to appropriately set the value of M.

No known analytic formula describes the relationship among the codeword length,
message length, and error-correction capability. The tables below list valid [n,k] pairs for
small values of n, as well as the corresponding values of the error-correction capability, t.

n k t

7 4 1

n k t

15 11 1

2 Blocks — Alphabetical List

2-50

n k t

15 7 2
15 5 3

n k t

31 26 1
31 21 2
31 16 3
31 11 5
31 6 7

n k t

63 57 1
63 51 2
63 45 3
63 39 4
63 36 5
63 30 6
63 24 7
63 18 10
63 16 11
63 10 13
63 7 15

n k t

127 120 1
127 113 2
127 106 3
127 99 4
127 92 5

 BCH Encoder

2-51

n k t

127 85 6
127 78 7
127 71 9
127 64 10
127 57 11
127 50 13
127 43 14
127 36 15
127 29 21
127 22 23
127 15 27
127 8 31

n k t

255 247 1
255 239 2
255 231 3
255 223 4
255 215 5
255 207 6
255 199 7
255 191 8
255 187 9
255 179 10
255 171 11
255 163 12
255 155 13
255 147 14

2 Blocks — Alphabetical List

2-52

n k t

255 139 15
255 131 18
255 123 19
255 115 21
255 107 22
255 99 23
255 91 25
255 87 26
255 79 27
255 71 29
255 63 30
255 55 31
255 47 42
255 45 43
255 37 45
255 29 47
255 21 55
255 13 59
255 9 63

n k t

511 502 1
511 493 2
511 484 3
511 475 4
511 466 5
511 457 6
511 448 7

 BCH Encoder

2-53

n k t

511 439 8
511 430 9
511 421 10
511 412 11
511 403 12
511 394 13
511 385 14
511 376 15
511 367 16
511 358 18
511 349 19
511 340 20
511 331 21
511 322 22
511 313 23
511 304 25
511 295 26
511 286 27
511 277 28
511 268 29
511 259 30
511 250 31
511 241 36
511 238 37
511 229 38
511 220 39
511 211 41
511 202 42

2 Blocks — Alphabetical List

2-54

n k t

511 193 43
511 184 45
511 175 46
511 166 47
511 157 51
511 148 53
511 139 54
511 130 55
511 121 58
511 112 59
511 103 61
511 94 62
511 85 63
511 76 85
511 67 87
511 58 91
511 49 93
511 40 95
511 31 109
511 28 111
511 19 119
511 10 121

The primitive and generator polynomials may be specified in their respective fields,
which appear after selecting their corresponding check boxes.

For information about the data types each block port supports, see the “Supported Data
Type” on page 2-57 table on this page.

 BCH Encoder

2-55

Puncture Codes

This block supports puncturing when you select the Puncture code parameter. This
selection enables the Puncture vector parameter, which takes in a binary vector to
specify the puncturing pattern. For a puncture vector, 1 represents that the data symbol
passes unaltered, and 0 represents that the data symbol gets punctured, or removed,
from the data stream. This convention is carried for both the encoder and the decoder.
For more information, see “Shortening, Puncturing, and Erasures”.

Note: 1s and 0s have precisely opposite meanings for the puncture and erasure vectors.
For an erasure vector, 1 means that the data symbol is to be replaced with an erasure
symbol, and 0 means that the data symbol is passed unaltered. This convention is carried
for both the encoder and the decoder.

2 Blocks — Alphabetical List

2-56

Dialog Box

Codeword length, N
The codeword length.

Message length, K
The message length.

Specify primitive polynomial
Selecting this check box enables the Primitive polynomial field.

Primitive polynomial
A row vector that represents the binary coefficients of the primitive polynomial in
order of descending powers.

 BCH Encoder

2-57

This field defaults to de2bi(primpoly(4, 'nodisplay'), 'left-msb'),
corresponding to a (15,5) code.

This parameter applies only when you select Specify primitive polynomial.
Specify generator polynomial

Selecting this check box enables the Generator polynomial field.
Generator polynomial

A row vector that represents the binary coefficients of the generator polynomial in
order of descending powers.

The length of the Generator polynomial must be N-K+1.

This field defaults to bchgenpoly(15,5).

This parameter applies only when you select Specify generator polynomial.
Disable generator polynomial checking

This check box appears only when you select Specify generator polynomial.

Each time a model initializes, the block performs a polynomial check. This check
verifies that X N + 1 is divisible by the user-defined generator polynomial, where N
represents the full code word length. Selecting this check box disables the polynomial
check. For larger codes, disabling the check speeds up the simulation process. You
should always run the check at least once before disabling this feature.

Puncture code
Selecting this check box enables the Puncture vector field.

Puncture vector
A column vector of length N-K. In the Puncture vector, a value of 1 represents
that the data symbol passes unaltered, and 0 represents that the data symbol gets
punctured, or removed, from the data stream.

The field defaults to [ones(8,1); zeros(2,1)].

This parameter applies only when you select Puncture code.

Supported Data Type
Port Supported Data Types

In • Double-precision floating point

2 Blocks — Alphabetical List

2-58

Port Supported Data Types

• Single-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Out • Double-precision floating point
• Single-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Pair Block

BCH Decoder

References

[1] Clark, George C., Jr., and J. Bibb Cain, Error-Correction Coding for Digital
Communications, New York, Plenum Press, 1981.

See Also

bchenc (in Communications System Toolbox documentation)

 Bernoulli Binary Generator

2-59

Bernoulli Binary Generator

Generate Bernoulli-distributed random binary numbers

Library

Random Data Sources sublibrary of Comm Sources

Description

The Bernoulli Binary Generator block generates random binary numbers using a
Bernoulli distribution. The Bernoulli distribution with parameter p produces zero with
probability p and one with probability 1-p. The Bernoulli distribution has mean value 1-
p and variance p(1-p). The Probability of a zero parameter specifies p, and can be any
real number between zero and one.

Attributes of Output Signal

The output signal can be a frame-based matrix, a sample-based row or column vector, or
a sample-based one-dimensional array. These attributes are controlled by the Frame-
based outputs, Samples per frame, and Interpret vector parameters as 1-D
parameters. See “Sources and Sinks” in Communications System Toolbox User's Guide
for more details.

The number of elements in the Initial seed and Probability of a zero parameters
becomes the number of columns in a frame-based output or the number of elements
in a sample-based vector output. Also, the shape (row or column) of the Initial seed
and Probability of a zero parameters becomes the shape of a sample-based two-
dimensional output signal.

2 Blocks — Alphabetical List

2-60

Dialog Box

Probability of a zero
The probability with which a zero output occurs.

Initial seed
The initial seed value for the random number generator. The seed can be either a
vector of the same length as the Probability of a zero parameter, or a scalar.

Sample time
The period of each sample-based vector or each row of a frame-based matrix.

Frame-based outputs
Determines whether the output is frame-based or sample-based. This box is active
only if Interpret vector parameters as 1-D is unchecked.

Samples per frame
The number of samples in each column of a frame-based output signal. This field is
active only if Frame-based outputs is checked.

Interpret vector parameters as 1-D

 Bernoulli Binary Generator

2-61

If this box is checked, then the output is a one-dimensional signal. Otherwise, the
output is a two-dimensional signal. This box is active only if Frame-based outputs
is unchecked.

Output data type
The output type of the block can be specified as a boolean, int8, uint8, int16,
uint16, int32, uint32, single, or double. By default, the block sets this to
double. Single outputs may lead to different results when compared with double
outputs for the same set of parameters.

See Also

Random Integer Generator, Binary Symmetric Channel, randi, rand

2 Blocks — Alphabetical List

2-62

Binary Cyclic Decoder

Decode systematic cyclic code to recover binary vector data

Library

Block sublibrary of Error Detection and Correction

Description

The Binary Cyclic Decoder block recovers a message vector from a codeword vector of a
binary systematic cyclic code. For proper decoding, the parameter values in this block
should match those in the corresponding Binary Cyclic Encoder block.

If the cyclic code has message length K and codeword length N, then N must have the
form 2M-1 for some integer M greater than or equal to 3.

This block accepts a column vector input signal containing N elements. The output signal
is a column vector containing K elements.

You can determine the systematic cyclic coding scheme in one of two ways:

• To create an [N,K] code, enter N and K as the first and second dialog parameters,
respectively. The block computes an appropriate generator polynomial, namely,
cyclpoly(N,K,'min').

• To create a code with codeword length N and a particular degree-(N-K) binary
generator polynomial, enter N as the first parameter and a binary vector as the
second parameter. The vector represents the generator polynomial by listing
its coefficients in order of ascending exponents. You can create cyclic generator
polynomials using the Communications System Toolbox cyclpoly function.

For information about the data types each block port supports, see the “Supported Data
Type” on page 2-63 table on this page.

 Binary Cyclic Decoder

2-63

Dialog Box

Codeword length N
The codeword length N, which is also the input vector length.

Message length K, or generator polynomial
Either the message length, which is also the output vector length; or a binary vector
that represents the generator polynomial for the code.

Supported Data Type

Port Supported Data Types

In • Double-precision floating point
• Single-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers
• Fixed-point

2 Blocks — Alphabetical List

2-64

Port Supported Data Types

Out • Double-precision floating point
• Single-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers
• Fixed-point

Pair Block

Binary Cyclic Encoder

See Also

cyclpoly (Communications Toolbox)

 Binary Cyclic Encoder

2-65

Binary Cyclic Encoder

Create systematic cyclic code from binary vector data

Library

Block sublibrary of Error Detection and Correction

Description

The Binary Cyclic Encoder block creates a systematic cyclic code with message length K
and codeword length N. The number N must have the form 2M-1, where M is an integer
greater than or equal to 3.

This block accepts a column vector input signal containing K elements. The out put
signal is a column vector containing N elements.

You can determine the systematic cyclic coding scheme in one of two ways:

• To create an [N,K] code, enter N and K as the first and second dialog parameters,
respectively. The block computes an appropriate generator polynomial, namely,
cyclpoly(N,K,'min').

• To create a code with codeword length N and a particular degree-(N-K) binary
generator polynomial, enter N as the first parameter and a binary vector as the
second parameter. The vector represents the generator polynomial by listing
its coefficients in order of ascending exponents. You can create cyclic generator
polynomials using the Communications System Toolbox cyclpoly function.

For information about the data types each block port supports, see the “Supported Data
Type” on page 2-66 table on this page.

2 Blocks — Alphabetical List

2-66

Dialog Box

Codeword length N
The codeword length, which is also the output vector length.

Message length K, or generator polynomial
Either the message length, which is also the input vector length; or a binary vector
that represents the generator polynomial for the code.

Supported Data Type
Port Supported Data Types

In • Double-precision floating point
• Single-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers
• Fixed-point

 Binary Cyclic Encoder

2-67

Port Supported Data Types

Out • Double-precision floating point
• Single-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers
• Fixed-point

Pair Block

Binary Cyclic Decoder

See Also

cyclpoly (in the Communications System Toolbox documentation)

2 Blocks — Alphabetical List

2-68

Binary-Input RS Encoder
Create Reed-Solomon code from binary vector data

Library

Block sublibrary of Error Detection and Correction

Description

The Binary-Input RS Encoder block creates a Reed-Solomon code with message length,
K, and codeword length, (N - number of punctures). You specify both N and K directly in
the dialog box. The symbols for the code are binary sequences of length M, corresponding
to elements of the Galois field GF(2M), where the first bit in each sequence is the most
significant bit. Restrictions on M and N are given in “Restrictions on the M and the
Codeword Length N” on page 2-69 below.

This block can output shortened codewords when N and K are appropriately specified.
To specify output codewords that are shortened by a length S, N and K must be specified
in the dialog box as Nfull – S and Kfull – S, where Nfull and Kfull are the N and K of an
unshortened code. If S Nfull< +()1 2 , the encoder can automatically determine the value
of Nfull and Kfull. However, if S Nfull≥ +()1 2 , Primitive polynomial must be specified
in order to properly define the extension field for the code.

The input and output are binary-valued signals that represent messages and codewords,
respectively. This block accepts a column vector input signal with a length that is an
integer multiple of M*K. This block outputs a column vector with a length that is the
same integer multiple of M*(N - number of punctures). The block inherits the output data
type from the input. For information about the data types each block port supports, see
the “Supported Data Type” on page 2-72 table on this page.

For more information on representing data for Reed-Solomon codes, see the section
“Integer Format (Reed-Solomon Only)” in Communications System Toolbox User's Guide.

If the encoder is processing multiple codewords per frame, then the same puncture
pattern holds for all codewords.

 Binary-Input RS Encoder

2-69

The default value of M is the smallest integer that is greater than or equal to log2(N
+1), that is, ceil(log2(N+1)). You can change the value of M from the default by
specifying the primitive polynomial for GF(2M), as described in “Specifying the Primitive
Polynomial” on page 2-69 below. If N is less than 2M-1, the block assumes that the
code has been shortened by length 2M - 1 - N.

Each M*K input bits represent K integers between 0 and 2M-1. Similarly, each M*(N
- number of punctures) output bits represent N integers between 0 and 2M-1. These
integers in turn represent elements of the Galois field GF(2M).

An (N,K) Reed-Solomon code can correct up to floor((N-K)/2) symbol errors (not bit
errors) in each codeword.

Specifying the Primitive Polynomial

You can specify the primitive polynomial that defines the finite field GF(2M),
corresponding to the integers that form messages and codewords. To do so, first select
Specify primitive polynomial. Then, set Primitive polynomial to a binary row
vector that represents a primitive polynomial over GF(2) of degree M, in descending
order of powers. For example, to specify the polynomial x3+x+1, enter the vector [1 0 1
1].

If you do not select Specify primitive polynomial, the block uses the default primitive
polynomial of degree M = ceil(log2(N+1)). You can display the default polynomial by
entering primpoly(ceil(log2(N+1))) at the MATLAB prompt.

Restrictions on the M and the Codeword Length N

The restrictions on the degree M of the primitive polynomial and the codeword length N
are as follows:

• If you do not select Specify primitive polynomial, N must lie in the range 7< N ≤
216–1.

• If you do select Specify primitive polynomial, N must lie in the range 7 ≤ N ≤ 216–1
and M must lie in the range 3 ≤ M ≤ 16.

2 Blocks — Alphabetical List

2-70

Specifying the Generator Polynomial

You can specify the generator polynomial for the Reed-Solomon code. To do so, first select
Specify generator polynomial. Then, in the Generator polynomial field, enter
an integer row vector whose entries are between 0 and 2M-1. The vector represents a
polynomial, in descending order of powers, whose coefficients are elements of GF(2M)
represented in integer format. See the section “Integer Format (Reed-Solomon Only)”
for more information about integer format. The generator polynomial must be equal to a
polynomial with a factored form
g(x) = (x+Ab)(x+Ab+1)(x+Ab+2)...(x+Ab+N-K-1)

where A is the primitive element of the Galois field over which the input message is
defined, and b is a non-negative integer.

If you do not select Specify generator polynomial, the block uses the default
generator polynomial, corresponding to b=1, for Reed-Solomon encoding. You can
display the default generator polynomial by entering rsgenpoly(N1,K1), where
N1=2^M-1 and K1=K+(N1-N), at the MATLAB prompt, if you are using the default
primitive polynomial. If the Specify primitive polynomial box is selected, and you
specify the primitive polynomial specified as poly, the default generator polynomial is
rsgenpoly(N1,K1,poly).

Puncture Codes

The block supports puncturing when you select the Puncture code parameter. This
enables the Puncture vector parameter, which takes in a binary vector to specify the
puncturing pattern. For a puncture vector, 1 represents that the data symbol passes
unaltered, and 0 represents that the data symbol gets punctured, or removed, from the
data stream. This convention is carried for both the encoder and the decoder. For more
information, see “Shortening, Puncturing, and Erasures”.

Examples

Suppose M = 3, N = 23-1 = 7, and K = 5. Then a message is a binary vector of length
15 that represents 5 three-bit integers. A corresponding codeword is a binary vector of
length 21 that represents 7 three-bit integers. The following figure shows the codeword
that would result from a particular message word. The integer format equivalents
illustrate that the highest order bit is at the left.

 Binary-Input RS Encoder

2-71

Message input:

Binary-Input RS Encoder
with N = 7, K = 5

[]0 1 1 1 1 1 0

[0 1 1 1 1 1 0

0 1 0 0 0 0 0 1][
in integer format
3 7 1 0 1

Code output:]0 0 1 0 0 0 0 0 1 0 1 1 0 1 1 [
in integer format
3 7 1 0 1]3 3

Dialog Box

Codeword length N
The codeword length. The output has vector length NC*M*(N - NP), where NC is the
number of codewords being output, and NP is the number of punctures per codeword.

2 Blocks — Alphabetical List

2-72

Message length K
The message length. The input has vector length NM*M*K, where NM is the number
of messages per frame being input.

Specify primitive polynomial
Selecting this check box enables the field Primitive polynomial.

Primitive polynomial
This field is available only when Specify primitive polynomial is selected.

Binary row vector representing the primitive polynomial in descending order of
powers.

Specify generator polynomial
Selecting this check box enables the field Generator polynomial.

Generator polynomial
This field is available only when Specify generator polynomial is selected.

Integer row vector, whose entries are in the range from 0 to 2M-1, representing the
generator polynomial in descending order of powers.

Puncture code
Selecting this check box enables the field Puncture vector.

Puncture vector
This field is available only when Puncture code is selected.

A column vector of length N-K. A value of 1 in the Puncture vector corresponds to
an M-bit symbol that is not punctured, and a 0 corresponds to an M-bit symbol that
is punctured.

The default value is [ones(2,1); zeros(2,1)].
Output data type

The output type of the block can be specified as Same as input, boolean, or
double. By default, the block sets this to Same as input.

Supported Data Type

Port Supported Data Types

In • Double-precision floating point

 Binary-Input RS Encoder

2-73

Port Supported Data Types

• Single-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers
• 1-bit unsigned integer (ufix(1))

Out • Double-precision floating point
• Single-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers
• 1-bit unsigned integer (ufix(1))

Pair Block

Binary-Output RS Decoder

See Also

Integer-Input RS Encoder

2 Blocks — Alphabetical List

2-74

Binary Linear Decoder

Decode linear block code to recover binary vector data

Library

Block sublibrary of Error Detection and Correction

Description

The Binary Linear Decoder block recovers a binary message vector from a binary
codeword vector of a linear block code.

The Generator matrix parameter is the generator matrix for the block code. For proper
decoding, this should match the Generator matrix parameter in the corresponding
Binary Linear Encoder block. If N is the codeword length of the code, then Generator
matrix must have N columns. If K is the message length of the code, then the
Generator matrix parameter must have K rows.

This block accepts a column vector input signal containing N elements. This block
outputs a column vector with a length of K elements.

The decoder tries to correct errors, using the Decoding table parameter. If
Decoding table is the scalar 0, then the block defaults to the table produced by the
Communications System Toolbox function syndtable. Otherwise, Decoding table
must be a 2N-K-by-N binary matrix. The rth row of this matrix is the correction vector for
a received binary codeword whose syndrome has decimal integer value r-1. The syndrome
of a received codeword is its product with the transpose of the parity-check matrix.

For information about the data types each block port supports, see the “Supported Data
Type” on page 2-75 table on this page.

 Binary Linear Decoder

2-75

Dialog Box

Generator matrix
Generator matrix for the code; same as in Binary Linear Encoder block.

Decoding table

Either a 2N-K-by-N matrix that lists correction vectors for each codeword's syndrome;
or the scalar 0, in which case the block defaults to the table corresponding to the
Generator matrix parameter.

Supported Data Type

Port Supported Data Types

In • Double-precision floating point
• Single-precision floating point

2 Blocks — Alphabetical List

2-76

Port Supported Data Types

• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers
• Fixed-point

Out • Double-precision floating point
• Single-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers
• Fixed-point

Pair Block

Binary Linear Encoder

 Binary Linear Encoder

2-77

Binary Linear Encoder

Create linear block code from binary vector data

Library

Block sublibrary of Error Detection and Correction

Description

The Binary Linear Encoder block creates a binary linear block code using a generator
matrix that you specify. If K is the message length of the code, then the Generator
matrix parameter must have K rows. If N is the codeword length of the code, then
Generator matrix must have N columns.

This block accepts a column vector input signal containing K elements. This block
outputs a column vector with a length of N elements. For information about the data
types each block port supports, see “Supported Data Type” on page 2-78.

2 Blocks — Alphabetical List

2-78

Dialog Box

Generator matrix
A K-by-N matrix, where K is the message length and N is the codeword length.

Supported Data Type

Port Supported Data Types

In • Double-precision floating point
• Single-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers
• Fixed-point

Out • Double-precision floating point
• Single-precision floating point
• Boolean

 Binary Linear Encoder

2-79

Port Supported Data Types

• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers
• Fixed-point

Pair Block

Binary Linear Decoder

2 Blocks — Alphabetical List

2-80

Binary-Output RS Decoder
Decode Reed-Solomon code to recover binary vector data

Library

Block sublibrary of Error Detection and Correction

Description

The Binary-Output RS Decoder block recovers a binary message vector from a binary
Reed-Solomon codeword vector. For proper decoding, the parameter values in this block
should match those in the corresponding Binary-Input RS Encoder block.

The Reed-Solomon code has message length, K, and codeword length, (N - number of
punctures). You specify both N and K directly in the dialog box. The symbols for the code
are binary sequences of length M, corresponding to elements of the Galois field GF(2M),
where the first bit in each sequence is the most significant bit. Restrictions on M and N
are described in “Restrictions on the M and the Codeword Length N” on page 2-69.

This block can output shortened codewords when N and K are appropriately specified.
To specify output codewords that are shortened by a length S, N and K must be specified
in the dialog box as Nfull – S and Kfull – S, where Nfull and Kfull are the N and K of an
unshortened code. If S Nfull< +()1 2 , the encoder can automatically determine the value
of Nfull and Kfull. However, if S Nfull≥ +()1 2 , Primitive polynomial must be specified
in order to properly define the extension field for the code.

The input and output are binary-valued signals that represent codewords and messages,
respectively. This block accepts a column vector input signal with a length that is an
integer multiple of M * (N - number of punctures). This block outputs a column vector
with a length that is the same integer multiple of M*K. The output signal inherits its
data type from the input signal. For information about the data types each block port
supports, see the “Supported Data Type” on page 2-84 table on this page.

 Binary-Output RS Decoder

2-81

For more information on representing data for Reed-Solomon codes, see “Integer Format
(Reed-Solomon Only)” in Communications System Toolbox User's Guide.

If the decoder is processing multiple codewords per frame, then the same puncture
pattern holds for all codewords.

The default value of M is ceil(log2(N+1)), that is, the smallest integer greater than
or equal to log2(N+1). You can change the value of M from the default by specifying the
primitive polynomial for GF(2M), as described in “Specifying the Primitive Polynomial” on
page 2-69 below. If N is less than 2M-1, the block uses a shortened Reed-Solomon code.

You can also specify the generator polynomial for the Reed-Solomon code, as described in
“Specifying the Generator Polynomial” on page 2-70.

Each M*K input bits represent K integers between 0 and 2M-1. Similarly, each M*(N
- number of punctures) output bits represent N integers between 0 and 2M-1. These
integers in turn represent elements of the Galois field GF(2M).

The second output is a vector of the number of errors detected during decoding of the
codeword. A -1 indicates that the block detected more errors than it could correct using
the coding scheme. An (N,K) Reed-Solomon code can correct up to floor((N-K)/2)
symbol errors (not bit errors) in each codeword.

You can disable the second output by deselecting Output port for number of
corrected errors. This removes the block's second output port.

Punctured Codes
This block supports puncturing when you select the Punctured code parameter. This
selection enables the Puncture vector parameter, which takes in a binary vector to
specify the puncturing pattern. For a puncture vector, 1 represents that the data symbol
passes unaltered, and 0 represents that the data symbol gets punctured, or removed,
from the data stream. This convention is carried for both the encoder and the decoder.
For more information, see “Shortening, Puncturing, and Erasures”.

Note: 1s and 0s have precisely opposite meanings for the puncture and erasure vectors.
For an erasure vector, 1 means that the data symbol is to be replaced with an erasure
symbol, and 0 means that the data symbol is passed unaltered. This convention is carried
for both the encoder and the decoder.

2 Blocks — Alphabetical List

2-82

Dialog Box

Codeword length N
The codeword length. The input has vector length NC*M*(N - NP), where NC is the
number of codewords being output, and NP is the number of punctures per codeword.

Message length K
The message length. The first output has vector length NM*M*K, where NM is the
number of messages per frame being output.

 Binary-Output RS Decoder

2-83

Specify primitive polynomial
Selecting this check box enables the Primitive polynomial field.

Primitive polynomial
Binary row vector representing the primitive polynomial in descending order of
powers. When you provide a Primitive polynomial, the number of input bits must be
an integer multiple of K times the order of the Primitive polynomial instead.

This parameter applies only when you select Specify primitive polynomial.
Specify generator polynomial

Selecting this check box enables the Generator polynomial field.
Generator polynomial

Integer row vector, whose entries are in the range from 0 to 2M-1, representing the
generator polynomial in descending order of powers. Each coefficient is an element of
the Galois field defined by the primitive polynomial.

This parameter applies only when you select Specify generator polynomial.
Puncture code

Selecting this check box enables the Puncture vector field.
Puncture vector

A column vector of length N-K. For a puncture vector, 1 represents an M-bit symbol
that passes unaltered, and 0 represents an M-bit symbol that gets punctured, or
removed, from the data stream.

The default value is [ones(2,1); zeros(2,1)].

This parameter applies only when you select Punctured code.
Enable erasures input port

Select this check to open the erasures port, Era.

Through the port, you can input a binary column vector that is 1/M times as long as
the codeword input.

Erasure values of 1 correspond to erased symbols in the same position in the bit-
packed codeword, and values of 0 correspond to nonerased symbols.

Output number of corrected errors

2 Blocks — Alphabetical List

2-84

When you select this box, the block outputs the number of corrected errors in each
word through a second output port. A decoding failure occurs when a certain received
word in the input contains more than (N-K)/2 symbol errors. The value -1 indicates
the corresponding position in the second output vector.

Output data type
The output type of the block can be specified as Same as input, boolean, or
double. By default, the block sets this to Same as input.

Supported Data Type

Port Supported Data Types

In • Double-precision floating point
• Single-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers
• 1-bit unsigned integer (ufix(1))

Out • Double-precision floating point
• Single-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers
• 1-bit unsigned integer (ufix(1))

Era • Double-precision floating point
• Boolean

Err • Double-precision floating point

Algorithm

This block uses the Berlekamp-Massey decoding algorithm. For information about this
algorithm, see the references listed below.

 Binary-Output RS Decoder

2-85

Pair Block

Binary-Input RS Encoder

References

[1] Wicker, Stephen B., Error Control Systems for Digital Communication and Storage,
Upper Saddle River, N.J., Prentice Hall, 1995.

[2] Berlekamp, Elwyn R., Algebraic Coding Theory, New York, McGraw-Hill, 1968.

[3] Clark, George C., Jr., and J. Bibb Cain, Error-Correction Coding for Digital
Communications, New York, Plenum Press, 1981.

See Also

Integer-Output RS Decoder

2 Blocks — Alphabetical List

2-86

Binary Symmetric Channel

Introduce binary errors

Library

Channels

Description

The Binary Symmetric Channel block introduces binary errors to the signal transmitted
through this channel.

The input port represents the transmitted binary signal. This block accepts a scalar
or vector input signal. The block processes each vector element independently, and
introduces an error in a given spot with probability Error probability.

This block uses the DSP System Toolbox Random Source block to generate the noise.
The block generates random numbers using the Ziggurat method, which is the same
method used by the MATLAB randn function. The Initial seed parameter in this
block initializes the noise generator. Initial seed can be either a scalar or a vector,
with a length that matches the number of channels in the input signal. For details on
Initial seed, see the Random Source block reference page in the DSP System Toolbox
documentation set.

The first output port is the binary signal the channel processes. The second output port
is the vector of errors the block introduces. To suppress the second output port, clear
Output error vector.

 Binary Symmetric Channel

2-87

Dialog Box

Error probability
The probability that a binary error occurs. Set the value of this parameter between 0
and 1.

Initial seed
The initial seed value for the random number generator.

Output error vector
When you select this box the block outputs the vector of errors.

Output data type
Select the output data type as double or boolean.

Examples

An example using the Binary Symmetric Channel block is in the section “Design a Rate
2/3 Feedforward Encoder Using Simulink”.

2 Blocks — Alphabetical List

2-88

Supported Data Types

Port Supported Data Types

Input • Double-precision floating point
• Single-precision floating point
• Fixed point (signed and unsigned)
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Output • Double-precision floating point
• Boolean

See Also

Bernoulli Binary Generator

 Bipolar to Unipolar Converter

2-89

Bipolar to Unipolar Converter

Map bipolar signal into unipolar signal in range [0, M-1]

Library

Utility Blocks

Description

The Bipolar to Unipolar Converter block maps the bipolar input signal to a unipolar
output signal. If the input consists of integers in the set {-M+1, -M+3, -M+5,..., M-1},
where M is the M-ary number parameter, then the output consists of integers between
0 and M-1. This block is only designed to work when the input value is within the set
{-M+1, -M+3, -M+5,..., M-1}, where M is the M-ary number parameter. If the input
value is outside of this set of integers the output may not be valid.

The table below shows how the block's mapping depends on the Polarity parameter.

Polarity Parameter Value Output Corresponding to Input Value of k

Positive (M-1+k)/2
Negative (M-1-k)/2

2 Blocks — Alphabetical List

2-90

Dialog Box

M-ary number
The number of symbols in the bipolar or unipolar alphabet.

Polarity
A value of Positive causes the block to maintain the relative ordering of symbols in
the alphabets. A value of Negative causes the block to reverse the relative ordering
of symbols in the alphabets.

Output Data Type
The type of bipolar signal produced at the block's output.

The block supports the following output data types:

• Inherit via internal rule

• Same as input

• double

• int8

• uint8

• int16

• uint16

 Bipolar to Unipolar Converter

2-91

• int32

• uint32

• boolean

When the parameter is set to its default setting, Inherit via internal rule, the
block determines the output data type based on the input data type.

• If the input signal is floating-point (either single or double), the output data
type is the same as the input data type.

• If the input data type is not floating-point:

• Based on the M-ary number parameter, the output data type is the ideal
unsigned integer output word length required to contain the range [0 M-1] and
is computed as follows:

ideal word length = ceil(log2(M))
• The block sets the output data type to be an unsigned integer, based on the

smallest word length (in bits) that can fit best the computed ideal word length.

Note: The selections in the “Hardware Implementation” pane pertaining to word
length constraints do not affect how this block determines output data types.

Examples

If the input is [-3; -1; 1; 3], the M-ary number parameter is 4, and the Polarity
parameter is Positive, then the output is [0; 1; 2; 3]. Changing the Polarity parameter
to Negative changes the output to [3; 2; 1; 0].

If the value for the M-ary number is 28 the block gives an output of uint8.

If the value for the M-ary number is 28+1 the block gives an output of uint16.

Pair Block

Unipolar to Bipolar Converter

2 Blocks — Alphabetical List

2-92

Bit to Integer Converter

Map vector of bits to corresponding vector of integers

Library

Utility Blocks

Description

The Bit to Integer Converter block maps groups of bits in the input vector to integers in
the output vector. M defines how many bits are mapped for each output integer.

For unsigned integers, if M is the Number of bits per integer, then the block maps
each group of M bits to an integer between 0 and 2M-1. As a result, the output vector
length is 1/M times the input vector length. For signed integers, if M is the Number of
bits per integer , then the block maps each group of M bits to an integer between –2M-1

and 2M-1-1.

This block accepts a column vector input signal with an integer multiple equal to
the value you specify for Number of bits per integer parameter. The block accepts
double, single, boolean, int8, uint8, int16, uint16, int32, uint32 and ufix1
input data types.

 Bit to Integer Converter

2-93

Dialog Box

Number of bits per integer
The number of input bits that the block maps to each integer of the output. This
parameter must be an integer between 1 and 32.

Input bit order
Defines whether the first bit of the input signal is the most significant bit (MSB) or
the least significant bit (LSB). The default selection is MSB.

After bit packing, treat resulting integer value as
Indicates if the integer value input ranges should be treated as signed or unsigned.
The default setting is Unsigned.

Note: This parameter setting determines which Output data type selections are
available.

Output data type

2 Blocks — Alphabetical List

2-94

If the input values are unsigned integers, you can choose from the following Output
data type options:

• Inherit via internal rule

• Smallest integer

• Same as input

• double

• single

• int8

• uint8

• int16

• uint16

• int32

• uint32

If the input values are signed integers, you can choose from the following Output
data type options:

• Inherit via internal rule

• Smallest integer

• double

• single

• int8

• int16

• int32

The default selection for this parameter is Inherit via internal rule.

When you set the parameter to Inherit via internal rule, the block
determines the output data type based on the input data type.

• If the input signal is floating-point (either double or single), the output data
type is the same as the input data type.

• If the input data type is not floating-point, the output data type is determined as
if the parameter is set to Smallest integer .

 Bit to Integer Converter

2-95

When you set the parameter to Smallest integer, the software selects the output
data type based on the settings used in the “Hardware Implementation” pane of
the Configuration Parameters dialog box.

• If ASIC/FPGA is selected, the output data type is the smallest ideal integer or
fixed-point data type, based on the setting for the Number of bits per integer
parameter.

• For all other selections, the output data type is the smallest available (signed or
unsigned) integer word length that is large enough to fit the ideal minimum bit
size.

Examples

Refer to the example on the Integer to Bit Converter reference page: “Fixed-Point Integer
To Bit and Bit To Integer Conversion (Audio Scrambling and Descrambling Example)”

See Also

bi2de, bin2dec

Pair Block

Integer to Bit Converter

2 Blocks — Alphabetical List

2-96

BPSK Demodulator Baseband

Demodulate BPSK-modulated data

Library

PM, in Digital Baseband sublibrary of Modulation

Description

The BPSK Demodulator Baseband block demodulates a signal that was modulated using
the binary phase shift keying method. The input is a baseband representation of the
modulated signal. This block accepts a scalar or column vector input signal. The input
signal must be be a discrete-time complex signal. The block maps the points exp(jθ) and -
exp(jθ) to 0 and 1, respectively, where θ is the Phase offset parameter.

For information about the data types each block port supports, see “Supported Data
Types” on page 2-103.

 BPSK Demodulator Baseband

2-97

Algorithm

{ , }0 1

output

formatting

(and data

type casting)

constellation

mapping to

symbol index

(simple sign

comparisons)

u

input DT

Output DT

symbol

index

(integer)

I

input DT

Q

Re

Im

{ , }0 1

Hard-Decision BPSK Demodulator Signal Diagram for Trivial Phase Offset (multiple of)

2 Blocks — Alphabetical List

2-98

derotate

input

+

+

-

+

+

+

constellation

mapping to

symbol index

(simple sign

comparisons)

u I input DT

input DT
input DT

input DT

input DT

Q

I

input DT

Q

input DT

input DT

(constant derotate factors)

{ , }0 1

Re

Im

output

formatting

(and data

type casting)

Output DT

symbol

index

(integer)

sin()

cos()

Phase offset

Phase offset

Hard-Decision BPSK Demodulator Floating-Point Signal Diagram for Nontrivial Phase Offset

 BPSK Demodulator Baseband

2-99

derotate

input

+

+

-

+

+

+

constellation

mapping to

symbol index

(simple sign

comparisons)

u I input DT

input DT
input DT

input DT

input DT

Q

I

input DT

Q

Derotate

factor DT

Derotate

factor DT

(constant derotate factors)

(saturate on)

(saturate on)

{ , }0 1

Re

Im

output

formatting

(and data

type casting)

Output DT

symbol

index

(integer)

sin()

cos()

Phase offset

Phase offset

Hard-Decision BPSK Demodulator Fixed-Point Signal Diagram for Nontrivial Phase Offset

The exact LLR and approximate LLR cases (soft-decision) are described in “Exact LLR
Algorithm” and “Approximate LLR Algorithm” in the Communications System Toolbox
User's Guide.

2 Blocks — Alphabetical List

2-100

Dialog Box

Phase offset (rad)
The phase of the zeroth point of the signal constellation.

Decision type
Specifies the use of hard decision, LLR, or approximate LLR during demodulation.
The output values for Log-likelihood ratio and Approximate log-likelihood ratio
are of the same data type as the input values. See “Exact LLR Algorithm” and

 BPSK Demodulator Baseband

2-101

“Approximate LLR Algorithm” in the Communications System Toolbox User's Guide
for algorithm details.

Noise variance source
This field appears when Approximate log-likelihood ratio or Log-
likelihood ratio is selected for Decision type.

When set to Dialog, the noise variance can be specified in the Noise variance field.
When set to Port, a port appears on the block through which the noise variance can
be input.

Noise variance
This parameter appears when the Noise variance source is set to Dialog and
specifies the noise variance in the input signal. This parameter is tunable in normal
mode, Accelerator mode and Rapid Accelerator mode.

If you use the Simulink Coder rapid simulation (RSIM) target to build an RSIM
executable, then you can tune the parameter without recompiling the model. This is
useful for Monte Carlo simulations in which you run the simulation multiple times
(perhaps on multiple computers) with different amounts of noise.

The LLR algorithm involves computing exponentials of very large or very small
numbers using finite precision arithmetic and would yield:

• Inf to -Inf if Noise variance is very high
• NaN if Noise variance and signal power are both very small

In such cases, use approximate LLR, as its algorithm does not involve computing
exponentials.

2 Blocks — Alphabetical List

2-102

Data Types Pane for Hard-Decision

Output
When Decision type is set to Hard decision, the output data type can be set to
'Inherit via internal rule', 'Smallest unsigned integer', double,
single, int8, uint8, int16, uint16, int32, uint32, or boolean.

When this parameter is set to 'Inherit via internal rule' (default setting),
the block will inherit the output data type from the input port. The output data type
will be the same as the input data type if the input is a floating-point type (single
or double). If the input data type is fixed-point, the output data type will work as if
this parameter is set to 'Smallest unsigned integer'.

When this parameter is set to 'Smallest unsigned integer', the output data
type is selected based on the settings used in the Hardware Implementation pane
of the Configuration Parameters dialog box of the model. If ASIC/FPGA is selected in
the Hardware Implementation pane, the output data type is the ideal minimum
one-bit size, i.e., ufix(1). For all other selections, it is an unsigned integer with the
smallest available word length large enough to fit one bit, usually corresponding to
the size of a char (e.g., uint8).

 BPSK Demodulator Baseband

2-103

Derotate factor
This parameter only applies when the input is fixed-point and Phase offset is not a

multiple of p

2
.

This can be set to Same word length as input or Specify word length, in
which case a field is enabled for user input.

Data Types Pane for Soft-Decision

When Decision type is set to Log-likelihood ratio or Approximate log-
likelihood ratio, the output data type is inherited from the input (e.g., if the input is
of data type double, the output is also of data type double).

Supported Data Types

Port Supported Data Types

Input • Double-precision floating point

2 Blocks — Alphabetical List

2-104

Port Supported Data Types

• Single-precision floating point
• Signed fixed point (only for Hard decision mode)

Var • Double-precision floating point
• Single-precision floating point

Output • Double-precision floating point
• Single-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers
• ufix(1) in ASIC/FPGA and when Decision type is Hard decision

modes

HDL Code Generation

This block supports HDL code generation using HDL Coder™. HDL Coder provides
additional configuration options that affect HDL implementation and synthesized logic.
For more information on implementations, properties, and restrictions for HDL code
generation, see BPSK Demodulator Baseband in the HDL Coder documentation.

Pair Block

BPSK Modulator Baseband

See Also

M-PSK Demodulator Baseband, QPSK Demodulator Baseband, DBPSK Demodulator
Baseband

 BPSK Modulator Baseband

2-105

BPSK Modulator Baseband

Modulate using binary phase shift keying method

Library

PM, in Digital Baseband sublibrary of Modulation

Description

The BPSK Modulator Baseband block modulates using the binary phase shift keying
method. The output is a baseband representation of the modulated signal.

This block accepts a column vector input signal. The input must be a discrete-time
binary-valued signal. If the input bit is 0 or 1, respectively, then the modulated symbol is
exp(jθ) or -exp(jθ), respectively, where θ represents the Phase offset parameter.

For information about the data types each block port supports, see the “Supported Data
Types” on page 2-107 table on this page.

Constellation Visualization

The BPSK Modulator Baseband block provides the capability to visualize a signal
constellation from the block mask. This Constellation Visualization feature allows you to
visualize a signal constellation for specific block parameters. For more information, see
the “Constellation Visualization ” section of the Communications System Toolbox User's
Guide.

2 Blocks — Alphabetical List

2-106

Dialog Box

Phase offset (rad)
The phase of the zeroth point of the signal constellation.

Output data type
The output data type can be set to double, single, Fixed-point, User-defined,
or Inherit via back propagation.

Setting this parameter to Fixed-point or User-defined enables fields in which
you can further specify details. Setting this parameter to Inherit via back
propagation, sets the output data type and scaling to match the following block.

 BPSK Modulator Baseband

2-107

Output word length
Specify the word length, in bits, of the fixed-point output data type. This parameter is
only visible when you select Fixed-point for the Output data type parameter.

Set output fraction length to
Specify the scaling of the fixed-point output by either of the following two methods:

• Choose Best precision to have the output scaling automatically set such that
the output signal has the best possible precision.

• Choose User-defined to specify the output scaling in the Output fraction
length parameter.

This parameter is only visible when you select Fixed-point for the Output data
type parameter or when you select User-defined and the specified output data
type is a fixed-point data type.

User-defined data type
Specify any signed built-in or signed fixed-point data type. You can specify fixed-
point data types using the sfix, sint, sfrac, and fixdt functions from Fixed-Point
Designer™. This parameter is only visible when you select User-defined for the
Output data type parameter.

Output fraction length
For fixed-point output data types, specify the number of fractional bits, or bits to
the right of the binary point. This parameter is only visible when you select Fixed-
point or User-defined for the Output data type parameter and User-defined
for the Set output fraction length to parameter.

Supported Data Types

Port Supported Data Types

Input • Double-precision floating point
• Single-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers
• ufix(1)

2 Blocks — Alphabetical List

2-108

Port Supported Data Types

Output • Double-precision floating point
• Single-precision floating point
• Fixed point (signed only)

HDL Code Generation

This block supports HDL code generation using HDL Coder. HDL Coder provides
additional configuration options that affect HDL implementation and synthesized logic.
For more information on implementations, properties, and restrictions for HDL code
generation, see BPSK Modulator Baseband in the HDL Coder documentation.

Pair Block

BPSK Demodulator Baseband

See Also

M-PSK Modulator Baseband, QPSK Modulator Baseband, DBPSK Modulator Baseband

 Charge Pump PLL

2-109

Charge Pump PLL
Implement charge pump phase-locked loop using digital phase detector

Library

Components sublibrary of Synchronization

Description

The Charge Pump PLL (phase-locked loop) block automatically adjusts the phase of a
locally generated signal to match the phase of an input signal. It is suitable for use with
digital signals.

This PLL has these three components:

• A sequential logic phase detector, also called a digital phase detector or a phase/
frequency detector.

• A filter. You specify the filter transfer function using the Lowpass filter numerator
and Lowpass filter denominator parameters. Each is a vector that gives the
respective polynomial's coefficients in order of descending powers of s.

To design a filter, use functions such as butter, cheby1, and cheby2 in Signal
Processing Toolbox software. The default filter is a Chebyshev type II filter whose
transfer function arises from the command below.

[num, den] = cheby2(3,40,100,'s')

• A voltage-controlled oscillator (VCO). You specify characteristics of the VCO using the
VCO input sensitivity, VCO quiescent frequency, VCO initial phase, and VCO
output amplitude parameters.

This block accepts a sample-based scalar input signal. The input signal represents the
received signal. The three output ports produce:

• The output of the filter
• The output of the phase detector

2 Blocks — Alphabetical List

2-110

• The output of the VCO

A sequential logic phase detector operates on the zero crossings of the signal waveform.
The equilibrium point of the phase difference between the input signal and the VCO
signal equals π. The sequential logic detector can compensate for any frequency
difference that might exist between a VCO and an incoming signal frequency. Hence, the
sequential logic phase detector acts as a frequency detector.

Dialog Box

 Charge Pump PLL

2-111

Lowpass filter numerator
The numerator of the lowpass filter transfer function, represented as a vector that
lists the coefficients in order of descending powers of s.

Lowpass filter denominator
The denominator of the lowpass filter transfer function, represented as a vector that
lists the coefficients in order of descending powers of s.

VCO input sensitivity (Hz/V)
This value scales the input to the VCO and, consequently, the shift from the VCO
quiescent frequency value. The units of VCO input sensitivity are Hertz per
volt.

VCO quiescent frequency (Hz)
The frequency of the VCO signal when the voltage applied to it is zero. This should
match the frequency of the input signal.

VCO initial phase (rad)
The initial phase of the VCO signal.

VCO output amplitude
The amplitude of the VCO signal.

See Also

Phase-Locked Loop

References

For more information about digital phase-locked loops, see the works listed in“Selected
Bibliography for Synchronization” in Communications System Toolbox User's Guide.

2 Blocks — Alphabetical List

2-112

CMA Equalizer
Equalize using constant modulus algorithm

Library

Equalizers

Description

The CMA Equalizer block uses a linear equalizer and the constant modulus algorithm
(CMA) to equalize a linearly modulated baseband signal through a dispersive channel.
During the simulation, the block uses the CMA to update the weights, once per symbol.
If the Number of samples per symbol parameter is 1, then the block implements a
symbol-spaced equalizer; otherwise, the block implements a fractionally spaced equalizer.

When using this block, you should initialize the equalizer weights with a nonzero vector.
Typically, CMA is used with differential modulation; otherwise, the initial weights are
very important. A typical vector of initial weights has a 1 corresponding to the center tap
and zeros elsewhere.

Input and Output Signals

The Input port accepts a scalar-valued or column vector input signal. The Desired port
receives a training sequence with a length that is less than or equal to the number of
symbols in the Input signal.

You can configure the block to have one or more of the extra ports listed in the table
below.

Port Meaning How to Enable

Err output y(R -|y|2), where y is the
equalized signal and R is

Select Output error.

 CMA Equalizer

2-113

Port Meaning How to Enable

a constant related to the
signal constellation

Wts output A vector listing the
weights after the block has
processed either the current
input frame or sample.

Select Output weights.

Algorithms

Referring to the schematics in “Equalizer Structure”, define w as the vector of all weights
wi and define u as the vector of all inputs ui. Based on the current set of weights, w, this
adaptive algorithm creates the new set of weights given by
(LeakageFactor) w + (StepSize) u*e

where the * operator denotes the complex conjugate.

Equalizer Delay

The delay between the transmitter's modulator output and the CMA equalizer output is
typically unknown (unlike the delay for other adaptive equalizers in this product). If you
need to determine the delay, you can use the Find Delay block.

2 Blocks — Alphabetical List

2-114

Dialog Box

Number of taps
The number of taps in the filter of the equalizer.

Number of samples per symbol
The number of input samples for each symbol.

When you set this parameter to 1, the filter weights are updated once for each
symbol, for a symbol spaced (i.e. T-spaced) equalizer. When you set this parameter

 CMA Equalizer

2-115

to a value greater than one, the weights are updated once every Nth sample, for a
fractionally spaced (i.e. T/N-spaced) equalizer.

Signal constellation
A vector of complex numbers that specifies the constellation for the modulation.

Step size
The step size of the CMA.

Leakage factor
The leakage factor of the CMA, a number between 0 and 1. A value of 1 corresponds
to a conventional weight update algorithm, and a value of 0 corresponds to a
memoryless update algorithm.

Initial weights
A vector that lists the initial weights for the taps.

Output error
If you check this box, the block outputs the error signal described in the table above.

Output weights
If you check this box, the block outputs the current weights.

References

[1] Haykin, Simon, Adaptive Filter Theory, Third Ed., Upper Saddle River, N.J., Prentice-
Hall, 1996.

[2] Johnson, Richard C. Jr., Philip Schniter, Thomas. J. Endres, et al., "Blind
Equalization Using the Constant Modulus Criterion: A Review," Proceedings of
the IEEE, vol. 86, pp. 1927-1950, October 1998.

See Also

LMS Linear Equalizer, LMS Decision Feedback Equalizer, RLS Linear Equalizer, RLS
Decision Feedback Equalizer

2 Blocks — Alphabetical List

2-116

Complex Phase Difference
Output phase difference between two complex input signals

Library

Utility Blocks

Description

The Complex Phase Difference block accepts two complex input signals that have the
same size and frame status. The output is the phase difference from the second to the
first, measured in radians. The elements of the output are between -π and π.

The input signals can have any size or frame status. This block processes each pair of
elements independently.

Dialog Box

See Also

Complex Phase Shift

 Complex Phase Shift

2-117

Complex Phase Shift
Shift phase of complex input signal by second input value

Library

Utility Blocks

Description

The Complex Phase Shift block accepts a complex signal at the port labeled In. The
output is the result of shifting this signal's phase by an amount specified by the real
signal at the input port labeled Ph. The Ph input is measured in radians, and must have
the same size and frame status as the In input.

The input signals can have any size or frame status. This block processes each pair of
corresponding elements independently.

Dialog Box

See Also

Complex Phase Difference

2 Blocks — Alphabetical List

2-118

Constellation Diagram

Display constellation diagram for input signals

Library

Comm Sinks

Description

The Constellation Diagram block plots constellation diagrams, signal trajectory, and
provides the ability to perform EVM and MER measurements.

 Constellation Diagram

2-119

Dialog Box

Symbol Display
The symbols that the Constellation Diagram scope displays are always the most recently
available symbols from the time buffer. The Symbols to display parameter defines
the number of symbols the scope shows. The default setting for this parameter is Input
frame length.

When you set the Symbols to display to Input frame length, the block calculates
the number of symbols that comprise the frame length according to the following
formula:

SymbolsToDisplay = FrameLength/SamplesPerSymbol

2 Blocks — Alphabetical List

2-120

To change the number of symbols the scope displays, select View > Configuration
Properties to bring up the Configuration Properties dialog box. Then, select <User-
defined> from the Symbols to display parameter and enter a value. The value you
enter defines the number of symbols the scope displays.

Lastly, the Constellation Diagram can display the signal trajectory, which is a plot of the
in-phase component versus the quadrature component of the modulated signal.

Toolbar

The Constellation Diagram block contains the following buttons. You can control whether
this toolbar appears in the Constellation Diagram window. From the Constellation
Diagram menu, select View > Toolbar.

Configuration Properties Buttons

Button Menu Location Shortcut
Keys

Description

View >
Configuration
Properties

N/A Open the Configuration Properties dialog box.

See the section “Visuals — Constellation
Properties” on page 2-127 for more
information.

Tools >
Measurements
>
Signal Quality

N/A Open the signal quality measurement panel.
You can access signal quality measurements
either through the menu or through the Signal
quality button. See “Signal Quality Panel” on
page 2-126 for more information.

View >
Configuration
Properties

N/A Show the signal trajectory of a modulated
signal. You can view the signal trajectory by
using the Show Signal Trajectory button
on the toolbar or by opening the display pane
in the constellation properties dialog and
enabling the Show signal trajectory option.
See the display pane description in “Visuals —
Constellation Properties” on page 2-127 for
more information.

 Constellation Diagram

2-121

Zoom and Axes Control Buttons

Button Menu Location Shortcut
Keys

Description

Tools >
Zoom In

N/A When this tool is active, you can zoom in on the
scope window. To do so, click in the center of your
area of interest, or click and drag your cursor to
draw a rectangular area of interest inside the
scope window.

Tools >
Zoom X

N/A You access the Zoom X button from the menu
under the Zoom In icon. When this tool is active,
you can zoom in on the x-axis. To do so, click
inside the scope window, or click and drag your
cursor along the x-axis over your area of interest.

Tools >
Zoom Y

N/A You access the Zoom Y button from the menu
under the Zoom In icon. When this tool is active,
you can zoom in on the y-axis. To do so, click
inside the scope window, or click and drag your
cursor along the y-axis over your area of interest.

Tools >
Pan

N/A You access the Pan button from the menu under
the Zoom In icon. When this tool is active, you
can pan on the scope window. To do so, click in
the center of your area of interest and drag your
cursor to the left, right, up, or down, to move the
position of the display.

Tools >
Scale Y-Axis
Limits

Ctrl+A Click this button to scale the axes in the active
scope window.

Alternatively, you can enable automatic axes
scaling by selecting one of the following options
from the Tools menu:

• Automatically Scale Axes Limits — When
you select this option, the scope scales the
axes as needed during simulation.

• Scale Axes Limits after 10 Updates —
When you select this option, the scope scales

2 Blocks — Alphabetical List

2-122

Button Menu Location Shortcut
Keys

Description

the axes after 10 updates. The scope does not
scale the axes again during the simulation.

• Scale Axes Limits at Stop — When you
select this option, the scope scales the axes
each time the simulation is stopped.

Tools >
Scale X-Axis
Limits

N/A You access the Scale X-Axis Limits button from
the menu under the current Axis Limits icon.
Click this button to scale the axes in the X
direction in the active scope window.

Alternatively, you can enable automatic axes
scaling by selecting one of the following options
from the Tools menu:

• Automatically Scale Axes Limits — When
you select this option, the scope scales the
axes as needed during simulation.

• Scale Axes Limits after 10 Updates —
When you select this option, the scope scales
the axes after 10 updates. The scope does not
scale the axes again during the simulation.

• Scale Axes Limits at Stop — When you
select this option, the scope scales the axes
each time the simulation is stopped.

 Constellation Diagram

2-123

Button Menu Location Shortcut
Keys

Description

Tools >
Scale X & Y Axes
Limits

N/A You access the Scale X & Y Axes Limits button
from the menu under the current Axis Limits
icon. Click this button to scale the axes in
both the X and Y directions in the active scope
window.

Alternatively, you can enable automatic axes
scaling by selecting one of the following options
from the Tools menu:

• Automatically Scale Axes Limits — When
you select this option, the scope scales the
axes as needed during simulation.

• Scale Axes Limits after 10 Updates —
When you select this option, the scope scales
the axes after 10 updates. The scope does not
scale the axes again during the simulation.

• Scale Axes Limits at Stop — When you
select this option, the scope scales the axes
each time the simulation is stopped.

Simulation Toolbar

The Simulation Toolbar contains the following buttons.

Button Menu Location Shortcut
Keys

Description

Simulation >
Run

Ctrl+T, p,
Space

Start the model simulation. This button
appears only when the model simulation is
stopped.

Simulation >
Continue

p, Space Continue the model simulation. This button
appears only when the model simulation is
paused.

2 Blocks — Alphabetical List

2-124

Button Menu Location Shortcut
Keys

Description

Simulation >
Pause

p, Space Pause the model simulation. This button
appears only when the model simulation is
running.

Simulation >
Step Forward

Right
arrow,
Page
Down

Advance the model simulation forward by
one time step. This button starts the model
simulation, allows it to run for one time step,
and then pauses it again. The scope window
then updates with the latest data.

Simulation >
Stop

Ctrl+T, s Stop the model simulation. This button
appears only when the model simulation is
running or paused.

Simulation >
Simulink
Snapshot

N/A Take a snapshot of the current scope display.
This button temporarily freezes the scope
display, while allowing simulation to continue
running. To unfreeze the scope display and
view the current simulation data, toggle this
button to turn off snapshot mode.

View >
Highlight
Simulink Block

Ctrl+L Bring the model window forward, and
highlight the scope block whose display
you are currently viewing. The scope block
that corresponds to the active scope window
flashes three times in the model.

You can control whether this toolbar appears in the scope window. From the scope menu,
select View > Simulation Toolbar.

To see a full listing of the shortcut keys for these simulation controls, from the scope
menu, select Help > Keyboard Command Help.

Measurements Panels

Measurements Panel Buttons

Each of the Measurements panels contains the following buttons that enable you to
modify the appearance of the current panel.

 Constellation Diagram

2-125

Button Description

Move the current panel to the top. When you are displaying more than one
panel, this action moves the current panel above all the other panels.
Collapse the current panel. When you first enable a panel, by default, it
displays one or more of its panes. Click this button to hide all of its panes to
conserve space. After you click this button, it becomes the expand button .
Expand the current panel. This button appears after you click the collapse
button to hide the panes in the current panel. Click this button to display
the panes in the current panel and show measurements again. After you
click this button, it becomes the collapse button again.
Undock the current panel. This button lets you move the current panel into
a separate window that can be relocated anywhere on your screen. After you
click this button, it becomes the dock button in the new window.
Dock the current panel. This button appears only after you click the undock
button. Click this button to put the current panel back into the right side of
the Scope window. After you click this button, it becomes the undock button

 again.
Close the current panel. This button lets you remove the current panel from
the right side of the Scope window.

Some panels have their measurements separated by category into a number of panes.
Click the pane expand button to show each pane that is hidden in the current panel.
Click the pane collapse button to hide each pane that is shown in the current panel.

Settings Pane

The Settings pane enables you to define the measurement interval and normalization
method the scope uses when obtaining signal measurements.

• Measurement interval — Specify the duration of the EVM or MER measurement.
For more information see “MeasurementInterval”.

• EVM normalization — For the EVM calculations, you may use one of two
normalization methods: average constellation power or peak constellation power.
The scope performs EVM calculations using the comm.EVM System object. For more
information, see comm.EVM.

2 Blocks — Alphabetical List

2-126

Signal Quality Panel

The Signal Quality panel displays Error Vector Measurement (EVM) and Modulation
Error Ratio (MER) measurement results.

You can choose to hide or display the Signal Quality panel. In the Scope menu, select
Tools > Measurements > Signal Quality.

Signal Quality Pane

The Signal Quality pane displays the calculation results.

• EVM — An error vector is a vector in the I-Q plane between the ideal constellation
point and the actual point at the receiver. EVM is measured in two formats: root
mean square (RMS) or normalized Peak. Typically, EVM is reported in decibels. For
more information, see comm.EVM.

• MER — MER is the ratio of the average power of the error vector and the average
power of the transmitted signal. The scope indicates the measurement result in
decibels. For more information, see comm.MER.

 Constellation Diagram

2-127

Visuals — Constellation Properties

Main Pane

Samples per symbol

Number of samples used to represent a symbol. This value must be a positive number.

Offset (samples)

Number of samples to skip before plotting points. The offset must be a nonnegative
integer value less than the value of the samples per symbol.

Symbols to display

The maximum number of symbols that can be displayed. Must be a positive integer
value.

Reference constellation

The ideal constellation of the input signal. When the Measurements tool is on, the
reference constellation is used to detect the ideal signal input. Therefore, this property
cannot be empty when the Measurements tool is on. (When the Measurements tool is not
on, this property can be empty.)

Display Pane

Show grid

Select this check box to turn on the grid.

Show legend

Select this check box to display a legend for the graph.

Color fading

When you set select this check box, the points in the display fade as the interval of time
after they are first plotted increases. The default value of this property is false. This
property is tunable.

2 Blocks — Alphabetical List

2-128

Show signal trajectory

Select this check box to display the trajectory of a modulated signal by plotting its in-
phase component versus its quadrature component.

Show reference constellation

Select this check box to display the points comprising the reference constellation.

Reference marker

Select the symbol that represents the points on the reference constellation.

Reference color

Select the color of the points on the reference constellation. Refer to the following table
for the binary values and their corresponding colors.

Color Binary Code

Black 000
Blue 001
Green 010
Cyan 011
Red 100
Magenta 101
White 111

X-limits (Minimum)

Specify the minimum value of the x-axis.

X-limits (Maximum)

Specify the maximum value of the x-axis.

Y-limits (Minimum)

Specify the minimum value of the y-axis.

 Constellation Diagram

2-129

Y-limits (Maximum)

Specify the maximum value of the y-axis.

Title

Specify a label that appears above the constellation diagram plot. By default, there is no
title.

X-axis label

Specify the text the scope displays along the x-axis

Y-axis label

Specify the text the scope displays along the y-axis

Style Dialog Box

In the Style dialog box, you can customize the style of displays. You are able to change
the color of the figure containing the displays, the background and foreground colors of
display axes, and properties of lines in a display. From the scope menu, select View >
Style to open this dialog box.

2 Blocks — Alphabetical List

2-130

Properties

The Style dialog box allows you to modify the following properties of the scope figure:

Figure color

Specify the color that you want to apply to the background of the scope figure. By default,
the figure color is gray.

Axes colors

Specify the color that you want to apply to the background of the axes for the active
display.

Line

Specify the line style, line width, and line color for the selected signal on the active
display. The Line property is always set to no line when the signal trajectory plot is
disabled.

Marker

Specify marks for the selected signal on the active display to show at data points. This
parameter is similar to the Marker property for the MATLAB Handle Graphics® plot
objects. You can choose any of the marker symbols from the following table. The Marker
property cannot be set to No marker unless the signal trajectory plot is enabled.

Specifier Marker Type

none No marker
Circle
Square
Cross
Point (default)
Plus sign
Asterisk
Diamond

 Constellation Diagram

2-131

Specifier Marker Type

Downward-pointing triangle
Upward-pointing triangle
Left-pointing triangle
Right-pointing triangle
Five-pointed star (pentagram)
Six-pointed star (hexagram)

Tools: Plot Navigation Properties

Properties

The Tools—Axes Scaling Properties dialog box appears as follows.

Axes scaling

Specify when the scope should automatically scale the axes. You can select one of the
following options:

2 Blocks — Alphabetical List

2-132

• Manual — When you select this option, the scope does not automatically scale the
axes. You can manually scale the axes in any of the following ways:

• Select Tools > Axes Scaling Properties.
• Press one of the Scale Axis Limits toolbar buttons.
• When the scope figure is the active window, press Ctrl and A simultaneously.

• Auto — When you select this option, the scope scales the axes as needed, both during
and after simulation. Selecting this option shows the Do not allow Y-axis limits to
shrink check box.

• After N Updates — Selecting this option causes the scope to scale the axes after
a specified number of updates. Selecting this option shows the Number of updates
edit box.

By default, this property is set to Auto. This property is “Tunable”.

Do not allow Y-axis limits to shrink

When you select this property, the y-axis is allowed only to grow during axes scaling
operations. If you clear this check box, the y-axis or color limits may shrink during axes
scaling operations.

This property appears only when you select Auto for the Axis scaling property. When
you set the Axes scaling property to Manual or After N Updates, the y-axis or color
limits are allowed to shrink. “Tunable”.

Number of updates

Specify as a positive integer the number of updates after which to scale the axes.
This property appears only when you select After N Updates for the Axes scaling
property. “Tunable”.

Scale axes limits at stop

Select this check box to scale the axes when the simulation stops. The y-axis is always
scaled. The x-axis limits are only scaled if you also select the Scale X-axis limits check
box.

Y-axis Data range (%)

Set the percentage of the y-axis that the scope should use to display the data when
scaling the axes. Valid values are between 1 and 100. For example, if you set this

 Constellation Diagram

2-133

property to 100, the Scope scales the y-axis limits such that your data uses the entire y-
axis range. If you then set this property to 30, the scope increases the y-axis range such
that your data uses only 30% of the y-axis range. “Tunable”.

Y-axis Align

Specify where the scope should align your data with respect to the y-axis when it scales
the axes. You can select Top, Center, or Bottom. “Tunable”.

Autoscale X-axis limits

Check this box to allow the scope to scale the x-axis limits when it scales the axes. If
Axes scaling is set to Auto, checking Scale X-axis limits only scales the data currently
within the axes, not the entire signal in the data buffer. “Tunable”.

X-axis Data range (%)

Set the percentage of the x-axis that the Scope should use to display the data when
scaling the axes. Valid values are between 1 and 100. For example, if you set this
property to 100, the Scope scales the x-axis limits such that your data uses the entirex-
axis range. If you then set this property to 30, the Scope increases the x-axis range such
that your data uses only 30% of the x-axis range. Use the x-axis Align property to specify
data placement with respect to the x-axis.

This property appears only when you select the Scale X-axis limits check box.
“Tunable”.

X-axis Align

Specify how the Scope should align your data with respect to the x-axis: Left, Center,
or Right. This property appears only when you select the Scale X-axis limits check box.
“Tunable”.

Examples

View Constellation Diagram

This example shows how to use the Constellation Diagram block to visualize the
constellation or scatter plot of a modulated signal.

2 Blocks — Alphabetical List

2-134

Open the model, doc_constellation_diagram_example, from the MATLAB command
prompt.

doc_constellation_diagram_example

The model includes:

• A Random Integer Generator block
• An M-PSK Modulator Baseband block
• An AWGN Channel block
• A Constellation Diagram block

Run the model and observe the 8-PSK constellation. The received data points are shown
in yellow while the red ‘+’ symbols represent the ideal constellation locations.

 Constellation Diagram

2-135

Click on the Show Signal Trajectory button to display the signal trajectory of the
modulated signal. Observe that the constellation diagram icon in the model has changed
to reflect that the diagram is now displaying a trajectory.

2 Blocks — Alphabetical List

2-136

 Constellation Diagram

2-137

See Also
comm.ConstellationDiagram

2 Blocks — Alphabetical List

2-138

Continuous-Time VCO

Implement voltage-controlled oscillator

Library

Components sublibrary of Synchronization

Description

The Continuous-Time VCO (voltage-controlled oscillator) block generates a signal with
a frequency shift from the Quiescent frequency parameter that is proportional to the
input signal. The input signal is interpreted as a voltage. If the input signal is u(t), then
the output signal is

y t A f t k u dc c c

t
() cos ()= + +Ê

Ë
Á

ˆ
¯
˜Ú2 2

0
p p t t j

where Ac is the Output amplitude parameter, fc is the Quiescent frequency
parameter, kc is the Input sensitivity parameter, and φ is the Initial phase parameter.

This block uses a continuous-time integrator to interpret the equation above.

The input and output are both sample-based scalar signals.

 Continuous-Time VCO

2-139

Dialog Box

Output amplitude
The amplitude of the output.

Quiescent frequency
The frequency of the oscillator output when the input signal is zero.

Input sensitivity
This value scales the input voltage and, consequently, the shift from the Quiescent
frequency value. The units of Input sensitivity are Hertz per volt.

Initial phase
The initial phase of the oscillator in radians.

2 Blocks — Alphabetical List

2-140

See Also

Discrete-Time VCO

 Convolutional Deinterleaver

2-141

Convolutional Deinterleaver

Restore ordering of symbols that were permuted using shift registers

Library

Convolutional sublibrary of Interleaving

Description

The Convolutional Deinterleaver block recovers a signal that was interleaved using the
Convolutional Interleaver block. Internally, this block uses a set of shift registers. The
delay value of the kth shift register is (N-k) times the Register length step parameter.
The number of shift registers, N, is the value of the Rows of shift registers parameter.
The parameters in the two blocks must have the same values.

This block accepts a scalar or column vector input signal, which can be real or complex.
The output signal has the same sample time as the input signal.

This block accepts the following data types: int8, uint8, int16, uint16, int32,
uint32, boolean, single, double, and fixed-point.

2 Blocks — Alphabetical List

2-142

Dialog Box

Rows of shift registers
The number of shift registers that the block uses internally.

Register length step
The difference in symbol capacity of each successive shift register, where the last
register holds zero symbols.

Initial conditions
Indicates the values that fill each shift register at the beginning of the simulation
(except for the last shift register, which has zero delay).

• When you select a scalar value for Initial conditions, the value fills all shift
registers (except for the last one)

• When you select a column vector with a length equal to the Rows of shift
registers parameter, each entry fills the corresponding shift register.

 Convolutional Deinterleaver

2-143

The value of the first element of the Initial conditions parameter is unimportant,
since the last shift register has zero delay.

Examples

For an example that uses this block, see “Adaptive Algorithms”.

HDL Code Generation

This block supports HDL code generation using HDL Coder. HDL Coder provides
additional configuration options that affect HDL implementation and synthesized logic.
For more information on implementations, properties, and restrictions for HDL code
generation, see Convolutional Deinterleaver in the HDL Coder documentation.

Pair Block

Convolutional Interleaver

See Also

General Multiplexed Deinterleaver, Helical Deinterleaver

References

[1] Clark, George C. Jr. and J. Bibb Cain. Error-Correction Coding for Digital
Communications. New York: Plenum Press, 1981.

[2] Forney, G., D., Jr. "Burst-Correcting Codes for the Classic Bursty Channel." IEEE
Transactions on Communications, vol. COM-19, October 1971. 772-781.

[3] Ramsey, J. L. "Realization of Optimum Interleavers." IEEE Transactions on
Information Theory, IT-16 (3), May 1970. 338-345.

2 Blocks — Alphabetical List

2-144

Convolutional Encoder

Create convolutional code from binary data

Library

Convolutional sublibrary of Error Detection and Correction

Description

The Convolutional Encoder block encodes a sequence of binary input vectors to produce a
sequence of binary output vectors. This block can process multiple symbols at a time.

This block can accept inputs that vary in length during simulation. For more information
about variable-size signals, see “Variable-Size Signal Basics” in the Simulink
documentation.

Input and Output Sizes

If the encoder takes k input bit streams (that is, it can receive 2k possible input symbols),
the block input vector length is L*k for some positive integer L. Similarly, if the encoder
produces n output bit streams (that is, it can produce 2n possible output symbols), the
block output vector length is L*n.

This block accepts a column vector input signal with any positive integer for L. For
variable-size inputs, the L can vary during simulation. The operation of the block is
governed by the Operation mode parameter.

For both its inputs and outputs for the data ports, the block supports double, single,
boolean, int8, uint8, int16, uint16, int32, uint32, and ufix1. The port data types
are inherited from the signals that drive the block. The input reset port supports double
and boolean typed signals.

 Convolutional Encoder

2-145

Specifying the Encoder

To define the convolutional encoder, use the Trellis structure parameter. This
parameter is a MATLAB structure whose format is described in the “Trellis Description
of a Convolutional Code” section of the Communications System Toolbox documentation.
You can use this parameter field in two ways:

• If you have a variable in the MATLAB workspace that contains the trellis structure,
enter its name in the Trellis structure parameter. This way is preferable because
it causes Simulink to spend less time updating the diagram at the beginning of each
simulation, compared to the usage described next.

• If you want to specify the encoder using its constraint length, generator polynomials,
and possibly feedback connection polynomials, use a poly2trellis command in
the Trellis structure parameter. For example, to use an encoder with a constraint
length of 7, code generator polynomials of 171 and 133 (in octal numbers), and a
feedback connection of 171 (in octal), set the Trellis structure parameter to

poly2trellis(7,[171 133],171)

The encoder registers begin in the all-zeros state. Set the Operation mode parameter
to Reset on nonzero input via port to reset all encoder registers to the all-zeros
state during the simulation. This selection opens a second input port, labeled Rst, which
accepts a scalar-valued input signal. When the input signal is nonzero, the block resets
before processing the data at the first input port. To reset the block after it processes the
data at the first input port, select Delay reset action to next time step.

2 Blocks — Alphabetical List

2-146

Dialog Box

Trellis structure
MATLAB structure that contains the trellis description of the convolutional encoder.

Operation mode
In Continuous mode, the block retains the encoder states at the end of each input,
for use with the next frame.

In Truncated (reset every frame) mode, the block treats each input
independently. The encoder states are reset to all-zeros state at the start of each
input.

 Convolutional Encoder

2-147

Note: When this block outputs sequences that vary in length during simulation and
you set the Operation mode to Truncated (reset every frame) or Terminate
trellis by appending bits, the block's state resets at every input time step.

In Terminate trellis by appending bits mode, the block treats each input
independently. For each input frame, extra bits are used to set the encoder states to
all-zeros state at the end of the frame. The output length is given by y n x s k= ◊ +() / ,
where x is the number of input bits, and s = -constraint length 1 (or, in the case of
multiple constraint lengths, s =sum(ConstraintLength(i)-1)).

Note: This block works for cases k ≥ 1 , where it has the same values for constraint
lengths in each input stream (e.g., constraint lengths of [2 2] or [7 7] will work, but [5
4] will not).

In Reset on nonzero input via port mode, the block has an additional input
port, labeled Rst. When the Rst input is nonzero, the encoder resets to the all-zeros
state.

Delay reset action to next time step
When you select Delay reset action to next time step, the Convolutional Encoder
block resets after computing the encoded data. This check box only appears when you
set the Operation mode parameter to Reset on nonzero input via port.

The delay in the reset action allows the block to support HDL code generation. In
order to generate HDL code, you must have an HDL Coder license.

Output final state
When you select Output final state, the second output port signal specifies the
output state for the block. The output signal is a scalar, integer value. You can
select Output final state for all operation modes except Terminate trellis by
appending bits .

Specify initial state via input port
When you select Specify initial state via input port the second input port signal
specifies the starting state for every frame in the block. The input signal must
be a scalar, integer value. Specify initial state via input port appears only in
Truncated operation mode.

Puncture code

2 Blocks — Alphabetical List

2-148

Selecting this option opens the field Puncture vector.
Puncture vector

Vector used to puncture the encoded data. The puncture vector is a pattern of 1s
and 0s where the 0s indicate the punctured bits. This field appears when you select
Punctured code.

Puncture Pattern Examples

For some commonly used puncture patterns for specific rates and polynomials, see the
last three references listed on this page.

HDL Code Generation

This block supports HDL code generation using HDL Coder. HDL Coder provides
additional configuration options that affect HDL implementation and synthesized logic.
For more information on implementations, properties, and restrictions for HDL code
generation, see Convolutional Encoder in the HDL Coder documentation.

See Also

Viterbi Decoder, APP Decoder

References

[1] Clark, George C. Jr. and J. Bibb Cain, Error-Correction Coding for Digital
Communications, New York, Plenum Press, 1981.

[2] Gitlin, Richard D., Jeremiah F. Hayes, and Stephen B. Weinstein, Data
Communications Principles, New York, Plenum, 1992.

[3] Yasuda, Y., et. al., “High rate punctured convolutional codes for soft decision Viterbi
decoding,” IEEE Transactions on Communications, Vol. COM-32, No. 3, pp 315–
319, March 1984.

 Convolutional Encoder

2-149

[4] Haccoun, D., and Begin, G., “High-rate punctured convolutional codes for Viterbi and
Sequential decoding,” IEEE Transactions on Communications, Vol. 37, No. 11, pp
1113–1125, Nov. 1989.

[5] Begin, G., et.al., “Further results on high-rate punctured convolutional codes for
Viterbi and sequential decoding,” IEEE Transactions on Communications, Vol.
38, No. 11, pp 1922–1928, Nov. 1990.

2 Blocks — Alphabetical List

2-150

Convolutional Interleaver

Permute input symbols using set of shift registers

Library

Convolutional sublibrary of Interleaving

Description

The Convolutional Interleaver block permutes the symbols in the input signal.
Internally, it uses a set of shift registers. The delay value of the kth shift register is (k-1)
times the Register length step parameter. The number of shift registers is the value of
the Rows of shift registers parameter.

The Initial conditions parameter indicates the values that fill each shift register at
the beginning of the simulation (except for the first shift register, which has zero delay).
If Initial conditions is a scalar, then its value fills all shift registers except the first;
if Initial conditions is a column vector whose length is the Rows of shift registers
parameter, then each entry fills the corresponding shift register. The value of the first
element of the Initial conditions parameter is unimportant, since the first shift register
has zero delay.

This block accepts a scalar or column vector input signal, which can be real or complex.
The output signal has the same sample time as the input signal.

The block can accept the data types int8, uint8, int16, uint16, int32, uint32,
boolean, single, double, and fixed-point. The data type of this output will be the same
as that of the input signal.

 Convolutional Interleaver

2-151

Dialog Box

Rows of shift registers
The number of shift registers that the block uses internally.

Register length step
The number of additional symbols that fit in each successive shift register, where the
first register holds zero symbols.

Initial conditions
The values that fill each shift register when the simulation begins.

Examples

For an example that uses this block, see “Convolutional Interleaving”.

2 Blocks — Alphabetical List

2-152

HDL Code Generation

This block supports HDL code generation using HDL Coder. HDL Coder provides
additional configuration options that affect HDL implementation and synthesized logic.
For more information on implementations, properties, and restrictions for HDL code
generation, see Convolutional Interleaver in the HDL Coder documentation.

Pair Block

Convolutional Deinterleaver

See Also

General Multiplexed Interleaver, Helical Interleaver

References

[1] Clark, George C. Jr. and J. Bibb Cain. Error-Correction Coding for Digital
Communications. New York: Plenum Press, 1981.

[2] Forney, G., D., Jr. "Burst-Correcting Codes for the Classic Bursty Channel." IEEE
Transactions on Communications, vol. COM-19, October 1971. 772-781.

[3] Ramsey, J. L. "Realization of Optimum Interleavers." IEEE Transactions on
Information Theory, IT-16 (3), May 1970. 338-345.

 CPFSK Demodulator Baseband

2-153

CPFSK Demodulator Baseband
Demodulate CPFSK-modulated data

Library

CPM, in Digital Baseband sublibrary of Modulation

Description

The CPFSK Demodulator Baseband block demodulates a signal that was modulated
using the continuous phase frequency shift keying method. The input to this block is a
baseband representation of the modulated signal. The M-ary number parameter, M, is
the size of the input alphabet. M must have the form 2K for some positive integer K.

This block supports multi-h Modulation index. See CPM Modulator Baseband for
details.

Integer-Valued Signals and Binary-Valued Signals

When you set the Output type parameter to Integer, then the block produces odd
integers between -(M-1) and M-1.

When you set the Output type parameter to Bit, then the block produces groupings of
K bits. Each grouping is called a binary word.

In binary output mode, the block first maps each input symbol to an intermediate value
as in the integer output mode. The block then maps the odd integer k to the nonnegative
integer (k+M-1)/2. Finally, the block maps each nonnegative integer to a binary word,
using a mapping that depends on whether the Symbol set ordering parameter is set to
Binary or Gray.

This block accepts a scalar-valued or column vector input signal with a data type of
single or double.

2 Blocks — Alphabetical List

2-154

Single-Rate Processing

In single-rate processing mode, the input and output signals have the same port sample
time. The block implicitly implements the rate change by making a size change at the
output when compared to the input. The input width must be an integer multiple of the
Samples per symbol parameter value, and the input can be a column vector.

• When you set Output type to Bit, the output width is K times the number of input
symbols.

• When you set Output type to Integer, the output width is the number of input
symbols.

Multirate Processing

In multirate processing mode, the input and output signals have different port sample
times. The input must be a scalar. The output symbol time is the product of the input
sample time and the Samples per symbol parameter value.

• When you set Output type to Bit, the output width equals the number of bits per
symbol.

• When you set Output type to Integer, the output is a scalar.

Traceback Depth and Output Delays

Internally, this block creates a trellis description of the modulation scheme and uses the
Viterbi algorithm. The Traceback depth parameter, D, in this block is the number of
trellis branches that the algorithm uses to construct each traceback path. D influences
the output delay, which is the number of zero symbols that precede the first meaningful
demodulated value in the output.

• When you set the Rate options parameter to Allow multirate processing, and
the model uses a variable-step solver or a fixed-step solver with the Tasking Mode
parameter set to SingleTasking, then the delay consists of D+1 zero symbols.

• When you set the Rate options parameter to Enforce single-rate processing,
then the delay consists of D zero symbols.

The optimal Traceback depth parameter value is dependent on minimum squared
Euclidean distance calculations. Alternatively, a typical value, dependent on the
number of states, can be chosen using the “five-times-the-constraint-length” rule, which
corresponds to 5·log2(numStates).

 CPFSK Demodulator Baseband

2-155

For the definition of the number of states, see CPM Demodulator Baseband Help page.

Dialog Box

M-ary number
The size of the alphabet.

Output type
Determines whether the output consists of integers or groups of bits.

Symbol set ordering

2 Blocks — Alphabetical List

2-156

Determines how the block maps each integer to a group of output bits. This field is
active only when Output type is set to Bit.

Modulation index
Specify the modulation index {hi}. The default is 0.5. The value of this property must
be a real, nonnegative scalar or column vector.

This block supports multi-h Modulation index. See CPM Modulator Baseband for
details.

Phase offset (rad)
The initial phase of the modulated waveform.

Samples per symbol
The number of input samples that represent each modulated symbol, which must be
a positive integer. For more information, see “Upsample Signals and Rate Changes”
in Communications System Toolbox User's Guide.

Rate options
Select the rate processing method for the block.

• Enforce single-rate processing — When you select this option, the input
and output signals have the same port sample time. The block implements the
rate change by making a size change at the output when compared to the input.
The output width is the number of symbols (which is given by dividing the input
length by the Samples per symbol parameter value when the Output type
parameter is set to Integer).

• Allow multirate processing — When you select this option, the input and
output signals have different port sample times. The output period is the same as
the symbol period and equals the product of the input period and the Samples
per symbol parameter value.

Note: The option Inherit from input (this choice will be removed
- see release notes) will be removed in a future release. See “Frame-
Based Processing” in the Communications System Toolbox Release Notes for more
information.

For more information, see Single-Rate Processing and Multirate Processing in the
Description section of this page.

Traceback depth

 CPFSK Demodulator Baseband

2-157

The number of trellis branches that the CPFSK Demodulator Baseband block uses to
construct each traceback path.

Output datatype
The output data type can be boolean, int8, int16, int32, or double.

Supported Data Types

Port Supported Data Types

Input • Double-precision floating point
• Single-precision floating point

Output • Double-precision floating point
• Boolean (When Output type set to Bit)
• 8-, 16-, and 32-bit signed integers (When Output type set to Integer)

Pair Block

CPFSK Modulator Baseband

See Also

CPM Demodulator Baseband, Viterbi Decoder, M-FSK Demodulator Baseband

References

[1] Anderson, John B., Tor Aulin, and Carl-Erik Sundberg. Digital Phase Modulation.
New York: Plenum Press, 1986.

2 Blocks — Alphabetical List

2-158

CPFSK Modulator Baseband

Modulate using continuous phase frequency shift keying method

Library

CPM, in Digital Baseband sublibrary of Modulation

Description

The CPFSK Modulator Baseband block modulates a signal using the continuous phase
frequency shift keying method. The output is a baseband representation of the modulated
signal. The M-ary number parameter, M, represents the size of the input alphabet. M
must have the form 2K for some positive integer K.

This block supports multi-h Modulation index. See CPM Modulator Baseband for
details.

Integer-Valued Signals and Binary-Valued Signals

When you set the Input type parameter to Integer, the block accepts odd integers
between -(M-1) and M-1.

When you set the Input type parameter to Bit, the block accepts groupings of K bits.
Each grouping is called a binary word. The input vector length must be an integer
multiple of K.

In binary input mode, the block maps each binary word to an integer between 0 and M-1,
using a mapping scheme that depends on whether you set the Symbol set ordering
parameter to Binary or Gray. The block then maps the integer k to the intermediate
value 2k-(M-1) and proceeds as if it operates in the integer input mode. For more
information, see “Integer-Valued Signals and Binary-Valued Signals” in Communications
System Toolbox User's Guide.

 CPFSK Modulator Baseband

2-159

This block accepts a scalar-valued or column vector input signal. If you set Input type to
Bit, then the input signal can also be a vector of length K.

Single-Rate Processing

In single-rate processing mode, the input and output signals have the same port sample
time. The block implicitly implements the rate change by making a size change at the
output when compared to the input. In this mode, the input to the block can be multiple
symbols.

• When you set Input type to Integer, the input can be a column vector, the length of
which is the number of input symbols.

• When you set Input type to Bit, the input must be a column vector with a width
that is an integer multiple of K, the number of bits per symbol.

The output width equals the product of the number of input symbols and the Samples
per symbol parameter value.

Multirate Processing

In multirate processing mode, the input and output signals have different port sample
times. In this mode, the input to the block must be one symbol.

• When you set Input type to Integer, the input must be a scalar.
• When you set Input type to Bit, the input width must equal the number of bits per

symbol.

The output sample time equals the symbol period divided by the Samples per symbol
parameter value.

2 Blocks — Alphabetical List

2-160

Dialog Box

M-ary number
The size of the alphabet.

Input type
Indicates whether the input consists of integers or groups of bits.

Symbol set ordering
Determines how the block maps each group of input bits to a corresponding integer.
This field is active only when Input type is set to Bit.

Modulation index
Specify the modulation index {hi}. The default is 0.5. The value of this property must
be a real, nonnegative scalar or column vector.

 CPFSK Modulator Baseband

2-161

This block supports multi-h Modulation index. See CPM Modulator Baseband for
details.

Phase offset (rad)
The initial phase of the output waveform, measured in radians.

Samples per symbol
The number of output samples that the block produces for each integer or binary
word in the input, which must be a positive integer. For all non-binary schemes, as
defined by the pulse shapes, this value must be greater than 1.

For more information, see “Upsample Signals and Rate Changes” in Communications
System ToolboxUser's Guide.

Rate options
Select the rate processing option for the block.

• Enforce single-rate processing — When you select this option, the input
and output signals have the same port sample time. The block implements the
rate change by making a size change at the output when compared to the input.
The output width equals the product of the number of symbols and the Samples
per symbol parameter value.

• Allow multirate processing — When you select this option, the input and
output signals have different port sample times. The output sample time equals
the symbol period divided by the Samples per symbol parameter value.

Note: The option Inherit from input (this choice will be removed
- see release notes) will be removed in a future release. See “Frame-
Based Processing” in the Communications System Toolbox Release Notes for more
information.

Output data type
Select the data type of the output signal. The output data type can be single or
double.

Supported Data Types

Port Supported Data Types

Input • Double-precision floating point

2 Blocks — Alphabetical List

2-162

Port Supported Data Types

• Boolean (When Input type set to Bit)
• 8-, 16-, and 32-bit signed integers (When Input type set to Integer)

Output • Double-precision floating point
• Single-precision floating point

Pair Block

CPFSK Demodulator Baseband

See Also

CPM Modulator Baseband, M-FSK Modulator Baseband

References

[1] Anderson, John B., Tor Aulin, and Carl-Erik Sundberg. Digital Phase Modulation.
New York: Plenum Press, 1986.

 CPM Demodulator Baseband

2-163

CPM Demodulator Baseband
Demodulate CPM-modulated data

Library

CPM, in Digital Baseband sublibrary of Modulation

Description

The Continuous Phase Modulation (CPM) Demodulator Baseband block demodulates a
signal that was modulated using continuous phase modulation. The input is a baseband
representation of the modulated signal:

s t j h q t iT

nT t n T

i i

i

n

() exp () ,

()

= -
È

Î

Í
Í

˘

˚

˙
˙

< < +

=
Â2

1

0

p a

See the CPM Modulator Baseband block reference page for the definition of {αi}, {hi}, and
q(t).

This block accepts a scalar-valued or a column vector input signal with a data type of
single or double. CPM is a modulation method with memory. The optimum receiver
consists of a correlator followed by a maximum-likelihood sequence detector (MLSD) that
searches the paths through the state trellis for the minimum Euclidean distance path.
When the Modulation index h is rational, i.e., h = m/p, there are a finite number of phase
states and the block uses the Viterbi algorithm to perform MLSD.

{hi} represents a sequence of modulation indices that moves cyclically through a set of
indices {h0, h1, h2, ….,hH-1}.

• hi = mi/pi represents the modulation index in proper rational form
• mi represents the numerator of modulation index

2 Blocks — Alphabetical List

2-164

• pi represents the denominator of modulation index
• mi and pi are relatively prime positive numbers
• The Least Common Multiple (LCM) of {p0, p1, p2, ….,pH-1} is denoted as p
• hi = m'i/p

{hi} determines the number of phase states:

numPhaseStates
p for all even m

p for any odd m

i

i

=
Ï
Ì
Ó

¸
˝
˛

, ’

, ’2

and affects the number of trellis states:

numStates = numPhaseStates*M(L-1)

where

• L represents the Pulse length
• M represents the M-ary number

Integer-Valued Signals and Binary-Valued Signals

When you set the Output type parameter to Integer, then the block produces odd
integers between -(M-1) and M-1. When you set the Output type to Integer, you
cannot set Output datatype to boolean.

When you set the Output type parameter to Bit, then the block produces groupings of
K bits. Each grouping is called a binary word. When you set the Output type to Bit, the
Output datatype can only be double or boolean.

In binary output mode, the block first maps each input symbol to an intermediate value
as in the integer output mode. Then, the block maps the odd integer k to the nonnegative
integer (k+M-1)/2. Finally, the block maps each nonnegative integer to a binary word,
using a mapping that depends on whether you set the Symbol set ordering parameter
to Binary or Gray.

Single-Rate Processing

In single-rate processing mode, the input and output signals have the same port sample
time. The block implicitly implements the rate change by making a size change at the

 CPM Demodulator Baseband

2-165

output when compared to the input. The input width must be an integer multiple of the
Samples per symbol parameter value, and the input can be a column vector.

• When you set Output type to Bit, the output width is K times the number of input
symbols.

• When you set Output type to Integer, the output width is the number of input
symbols.

Multirate Processing

In multirate processing mode, the input and output signals have different port sample
times. The input must be a scalar. The output symbol time is the product of the input
sample time and the Samples per symbol parameter value.

• When you set Output type to Bit, the output width equals the number of bits per
symbol.

• When you set Output type to Integer, the output is a scalar.

Traceback Depth and Output Delays

The Traceback depth parameter, D, in this block is the number of trellis branches used
to construct each traceback path. D influences the output delay, which is the number of
zero symbols that precede the first meaningful demodulated value in the output.

• When you set the Rate options parameter to Allow multirate processing, and
the model uses a variable-step solver or a fixed-step solver with the Tasking Mode
parameter set to SingleTasking, then the delay consists of D+1 zero symbols.

• When you set the Rate options parameter to Enforce single-rate processing,
the delay consists of D zero symbols.

The optimal Traceback depth parameter value is dependent on minimum squared
Euclidean distance calculations. Alternatively, a typical value, dependent on the
number of states, can be chosen using the “five-times-the-constraint-length” rule, which
corresponds to 5 2◊ log ()numStates .

For a binary raised cosine pulse shape with a pulse length of 3, h=2/3, this rule

(* log (*))5 2 3 2 18
2

= gives a result close to the optimum value of 20.

2 Blocks — Alphabetical List

2-166

Dialog Box

 CPM Demodulator Baseband

2-167

M-ary number
The size of the alphabet.

Output type
Determines whether the output consists of integers or groups of bits.

Symbol set ordering
Determines how the block maps each integer to a group of output bits. This field
applies only when you set Output type to Bit.

Modulation index
Specify the modulation index {hi}. The default is 0.5. The value of this property must
be a real, nonnegative scalar or column vector.

Frequency pulse shape
Specify the type of pulse shaping that the corresponding modulator uses to smooth
the phase transitions of the modulated signal. You can select from the following pulse
shapes:

• Rectangular

• Raised Cosine

• Spectral Raised Cosine

This option requires an additional parameter, Rolloff. The Rolloff parameter,
which affects the spectrum of the pulse, is a scalar between zero and one.

• Gaussian

This option requires an additional parameter, BT product. The BT product
parameter, which represents bandwidth multiplied by time, is a nonnegative
scalar. It is used to reduce the bandwidth at the expense of increased intersymbol
interference.

• Tamed FM (tamed frequency modulation)

Main lobe pulse duration (symbol intervals)
Number of symbol intervals of the largest lobe of the spectral raised cosine pulse.
This field is active only when Frequency pulse shape is set to Spectral Raised
Cosine.

Rolloff
The rolloff factor of the specified raised cosine filter. This field appears only when you
set Frequency pulse shape to Spectral Raised Cosine.

2 Blocks — Alphabetical List

2-168

BT product
The product of bandwidth and time. This field appears only when Frequency pulse
shape is set to Gaussian.

Pulse length (symbol intervals)
The length of the frequency pulse shape.

Symbol prehistory
The data symbols the modulator uses before the start of the simulation.

Phase offset (rad)
The initial phase of the modulated waveform.

Samples per symbol
The number of input samples that represent each modulated symbol. For more
information, see “Upsample Signals and Rate Changes” in Communications System
ToolboxUser's Guide.

Rate options
Select the rate processing method for the block.

• Enforce single-rate processing — When you select this option, the input
and output signals have the same port sample time. The block implements the
rate change by making a size change at the output when compared to the input.
The output width is the number of symbols (which is given by dividing the input
length by the Samples per symbol parameter value when the Output type
parameter is set to Integer).

• Allow multirate processing — When you select this option, the input and
output signals have different port sample times. The output period is the same as
the symbol period and equals the product of the input period and the Samples
per symbol parameter value.

Note: The option Inherit from input (this choice will be removed
- see release notes) will be removed in a future release. See “Frame-
Based Processing” in the Communications System Toolbox Release Notes for more
information.

For more information, see Single-Rate Processing and Multirate Processing in the
Description section of this page.

Traceback depth

 CPM Demodulator Baseband

2-169

The number of trellis branches that the CPM Demodulator block uses to construct
each traceback path.

Output datatype
The output data type can be boolean, int8, int16, int32, or double.

Supported Data Types

Port Supported Data Types

Input • Double-precision floating point
• Single-precision floating point

Output • Double-precision floating point
• Boolean (when Output type set to Bit)
• 8-, 16-, and 32-bit signed integers (when Output type set to Integer)

Pair Block

CPM Modulator Baseband

See Also

CPFSK Demodulator Baseband, GMSK Demodulator Baseband, MSK Demodulator
Baseband, Viterbi Decoder

References

[1] Anderson, John B., Tor Aulin, and Carl-Erik Sundberg. Digital Phase Modulation.
New York: Plenum Press, 1986.

2 Blocks — Alphabetical List

2-170

CPM Modulator Baseband
Modulate using continuous phase modulation

Library

CPM, in Digital Baseband sublibrary of Modulation

Description

The Continuous Phase Modulation (CPM) Modulator Baseband block modulates an input
signal using continuous phase modulation. The output is a baseband representation of
the modulated signal:

s t j h q t iT

nT t n T

i i

i

n

() exp () ,

()

= -
È

Î

Í
Í

˘

˚

˙
˙

< < +

=
Â2

1

0

p a

where

• {αi} represents a sequence of M-ary data symbols selected from the alphabet ±1, ±3,
±(M -1).

• M must have the form 2K for some positive integer K. You specify the value of M using
the M-ary number parameter.

• {hi} represents a sequence of modulation indices and hi moves cyclically through a set
of indices { h0, h1, h2, ….,hH-1 }. When H =1, there is only one modulation index, h0,
which is denoted as h.

When hi varies from interval to interval, the block operates in multi-h. To ensure a finite
number of phase states, hi must be a rational number. You specify the value(s) of hi using
the Modulation index parameter.

 CPM Modulator Baseband

2-171

Continuous phase modulation uses pulse shaping to smooth the phase transitions of the
modulated signal. The function q(t) is the phase response obtained from the frequency
pulse, g(t), through the relation:

q t g t dt
t

() ()=
-•Ú

Using the Frequency pulse shape parameter, you can select the following pulse
shapes:

• Rectangular

• Raised Cosine

• Spectral Raised Cosine

• Gaussian

• Tamed FM (tamed frequency modulation)

For the exact definitions of these pulse shapes, see the work by Anderson, Aulin,
and Sundberg among the references at the end of this page. Each pulse shape has
a corresponding pulse duration. The Pulse length (symbol intervals) parameter
measures this quantity in symbol intervals.

Integer-Valued Signals and Binary-Valued Signals

When you set the Input type parameter to Integer, then the block accepts odd integers
between -(M-1) and M-1. M represents the M-ary number block parameter.

When you set the Input type parameter to Bit, the block accepts binary-valued inputs
that represent integers. The block collects binary-valued signals into groups of K =
log2(M) bits

where

K represents the number of bits per symbol.

The input vector length must be an integer multiple of K. In this configuration, the
block accepts a group of K bits and maps that group onto a symbol at the block output.
The block outputs one modulated symbol, oversampled by the Samples per symbol
parameter value, for each group of K bits.

This block accepts a scalar-valued or column vector input signal. For a column vector
input signal, the width of the output frame equals the product of the number of symbols

2 Blocks — Alphabetical List

2-172

and the value for the Samples per symbol parameter. For a sample-based input signal,
the output sample time equals the symbol period divided by the value for the Samples
per symbol parameter. For information about the data types each block port supports,
see the “Supported Data Types” on page 2-176 table on this page.

Symbol Sets

In binary input mode, the block maps each binary word to an integer between 0 and M-1,
using a mapping that depends on whether the Symbol set ordering parameter is set to
Binary or Gray. The block then maps the integer k to the intermediate value 2k-(M-1)
and proceeds as in the integer input mode. For more information, see Integer-Valued
Signals and Binary-Valued Signals on the M-PSK Modulator ref page.

Single-Rate Processing

In single-rate processing mode, the input and output signals have the same port sample
time. The block implicitly implements the rate change by making a size change at the
output when compared to the input. In this mode, the input to the block can be multiple
symbols.

• When you set Input type to Integer, the input can be a column vector, the length of
which is the number of input symbols.

• When you set Input type to Bit, the input width must be an integer multiple of K,
the number of bits per symbol.

The output width equals the product of the number of input symbols and the Samples
per symbol parameter value.

Multirate Processing

In multirate processing mode, the input and output signals have different port sample
times. In this mode, the input to the block must be one symbol.

• When you set Input type to Integer, the input must be a scalar.
• When you set Input type to Bit, the input width must equal the number of bits per

symbol.

The output sample time equals the symbol period divided by the Samples per symbol
parameter value.

 CPM Modulator Baseband

2-173

Dialog Box

2 Blocks — Alphabetical List

2-174

M-ary number
The size of the alphabet.

Input type
Indicates whether the input consists of integers or groups of bits.

Symbol set ordering
Determines how the block maps each group of input bits to a corresponding integer.
This field is active only when Input type is set to Bit.

Modulation index
Specify the modulation index {hi}. The default is 0.5. The value of this property must
be a real, nonnegative scalar or column vector.

Frequency pulse shape
Specify the type of pulse shaping that the block uses to smooth the phase transitions
of the modulated signal. You can select from the following pulse shapes:

• Rectangular

• Raised Cosine

• Spectral Raised Cosine

This option requires an additional parameter, Rolloff. The Rolloff parameter,
which affects the spectrum of the pulse, is a scalar between zero and one.

• Gaussian

This option requires an additional parameter, BT product. The BT product
parameter, which represents bandwidth multiplied by time, is a nonnegative
scalar. It is used to reduce the bandwidth at the expense of increased intersymbol
interference.

• Tamed FM (tamed frequency modulation)

Main lobe pulse duration (symbol intervals)
Number of symbol intervals of the largest lobe of the spectral raised cosine pulse.
This field is active only when Frequency pulse shape is set to Spectral Raised
Cosine.

Rolloff
The rolloff factor of the specified spectral raised cosine pulse shape. This field
appears only when you set Frequency pulse shape to Spectral Raised Cosine.

 CPM Modulator Baseband

2-175

BT product
The product of bandwidth and time. This field appears only when Frequency pulse
shape is set to Gaussian.

Pulse length (symbol intervals)
The length of the frequency pulse shape.

Symbol prehistory
A scalar-valued or vector signal that specifies the data symbols used before the start
of the simulation, in reverse chronological order. If Symbol prehistory is a vector,
then its length must be one less than the Pulse length parameter.

Phase offset (rad)
The initial phase of the output waveform, measured in radians.

Samples per symbol
The number of output samples that the block produces for each integer or binary
word in the input, which must be a positive integer. For all non-binary schemes, as
defined by the pulse shapes, this value must be greater than 1.

For more information, see “Upsample Signals and Rate Changes” in Communications
System ToolboxUser's Guide.

Rate options
Select the rate processing option for the block.

• Enforce single-rate processing — When you select this option, the input
and output signals have the same port sample time. The block implements the
rate change by making a size change at the output when compared to the input.
The output width equals the product of the number of symbols and the Samples
per symbol parameter value.

• Allow multirate processing — When you select this option, the input and
output signals have different port sample times. The output sample time equals
the symbol period divided by the Samples per symbol parameter value.

Note: The option Inherit from input (this choice will be removed
- see release notes) will be removed in a future release. See “Frame-
Based Processing” in the Communications System Toolbox Release Notes for more
information.

Output data type

2 Blocks — Alphabetical List

2-176

Specify the block output data type as double and single.

Supported Data Types

Port Supported Data Types

Input • Double-precision floating point
• Boolean (when Input type set to Bit)
• 8-, 16-, and 32-bit signed integers (when Input type set to Integer)

Output • Double-precision floating point
• Single-precision floating point

Pair Block

CPM Demodulator Baseband

See Also

CPFSK Modulator Baseband, GMSK Modulator Baseband, MSK Modulator Baseband

References

[1] Anderson, John B., Tor Aulin, and Carl-Erik Sundberg. Digital Phase Modulation.
New York: Plenum Press, 1986.

 CPM Phase Recovery

2-177

CPM Phase Recovery

Recover carrier phase using 2P-Power method

Library

Carrier Phase Recovery sublibrary of Synchronization

Description

The CPM Phase Recovery block recovers the carrier phase of the input signal using the
2P-Power method. This feedforward, non-data-aided, clock-aided method is suitable for
systems that use these types of baseband modulation: continuous phase modulation
(CPM), minimum shift keying (MSK), continuous phase frequency shift keying (CPFSK),
and Gaussian minimum shift keying (GMSK). This block is suitable for use with blocks
in the Baseband Continuous Phase Modulation library.

If you express the modulation index for CPM as a proper fraction, h = K / P, then P is the
number to which the name "2P-Power" refers. The observation interval parameter must
be an integer multiple of the input signal vector length.

The 2P-Power method assumes that the carrier phase is constant over a series of
consecutive symbols, and returns an estimate of the carrier phase for the series. The
Observation interval parameter is the number of symbols for which the carrier phase
is assumed constant. This number must be an integer multiple of the input signal's
vector length.

Input and Output Signals

This block accepts a scalar or column vector input signal of type double or single. The
input signal represents a baseband signal at the symbol rate, so it must be complex-
valued and must contain one sample per symbol.

The outputs are as follows:

2 Blocks — Alphabetical List

2-178

• The output port labeled Sig gives the result of rotating the input signal
counterclockwise, where the amount of rotation equals the carrier phase estimate.
The Sig output is thus a corrected version of the input signal, and has the same
sample time and vector size as the input signal.

• The output port labeled Ph outputs the carrier phase estimate, in degrees, for all
symbols in the observation interval. The Ph output is a scalar signal.

Note Because the block internally computes the argument of a complex number,
the carrier phase estimate has an inherent ambiguity. The carrier phase estimate is
between -90/P and 90/P degrees and might differ from the actual carrier phase by an
integer multiple of 180/P degrees.

Delays and Latency

The block's algorithm requires it to collect symbols during a period of length
Observation interval before computing a single estimate of the carrier phase.
Therefore, each estimate is delayed by Observation interval symbols and the corrected
signal has a latency of Observation interval symbols, relative to the input signal.

 CPM Phase Recovery

2-179

Dialog Box

P
The denominator of the modulation index for CPM (h = K / P) when expressed as a
proper fraction.

Observation interval
The number of symbols for which the carrier phase is assumed constant. The
observation interval parameter must be an integer multiple of the input signal vector
length.

When this parameter is exactly equal to the vector length of the input signal,
then the block always works. When the integer multiple is not equal to 1, select
Simulation > Configuration Parameters > Solver

and set Tasking mode for periodic sample times to SingleTasking.

2 Blocks — Alphabetical List

2-180

Algorithm

If the symbols occurring during the observation interval are x(1), x(2), x(3),..., x(L), then
the resulting carrier phase estimate is

1

2

2

1
P

x k
P

k

L

arg (())

=
Â

Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂

where the arg function returns values between -180 degrees and 180 degrees.

References

[1] Mengali, Umberto, and Aldo N. D'Andrea, Synchronization Techniques for Digital
Receivers, New York, Plenum Press, 1997.

See Also

M-PSK Phase Recovery, CPM Modulator Baseband

 CRC-N Generator

2-181

CRC-N Generator
Generate CRC bits according to CRC method and append to input data frames

Library

CRC sublibrary of Error Detection and Correction

Description

The CRC-N Generator block generates cyclic redundancy code (CRC) bits for each input
data frame and appends them to the frame. The input must be a binary column vector.
The CRC-N Generator block is a simplified version of the General CRC Generator block.
With the CRC-N Generator block, you can select the generator polynomial for the CRC
algorithm from a list of commonly used polynomials, given in the CRC-N method field
in the block's dialog. N is degree of the generator polynomial. The table below lists the
options for the generator polynomial.

CRC Method Generator Polynomial Number of Bits

CRC-32 x32+x26+x23+x22+x16+x12+x11

+x10+x8+x7+x5+x4+x2+x+1
32

CRC-24 x24+x23+x14+x12+x8+1 24

CRC-16 x16+x15+x2+1 16

Reversed CRC-16 x16+x14+x+1 16

CRC-8 x8+x7+x6+x4+x2+1 8

CRC-4 x4+x3+x2+x+1 4

You specify the initial state of the internal shift register using the Initial states
parameter. You specify the number of checksums that the block calculates for each input
frame using the Checksums per frame parameter. For more detailed information, see
the reference page for the General CRC Generator block.

2 Blocks — Alphabetical List

2-182

This block supports double and boolean data types. The output data type is inherited
from the input.

Signal Attributes

The General CRC Generator block has one input port and one output port. Both ports
accept binary column vector input signals.

Dialog Box

CRC-N method
The generator polynomial for the CRC algorithm.

Initial states
A binary scalar or a binary row vector of length equal to the degree of the generator
polynomial, specifying the initial state of the internal shift register.

Checksums per frame
A positive integer specifying the number of checksums the block calculates for each
input frame.

 CRC-N Generator

2-183

Algorithm

For a description of the CRC algorithm as implemented by this block, see “CRC Non-
Direct Algorithm” in Communications System Toolbox User's Guide.

Schematic of the CRC Implementation

gr-1

r-1 r-2 0

XOR addition

gr-2

dr-1 dr-2 d0

g1 g0

A(k)

- -1 2 1 0{ , , , , }k ka a a a

The above circuit divides the polynomial a x a x a x a x ak
k

k
k

() = + + + +
-

-

-

-

1
1

2
2

1 0L

by g x g x g x g x g
r

r

r

r
() = + + + +

-

-

-

-

1
1

2
2

1 0L , and returns the remainder
d x d x d x d x d

r

r

r

r
() = + + + +

-

-

-

-

1
1

2
2

1 0L .

The input symbols { , , , , , }a a a a ak k- -1 2 2 1 0… are fed into the shift register one at a time

in order of decreasing index. When the last symbol (a
0) works its way out of the register

(achieved by augmenting the message with r zeros), the register contains the coefficients
of the remainder polynomial d x() .

This remainder polynomial is the checksum that is appended to the original message,
which is then transmitted.

References

[1] Sklar, Bernard, Digital Communications: Fundamentals and Applications. Englewood
Cliffs, N.J., Prentice-Hall, 1988.

2 Blocks — Alphabetical List

2-184

[2] Wicker, Stephen B., Error Control Systems for Digital Communication and Storage,
Upper Saddle River, N.J., Prentice Hall, 1995.

Pair Block

CRC-N Syndrome Detector

See Also

General CRC Generator, General CRC Syndrome Detector

 CRC-N Syndrome Detector

2-185

CRC-N Syndrome Detector

Detect errors in input data frames according to selected CRC method

Library

CRC sublibrary of Error Detection and Correction

Description

The CRC-N Syndrome Detector block computes checksums for its entire input frame.
This block has two output ports. The first output port contains the set of message words
with the CRC bits removed. The second output port contains the checksum result,
which is a vector of a size equal to the number of checksums. A value of 0 indicates no
checksum errors. A value of 1 indicates a checksum error occurred.

The CRC-N Syndrome Detector block is a simplified version of the General CRC
Syndrome Detector block. You can select the generator polynomial for the CRC algorithm
from a list of commonly used polynomials, given in the CRC-N method field in the
block's dialog. N is the degree of the generator polynomial. The reference page for the
CRC-N Generator block contains a list of the options for the generator polynomial.

The parameter settings for the CRC-N Syndrome Detector block should match those of
the CRC-N Generator block.

You specify the initial state of the internal shift register by the Initial states parameter.
You specify the number of checksums that the block calculates for each input frame by
the Checksums per frame parameter. For more detailed information, see the reference
page for the General CRC Syndrome Detector block.

This block supports double and boolean data types. The output data type is inherited
from the input.

2 Blocks — Alphabetical List

2-186

Signal Attributes

The CRC-N Syndrome Detector block has one input port and two output ports. All three
ports accept binary column vector signals.

Dialog Box

CRC-N method
The generator polynomial for the CRC algorithm.

Initial states
A binary scalar or a binary row vector of length equal to the degree of the generator
polynomial, specifying the initial state of the internal shift register.

Checksums per frame
A positive integer specifying the number of checksums the block calculates for each
input frame.

 CRC-N Syndrome Detector

2-187

Algorithm

For a description of the CRC algorithm as implemented by this block, see “Cyclic
Redundancy Check Codes” in Communications System Toolbox User's Guide.

References

[1] Sklar, Bernard. Digital Communications: Fundamentals and Applications. Englewood
Cliffs, N.J., Prentice-Hall, 1988.

[2] Wicker, Stephen B., Error Control Systems for Digital Communication and Storage,
Upper Saddle River, N.J., Prentice Hall, 1995.

Pair Block

CRC-N Generator

See Also

General CRC Generator, General CRC Syndrome Detector

2 Blocks — Alphabetical List

2-188

Data Mapper

Map integer symbols from one coding scheme to another

Library

Utility Blocks

Description

The Data Mapper block accepts integer inputs and produces integer outputs. You can
select one of four mapping modes: Binary to Gray, Gray to Binary, User Defined,
or Straight Through.

This block accepts a scalar, column vector, or full matrix input signal. It can accept
multichannel inputs and allows for input and output data types of double, single,
int32, int16, int8, uint32, uint16, and uint8. The input signal must be a non-
negative value. The block truncates non-integer input signals as integer values.

Gray coding is an ordering of binary numbers such that all adjacent numbers differ
by only one bit. However, the inputs and outputs of this block are integers, not binary
vectors. As a result, the first two mapping modes perform code conversions as follows:

• In the Binary to Gray mode, the output from this block is the integer equivalent of
the Gray code bit representation for the input integer.

• In the Gray to Binary mode, the output from this block is the integer position of
the binary equivalent of the input integer in a Gray code ordering.

As an example, the table below shows both the Binary to Gray and Gray to Binary
mappings for integers in the range 0 to 7. In the Binary to Gray Mode Output column,
notice that binary representations in successive rows differ by exactly one bit. In the
Gray to Binary Mode columns, notice that sorting the rows by Output value creates a
Gray code ordering of Input binary representations.

 Data Mapper

2-189

Binary to Gray Mode Gray to Binary Mode

Input Output Input Output

0 0 (000) 0 (000) 0
1 1 (001) 1 (001) 1
2 3 (011) 2 (010) 3
3 2 (010) 3 (011) 2
4 6 (110) 4 (100) 7
5 7 (111) 5 (101) 6
6 5 (101) 6 (110) 4
7 4 (100) 7 (111) 5

When you select the User Defined mode, you can use any arbitrary mapping
by providing a vector to specify the output ordering. For example, the vector
[1,5,0,4,2,3] defines the following mapping:

0 1

1 5

2 0

3 4

4 2

5 3

Æ

Æ

Æ

Æ

Æ

Æ

When you select the Straight Through mode, the output equals the input.

2 Blocks — Alphabetical List

2-190

Dialog Box

Mapping mode
The type of data mapping that the block performs.

Symbol set size
Symbol set size of M restricts this block's inputs and outputs to integers in the range
0 to M-1.

Mapping vector
A vector of length M that contains the integers from 0 to M-1. The order of the
elements of this vector specifies the mapping of inputs to outputs. This parameter
appears only when you set Mapping mode to User Defined.

 DBPSK Demodulator Baseband

2-191

DBPSK Demodulator Baseband

Demodulate DBPSK-modulated data

Library

PM, in Digital Baseband sublibrary of Modulation

Description

The DBPSK Demodulator Baseband block demodulates a signal that was modulated
using the differential binary phase shift keying method. The input is a baseband
representation of the modulated signal.

The input must be a discrete-time complex signal. The block compares the current
symbol to the previous symbol. It maps phase differences of θ and π+θ, respectively, to
outputs of 0 and 1, respectively, where θ is the Phase rotation parameter. The first
element of the block's output is the initial condition of zero because there is no previous
symbol with which to compare the first symbol.

This block accepts a scalar or column vector input signal. The input signal can be of
data types single and double. For information about the data types each block port
supports, see “Supported Data Types” on page 2-192.

2 Blocks — Alphabetical List

2-192

Dialog Box

Phase rotation (rad)
This phase difference between the current and previous modulated symbols results in
an output of zero.

Output data type
When the parameter is set to 'Inherit via internal rule' (default setting),
the block will inherit the output data type from the input port. The output data type
will be the same as the input data type if the input is of type single or double.

For additional information, see “Supported Data Types” on page 2-192.

Supported Data Types

Port Supported Data Types

Input • Double-precision floating point
• Single-precision floating point

 DBPSK Demodulator Baseband

2-193

Port Supported Data Types

Output • Double-precision floating point
• Single-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Pair Block

DBPSK Modulator Baseband

See Also

M-DPSK Demodulator Baseband, DQPSK Demodulator Baseband, BPSK Demodulator
Baseband

2 Blocks — Alphabetical List

2-194

DBPSK Modulator Baseband

Modulate using differential binary phase shift keying method

Library

PM, in Digital Baseband sublibrary of Modulation

Description

The DBPSK Modulator Baseband block modulates using the differential binary phase
shift keying method. The output is a baseband representation of the modulated signal.

This block accepts a scalar or column vector input signal. The input must be a discrete-
time binary-valued signal. For information about the data types each block port supports,
see “Supported Data Types” on page 2-195.

The following rules govern this modulation method when the Phase rotation parameter
is θ:

• If the first input bit is 0 or 1, respectively, then the first modulated symbol is exp(jθ)
or -exp(jθ), respectively.

• If a successive input bit is 0 or 1, respectively, then the modulated symbol is the
previous modulated symbol multiplied by exp(jθ) or -exp(jθ), respectively.

 DBPSK Modulator Baseband

2-195

Dialog Box

Phase rotation (rad)
The phase difference between the previous and current modulated symbols when the
input is zero.

Output Data type
The output data type can be either single or double. By default, the block sets this
to double.

Supported Data Types

Port Supported Data Types

Input • Double-precision floating point
• Single-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Output • Double-precision floating point
• Single-precision floating point

2 Blocks — Alphabetical List

2-196

Pair Block

DBPSK Demodulator Baseband

See Also

DQPSK Modulator Baseband, BPSK Modulator Baseband

 Deinterlacer

2-197

Deinterlacer

Distribute elements of input vector alternately between two output vectors

Library

Sequence Operations

Description

The Deinterlacer block accepts an even length column vector input signal. The block
alternately places the elements in each of two output vectors. As a result, each output
vector size is half the input vector size. The output vectors have the same complexity and
sample time of the input.

This block accepts a column vector input signal with an even integer length. The block
supports the following data types: int8, uint8, int16, uint16, int32, uint32,
boolean, single, double, and fixed-point. The output signal inherits its data type from
the input signal.

The Deinterlacer block can be useful for separating in-phase and quadrature information
from a single vector into separate vectors.

2 Blocks — Alphabetical List

2-198

Dialog Box

Examples

If the input vector has the values [1; 5; 2; 6; 3; 7; 4; 8], then the two output vectors are
[1; 2; 3; 4] and [5; 6; 7; 8]. Notice that this example is the inverse of the example on the
reference page for the Interlacer block.

If the input vector has the values [1; 2; 3; 4; 5; 6], then the two output vectors are [1; 3; 5]
and [2; 4; 6].

Pair Block

Interlacer

See Also

Demux (Simulink documentation)

 Derepeat

2-199

Derepeat

Reduce sampling rate by averaging consecutive samples

Library

Sequence Operations

Description

The Derepeat block resamples the discrete input at a rate 1/N times the input sample
rate by averaging N consecutive samples. This is one possible inverse of the DSP System
Toolbox Repeat block. The positive integer N is the Derepeat factor parameter in the
Derepeat dialog.

The Initial condition parameter prescribes elements of the output when it is still
too early for the input data to show up in the output. If the dimensions of the Initial
condition parameter match the output dimensions, then the parameter represents
the initial output value. If Initial condition is a scalar, then it represents the initial
value of each element in the output. The block does not support empty matrices for initial
conditions.

The input can have any shape or frame status. The block accepts the data types single
and double. The output signal inherits its data type from the input signal.

This block works within a triggered subsystem, as long as you use it in the single-rate
mode.

Single-Rate Processing

The block derepeats each frame, treating distinct channels independently. Each element
of the output is the average of N consecutive elements along a column of the input
matrix. The Derepeat factor must be less than the frame size.

2 Blocks — Alphabetical List

2-200

When you set the Rate options parameter to Enforce single-rate processing,
the input and output of the block have the same sample rate. The block reduces the
sampling rate by using a proportionally smaller frame size than the input. Derepeat
factor should be an integer factor of the number of rows in the input vector or matrix.
For derepetition by a factor of N, the output frame size is 1/N times the input frame size,
but the input and output frame rates are equal. When you use this option, the Initial
condition parameter does not apply and the block incurs no delay, because the input
data immediately shows up in the output.

For example, if a single-channel input with 64 elements is derepeated by a factor of 4,
then the output contains 16 elements. The input and output frame periods are equal.

Multirate Processing

When you set the Rate options parameter to Allow multirate processing,
the input and output of the Derepeat block are the same size, but the sample rate of
the output is N times slower than that of the input. When the block is in multirate
processing mode, you must also specify a value for the Input processing parameter:

• When you set the Input processing parameter to Elements as channels
(sample based), then the block assumes that the input is a vector or matrix whose
elements represent samples from independent channels. The block averages samples
from each channel independently over time. The output period is N times the input
period, and the input and output sizes are identical. The output is delayed by one
output period, and the first output value is the Initial condition value. If you set
Rate options to Enforce single-rate processing, the block will generate an
error message.

• When you set the Input processing parameter to Columns as channels (frame
based), The block reduces the sampling rate by using a proportionally longer frame
period at the output port than at the input port. For derepetition by a factor of N,
the output frame period is N times the input frame period, but the input and output
frame sizes are equal. The output is delayed by one output frame, and the first output
frame is determined only by the Initial condition value. The block derepeats each
frame, treating distinct channels independently. Each element of the output is the
average of N consecutive elements along a column of the input matrix. The Derepeat
factor must be less than the frame size.

For example, if a single-channel input with a frame period of 1 second is derepeated
by a factor of 4, then the output has a frame period of 4 seconds. The input and output
frame sizes are equal.

 Derepeat

2-201

Dialog Box

Derepeat factor, N
The number of consecutive input samples to average in order to produce each output
sample.

Input processing
Specify how the block processes the input signal. You can set this parameter to one of
the following options:

• Columns as channels (frame based) — When you select this option, the
block treats each column of the input as a separate channel.

• Elements as channels (sample based) — When you select this option, the
block treats each element of the input as a separate channel.

2 Blocks — Alphabetical List

2-202

Note: The Inherited (this choice will be removed - see release
notes) option will be removed in a future release. See “Frame-Based Processing” in
the Communications System Toolbox Release Notes for more information.

Rate options
Select the rate processing option for the block.

• Enforce single-rate processing — When you select this option, the input
and output signals have the same port sample time. The block implements the
rate change by making a size change at the output when compared to the input.
The output width equals the product of the number of symbols and the Samples
per symbol parameter value.

• Allow multirate processing — When you select this option, the input and
output signals have different port sample times. The output sample time equals
the symbol period divided by the Samples per symbol parameter value.

Note: The option Inherit from input (this choice will be removed
- see release notes) will be removed in a future release. See “Frame-
Based Processing” in the Communications System Toolbox Release Notes for more
information.

Initial condition
The value with which to initialize the block.

See Also

Repeat (DSP System Toolbox documentation), Downsample (DSP System Toolbox
documentation)

 Descrambler

2-203

Descrambler
Descramble input signal

Library

Sequence Operations

Description

The Descrambler block descrambles a scalar or column vector input signal. The
Descrambler block is the inverse of the Scrambler block. If you use the Scrambler block
in a transmitter, then you use the Descrambler block in the related receiver.

In the following descrambler schematic, the adders and subtracter operate modulo N,
where N is the Calculation base parameter. You must specify integer input values
between 0 and N-1.

Input data

Descrambled data

1 2 M-1 M

p11 p2 pm-1 pm

At each time step, the input causes the contents of the registers to shift sequentially.
Using the Scramble polynomial parameter, you specify if each switch in the
descrambler is on or off. To make the Descrambler block reverse the operation of the
Scrambler block, use the same Scramble polynomial parameters in both blocks. If
there is no signal delay between the scrambler and the descrambler, then the Initial
states in the two blocks must be the same. See the reference page for the Scrambler
block for more information about these parameters. There is an optional port that can be
used to reset the descrambler.

2 Blocks — Alphabetical List

2-204

Alternatively, the initial states can be provided by an input port when Initial states
source parameter is set to Input port.

This block can accept input sequences that vary in length during simulation. For more
information about sequences that vary in length, or variable-size signals, see “Variable-
Size Signal Basics” in the Simulink documentation.

Dialog Box

Calculation base
The calculation base N. The input and output of this block are integers in the range
[0, N-1].

 Descrambler

2-205

Scramble polynomial
A polynomial that defines the connections in the scrambler.

Initial states source
A drop down menu that controls the source of the initial states. Select either Dialog
Parameter or Input port. The default value is Dialog Parameter.

Initial states
The states of the descrambler's registers when the simulation starts. This parameter
is available when Initial states source is set to Dialog Parameter.

Reset on nonzero input via port
A check box that creates a reset port. When checked, the descrambler is reset if a
nonzero input is applied to the port. This control is available when Initial states
source is set to Dialog Parameter. The default is that the box is not checked.

Pair Block

Scrambler

2 Blocks — Alphabetical List

2-206

Differential Decoder

Decode binary signal using differential coding

Library

Source Coding

Description

The Differential Decoder block decodes the binary input signal. The output is the logical
difference between the consecutive input element within a channel. More specifically, the
block's input and output are related by
m(i0) = d(i0) XOR Initial condition parameter value
m(ik) = d(ik) XOR d(ik-1)

where

• d is the differentially encoded input.
• m is the output message.
• ik is the kth element.
• XOR is the logical exclusive-or operator.

This block accepts a scalar, column vector, or matrix input signal and treats columns as
channels.

 Differential Decoder

2-207

Dialog Box

Initial conditions
The logical exclusive-or of this value with the initial input value forms the initial
output value.

Supported Data Type

Port Supported Data Types

In • double
• single
• boolean
• integer
• fixed-point

Out • double
• single
• boolean

2 Blocks — Alphabetical List

2-208

Port Supported Data Types

• integer
• fixed-point

References

[1] Couch, Leon W., II, Digital and Analog Communication Systems, Sixth edition, Upper
Saddle River, N. J., Prentice Hall, 2001.

Pair Block

Differential Encoder

 Differential Encoder

2-209

Differential Encoder

Encode binary signal using differential coding

Library

Source Coding

Description

The Differential Encoder block encodes the binary input signal within a channel. The
output is the logical difference between the current input element and the previous
output element. More specifically, the input and output are related by
d(i0) = m(i0) XOR Initial condition parameter value
d(ik) = d(ik-1) XOR m(ik)

where

• m is the input message.
• d is the differentially encoded output.
• ik is the kth element.
• XOR is the logical exclusive-or operator.

This block accepts a scalar or column vector input signal and treats columns as channels.

2 Blocks — Alphabetical List

2-210

Dialog Box

Initial conditions
The logical exclusive-or of this value with the initial input value forms the initial
output value.

Supported Data Type

Port Supported Data Types

In • Double-precision floating point
• Single-precision floating point
• Boolean
• Integer
• Fixed-point

Out • Double-precision floating point
• Single-precision floating point
• Boolean

 Differential Encoder

2-211

Port Supported Data Types

• Integer
• Fixed-Point

References

[1] Couch, Leon W., II, Digital and Analog Communication Systems, Sixth edition, Upper
Saddle River, N. J., Prentice Hall, 2001.

Pair Block

Differential Decoder

2 Blocks — Alphabetical List

2-212

Discrete-Time Eye Diagram Scope
Display multiple traces of modulated signal

Library

Comm Sinks

Description

The Discrete-Time Eye Diagram Scope block displays multiple traces of a modulated
signal to produce an eye diagram. You can use the block to reveal the modulation
characteristics of the signal, such as pulse shaping or channel distortions.

The Discrete-Time Eye Diagram Scope block has one input port. This block accepts a
scalar-valued or column vector input signal. The block accepts a signal with the following
data types: double, single, boolean, base integer, and fixed-point data types for input,
but casts as double prior to displaying the results.

Marker and Line Styles

The Marker, Line style, and Line color parameters, on the Rendering Properties
panel, control the appearance of the signal trajectory. The Marker parameter specifies
the marker style for points in the eye diagram. The following table lists some of the
available line markers.

Marker Style Parameter Symbol Appearance

Plus +

Circle o

Asterisk *

Point .

Cross x

 Discrete-Time Eye Diagram Scope

2-213

The Line style parameter specifies the style for lines in the eye diagram. The following
lists some of the available line styles.

Line Style Appearance

Solid
Dashed
Dotted
Dash-dot

The Line color parameter specifies the color of the eye diagram. These settings plot the
signal channels in the following colors (8-bit RGB equivalents are shown in the center
column).

Color RGB Equivalent Appearance

Black (0,0,0)
Blue (0,0,255)
Red (255,0,0)
Green (0,255,0)
Dark purple (192,0,192)

See the line function in the MATLAB documentation for more information about the
available markers, colors, and line styles.

Recommended Settings

The following table summarizes the recommended parameter settings for the Discrete-
Time Eye Diagram Scope.

Parameter Recommended Setting

Samples per symbol Same as the Samples per symbol
setting in the modulator block, or the
Interpolation factor setting in the
interpolation block

Offset (samples) 0 to view the open part of the eye

(Samples per symbol)/2 to view the
closed part of the eye

2 Blocks — Alphabetical List

2-214

Parameter Recommended Setting

Symbols per trace An integer between 1 and 4
Traces displayed 10 times the alphabet size of the

modulator, M
New traces per display Same as Traces displayed for greater

speed

A small positive integer for best animation
Marker None or a point (.) to see where the

samples are plotted
Line style Solid dash (-)
Line color Blue (b)
Duplicate points at trace boundary Check Duplicate points at trace

boundary for modulations such as PSK
and QAM.

Clear to display the phase trees for
MSK, CPFSK, GFSK, GMSK, and other
continuous phase modulations.

Color fading Check Color fading for animation that
resembles an oscilloscope.

Clear for greater speed and animation that
resembles a plot.

High quality rendering Check High quality rendering for better
animation.

Clear for greater speed.

 Discrete-Time Eye Diagram Scope

2-215

Parameter Recommended Setting

Eye diagram to display Select In-phase and Quadrature to
view real and imaginary components.

Select In-phase Only to view real
component only and for greater speed.

When the input is real and you choose In-
phase and Quadrature, the quadrature
component of the eye diagram is zero.

Open at start of simulation Check Open at start of simulation to
view the signal at the start of simulation.

Clear to view the signal after convergence
to steady state and for greater initial speed.

Y-axis minimum Approximately 10% less than the expected
minimum value of the signal

Y-axis maximum Approximately 10% greater than the
expected maximum value of the signal

For Rapid Accelerator or External mode, set the scope up for single rate mode. To
guarantee the satisfactory behavior of single rate mode, the subsystem below the block
mask for this block must operate as a single-rate entity, which means the following
conditions are true:

sps * ((td * (spt-1)) + ntpd) = Sf

where:

• sps = Samples per symbol
• td = Traces displayed
• spt = Symbols per trace
• ntpd = New traces per display
• Sf = Input frame size, in samples

This equation guarantees that the subsystem below the mask for this block operates as a
single rate entity.

2 Blocks — Alphabetical List

2-216

Warning If you want to use Rapid Accelerator or External mode, set this block up to run
as a single rate entity because the block does not support multi-rate in these modes.

Note: Before running a model that contains a Discrete-Time Eye Diagram Scope block in
Accelerator, Rapid Accelerator, or External mode, you must select Open scope at start
of simulation. If you do not select this check box before running your model for the first
time, the scope will not display your simulation data

Scope Options

The scope title (in the window title bar) is the same as the block title. You can set the
axis scaling by setting the y-axis minimum and y-axis maximum parameters on the Axes
Properties panel.

In addition to the standard MATLAB figure window menus (File, Edit, Window, Help),
the Vector Scope window has an Axes and a Channels menu.

The properties listed in the Axes menu apply to all channels. Many of the parameters
in this menu are also accessible through the block parameter dialog box. These are
Autoscale, Show grid, Frame #, and Save Position. Below are descriptions of the
other parameters listed in the Axes menu:

• Autoscale resizes the y-axis to best fit the vertical range of the data. The numerical
limits selected by the autoscale feature are displayed in the Minimum Y-limit and
Maximum Y-limit parameters in the parameter dialog box. You can change them by
editing those values.

• Show grid - When selected, the scope displays a grid according to tick marks on the
x- and y-axes.

• Frame # - When selected, the scope displays the current frame number at the bottom
of the scope window.

• Save Position automatically updates the Scope position parameter in the Figure
properties panel to reflect the scope window's current position and size. To make the
scope window open at a particular location on the screen when the simulation runs,
simply drag the window to the desired location, resize it as needed, and select Save
Position.

The properties listed in the Channels menu apply to a particular channel. The
parameters listed in this menu are Style, Marker, and Color. They correspond to the
parameters Line style, Marker, and Line color, respectively.

 Discrete-Time Eye Diagram Scope

2-217

You can also access many of these options by right-clicking with the mouse anywhere on
the scope display. The menu that pops up contains a combination of the options available
in both the Axes and Channels menus.

Behavior in Enabled Subsystems

You can use the Discrete-Time Eye Diagram Scope block inside an enabled subsystem.
However, you cannot use the scope block inside an enabled subsystem when the model is
in a multirate multitasking environment.

When you use the scope in a multirate singletasking environment, it may generate
unexpected results inside enabled subsystems. To workaround this issue, configure
the scope for single-rate mode. See “Recommended Settings” on page 2-213 for the
parameter settings that enable single-rate mode.

2 Blocks — Alphabetical List

2-218

Dialog Box

Samples per symbol
Number of samples per symbol. Use with Symbols per trace to determine the
number of samples per trace.

Offset (samples)
Nonnegative integer less than the product of Samples per symbol and Symbols
per trace, specifying the number of samples to omit before plotting the first point.
Tunable.

Symbols per trace
Positive integer specifying the number of symbols plotted per trace.

 Discrete-Time Eye Diagram Scope

2-219

Traces displayed
Number of traces plotted.

New traces per display
Positive integer less than Traces displayed, specifying the number of new traces
that appear in each display.

Markers
The marker for points in the eye diagram. Tunable.

Line style
The line style in the eye diagram. Tunable.

Line color
The line color in the eye diagram. Tunable.

Duplicate points at trace boundary
Check to enable duplicate points at the trace boundary. Clear to disable.

Color fading
When selected, the points in the eye diagram fade as the interval of time after they
are first plotted increases. Tunable.

High quality rendering
When selected, the block renders a slow, higher-quality picture with overwrite raster
operations. When cleared, the block renders a fast, lower-quality picture with XOR
raster operations. Tunable.

Show grid

2 Blocks — Alphabetical List

2-220

Toggles the scope grid on and off. Tunable.

Y-axis minimum
Minimum signal value the scope displays. Tunable.

Y-axis maximum
Maximum signal value the scope displays. Tunable.

In-phase Y-axis label
Label for y-axis of the in-phase diagram. Tunable.

Quadrature Y-axis label
Label for y-axis of the quadrature diagram. Tunable.

 Discrete-Time Eye Diagram Scope

2-221

Open scope at start of simulation
When selected, the scope opens at the start of simulation. When cleared, you must
double-click the block after the start of simulation to open the scope. Tunable.

Note: Before running a model that contains a Discrete-Time Eye Diagram Scope
block in Accelerator, Rapid Accelerator, or External mode, you must select Open
scope at start of simulation. If you do not select this check box before running
your model for the first time, the scope will not display your simulation data

Eye diagram to display
Type of eye diagram to display. Choose In-phase and Quadrature to display real
and complex components, or In-phase Only to display only the real component.
Tunable.

Trace number
Displays the number of the current trace in the input sequenced. Tunable.

Scope position
A four-element vector of the form [left bottom width height] specifying the position of
the scope window. (0,0) is the lower left corner of the display. Tunable.

Title
Title of eye diagram figure window. Tunable.

Examples

For documentation examples that use this block, see “View a Sinusoid” and “View a
Modulated Signal”.

Also, the following Communications System Toolbox demos illustrate how to use the
Discrete-Time Eye Diagram Scope block:

• CPM Phase Tree Example
• Filtered Offset QPSK vs. Filtered QPSK
• Rayleigh Fading Channel
• QPSK vs. MSK

2 Blocks — Alphabetical List

2-222

See Also

Constellation Diagram, Discrete-Time Signal Trajectory Scope

 Discrete-Time Signal Trajectory Scope

2-223

Discrete-Time Signal Trajectory Scope
Plot modulated signal's in-phase component versus its quadrature component

Library

Comm Sinks

Description

The Discrete-Time Signal Trajectory Scope displays the trajectory of a modulated signal
in its signal space by plotting its in-phase component versus its quadrature component.

The Discrete-Time Signal Trajectory Scope block has one input port. This block accepts a
complex scalar-valued or column vector input signal. The block accepts a signal with the
following data types: double, single, base integer, and fixed-point for input, but will
cast it as double.

Line Style and Color

The Line style and Line color parameters on the Rendering Properties panel control
the appearance of the signal trajectory. The Line style parameter specifies the style
for lines in the signal trajectory. For details on the options for these parameters, see the
reference page for the Discrete-Time Eye Diagram Scope block.

Recommended Settings

The following table summarizes the recommended parameter settings for the Discrete-
Time Signal Trajectory Scope.

Parameter Recommended Setting

Samples per symbol Same as the Samples per symbol
setting in the modulator block, or the
Interpolation factor used in the
interpolation block

2 Blocks — Alphabetical List

2-224

Parameter Recommended Setting

Symbols displayed 10 times the alphabet size of the
modulator, M

New symbols per display Same as Symbols displayed for greater
speed

A small positive integer for best animation
Line style Solid dash (-)
Line color Blue (b)
Color fading Check Color fading for animation that

resembles an oscilloscope.

Clear for greater speed and animation that
resembles a plot.

High quality rendering Check High quality rendering for higher
quality rendering.

Clear for greater speed.
Open at start of simulation Check Open at start of simulation to

view the signal at the start of simulation.

Clear to view the signal after convergence
to steady state and for greater initial speed.

Y-axis minimum Approximately 10% less than the expected
minimum value of the signal

Y-axis maximum Approximately 10% greater than the
expected maximum value of the signal

For Rapid Accelerator or External mode, set the scope up for single rate mode. To
guarantee the satisfactory behavior of single rate mode, the subsystem below the block
mask for this block must operate as a single-rate entity, which means the following
conditions are true:

sps * nspd = Sf

where:

 Discrete-Time Signal Trajectory Scope

2-225

• sps = Samples per symbol
• nspd = New symbols per display
• Sf = Input frame size, in samples

This equation guarantees that the subsystem below the mask for this block operates as a
single-rate entity.

Warning If you want to use Rapid Accelerator or External mode, set this block up to run
as a single rate entity because the block does not support multi-rate in these modes.

Note: Before running a model that contains a Discrete-Time Signal Trajectory Scope
block in Accelerator, Rapid Accelerator, or External mode, you must select Open scope
at start of simulation. If you do not select this check box before running your model for
the first time, the scope will not display your simulation data

Behavior in Enabled Subsystems

You can use the Discrete-Time Signal Trajectory Scope block inside an enabled
subsystem. However, you cannot use the scope block inside an enabled subsystem when
the model is in a multirate multitasking environment.

When you use the scope in a multirate singletasking environment, it may generate
unexpected results inside enabled subsystems. To workaround this issue, configure
the scope for single-rate mode. See “Recommended Settings” on page 2-223 for the
parameter settings that enable single-rate mode.

2 Blocks — Alphabetical List

2-226

Dialog Box

Samples per symbol
Number of samples per symbol.

Symbols displayed
Total number of symbols plotted.

New symbols per display
Number of new symbols that appear in each display.

 Discrete-Time Signal Trajectory Scope

2-227

Line markers
The line markers used in the signal trajectory. Tunable.

Line color
The line color used in the signal trajectory. Tunable.

Color fading
When selected, the points in the signal trajectory fade as the interval of time after
they are first plotted increases. Tunable.

High quality rendering
When selected, the block renders a slow, higher-quality picture with overwrite raster
operations. When cleared, the block renders a fast, lower-quality picture with XOR
raster operations. Tunable.

Show grid
Toggles the scope grid on and off. Tunable.

2 Blocks — Alphabetical List

2-228

X-axis minimum
Minimum value the scope displays on the x-axis. Tunable.

X-axis maximum
Maximum value the scope displays on the x-axis. Tunable.

Y-axis minimum
Minimum signal value the scope displays on the y-axis. Tunable.

Y-axis maximum
Maximum signal value the scope display on the y-axis. Tunable.

In-phase X-axis label
Label for x-axis. Tunable.

Quadrature Y-axis label
Label for y-axis. Tunable.

 Discrete-Time Signal Trajectory Scope

2-229

Open at start of simulation
When selected, the scope opens at the start of simulation. When cleared, you must
double-click the block after the start of simulation to open the scope. Tunable

Note: Before running a model that contains a Discrete-Time Signal Trajectory Scope
block in Accelerator, Rapid Accelerator, or External mode, you must select Open
scope at start of simulation. If you do not select this check box before running
your model for the first time, the scope will not display your simulation data

Symbol number
Displays the number of the current symbol in the input sequence. Tunable.

Scope position
A four-element vector of the form [left bottom width height] specifying the position of
the scope window. (0,0) is the lower left corner of the display. Tunable.

Title
Title of signal trajectory plot. Tunable.

2 Blocks — Alphabetical List

2-230

Examples

For documentation examples that use this block, see “View a Sinusoid” and “View a
Modulated Signal”.

Also, the following demos in Communications System Toolbox software illustrate how to
use the Discrete-Time Signal Trajectory Scope:

• Filtered Offset QPSK vs. Filtered QPSK
• GMSK vs. MSK

See Also

Constellation Diagram, Discrete-Time Eye Diagram Scope

 Discrete-Time VCO

2-231

Discrete-Time VCO

Implement voltage-controlled oscillator in discrete time

Library

Components sublibrary of Synchronization

Description

The Discrete-Time VCO (voltage-controlled oscillator) block generates a signal whose
frequency shift from the Quiescent frequency parameter is proportional to the input
signal. The input signal is interpreted as a voltage. If the input signal is u(t), then the
output signal is

y t A f t k u dc c c

t
() cos ()= + +Ê

Ë
Á

ˆ
¯
˜Ú2 2

0
p p t t j

where Ac is the Output amplitude, fc is the Quiescent frequency, kc is the Input
sensitivity, and j is the Initial phase

This block uses a discrete-time integrator to interpret the equation above.

This block accepts a scalar-valued input signal with a data type of single or double.
The output signal inherits its data type from the input signal. The block supports double
precision only for code generation.

2 Blocks — Alphabetical List

2-232

Dialog Box

Output amplitude
The amplitude of the output.

Quiescent frequency (Hz)
The frequency of the oscillator output when the input signal is zero.

Input sensitivity
This value scales the input voltage and, consequently, the shift from the Quiescent
frequency value. The units of Input sensitivity are Hertz per volt.

Initial phase (rad)
The initial phase of the oscillator in radians.

 Discrete-Time VCO

2-233

Sample time
The calculation sample time.

See Also

Continuous-Time VCO

2 Blocks — Alphabetical List

2-234

DQPSK Demodulator Baseband

Demodulate DQPSK-modulated data

Library

PM, in Digital Baseband sublibrary of Modulation

Description

The DQPSK Demodulator Baseband block demodulates a signal that was modulated
using the differential quaternary phase shift keying method. The input is a baseband
representation of the modulated signal.

The input must be a discrete-time complex signal. The output depends on the phase
difference between the current symbol and the previous symbol. The first integer (or
binary pair, if you set the Output type parameter to Bit) at the block output is the
initial condition of zero because there is no previous symbol.

This block accepts either a scalar or column vector input signal. For information about
the data types each block port supports, see “Supported Data Types” on page 2-236.

Outputs and Constellation Types

When you set Output type parameter to Integer, the block maps a phase difference of
θ + πm/2

to m, where θ represents the Phase rotation parameter and m is 0, 1, 2, or 3.

When you set the Output type parameter to Bit, then the output contains pairs of
binary values. The reference page for the DQPSK Modulator Baseband block shows
which phase differences map to each binary pair, for the cases when the Constellation
ordering parameter is either Binary or Gray.

 DQPSK Demodulator Baseband

2-235

Dialog Box

Output type
Determines whether the output consists of integers or pairs of bits.

Constellation ordering
Determines how the block maps each integer to a pair of output bits.

Phase rotation (rad)
This phase difference between the current and previous modulated symbols results in
an output of zero.

Output data type
When the parameter is set to 'Inherit via internal rule' (default setting),
the block will inherit the output data type from the input port. The output data type
will be the same as the input data type if the input is of type single or double.

For integer outputs, this block can output the data types int8, uint8, int16,
uint16, int32, uint32, single, and double. For bit outputs, output can be int8,
uint8, int16, uint16, int32, uint32, boolean, single, or double.

2 Blocks — Alphabetical List

2-236

Supported Data Types

Port Supported Data Types

Input • Double-precision floating point
• Single-precision floating point

Output • Double-precision floating point
• Single-precision floating point
• Boolean when Output type isBit
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Pair Block

DQPSK Modulator Baseband

See Also

M-DPSK Demodulator Baseband, DBPSK Demodulator Baseband, QPSK Demodulator
Baseband

 DQPSK Modulator Baseband

2-237

DQPSK Modulator Baseband
Modulate using differential quaternary phase shift keying method

Library

PM, in Digital Baseband sublibrary of Modulation

Description

The DQPSK Modulator Baseband block modulates using the differential quaternary
phase shift keying method. The output is a baseband representation of the modulated
signal.

The input must be a discrete-time signal. For information about the data types each
block port supports, see “Supported Data Types” on page 2-240.

Integer-Valued Signals and Binary-Valued Signals

When you set the Input type parameter to Integer, the valid input values are 0, 1, 2,
and 3. In this case, the block accepts a scalar or column vector input signal. If the first
input is m, then the modulated symbol is
exp(jθ + jπm/2)

where θ represents the Phase rotation parameter. If a successive input is m, then the
modulated symbol is the previous modulated symbol multiplied by exp(jθ + jπm/2).

When you set the Input type parameter to Bit, the input contains pairs of binary
values. In this case, the block accepts a column vector whose length is an even integer.
The following figure shows the complex numbers by which the block multiples the
previous symbol to compute the current symbol, depending on whether you set the
Constellation ordering parameter to Binary or Gray. The following figure assumes

that you set the Phase rotation parameter to P

4
; in other cases, the two schematics

would be rotated accordingly.

2 Blocks — Alphabetical List

2-238

Binary

01 00

10 11

Gray

01 00

11 10

The following figure shows the signal constellation for the DQPSK modulation method

when you set the Phase rotation parameter to P

4
. The arrows indicate the four

possible transitions from each symbol to the next symbol. The Binary and Gray options
determine which transition is associated with each pair of input values.

Transition to next point

Constellation point

 DQPSK Modulator Baseband

2-239

More generally, if the Phase rotation parameter has the form P

k
for some integer k,

then the signal constellation has 2k points.

Dialog Box

Input type
Indicates whether the input consists of integers or pairs of bits.

Constellation ordering
Determines how the block maps each pair of input bits to a corresponding integer,
using either a Binary or Gray mapping scheme.

Phase rotation (rad)
The phase difference between the previous and current modulated symbols when the
input is zero.

Output Data type
The output data type can be either single or double. By default, the block sets this
to double.

2 Blocks — Alphabetical List

2-240

Supported Data Types

Port Supported Data Types

Input • Double-precision floating point
• Single-precision floating point
• Boolean when Input type is Bit
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Output • Double-precision floating point
• Single-precision floating point

Pair Block

DQPSK Demodulator Baseband

See Also

M-DPSK Modulator Baseband, DBPSK Modulator Baseband, QPSK Modulator
Baseband

 DSB AM Demodulator Passband

2-241

DSB AM Demodulator Passband

Demodulate DSB-AM-modulated data

Library

Analog Passband Modulation, in Modulation

Description

The DSB AM Demodulator Passband block demodulates a signal that was modulated
using double-sideband amplitude modulation. The block uses the envelope detection
method. The input is a passband representation of the modulated signal. Both the input
and output signals are real scalar signals.

In the course of demodulating, this block uses a filter whose order, coefficients, passband
ripple and stopband ripple are described by their respective lowpass filter parameters.

Typically, an appropriate Carrier frequency value is much higher than the highest
frequency of the input signal. By the Nyquist sampling theorem, the reciprocal of
the model's sample time (defined by the model's signal source) must exceed twice the
Carrier frequency parameter.

This block works only with real inputs of type double. This block does not work inside a
triggered subsystem.

2 Blocks — Alphabetical List

2-242

Dialog Box

Input signal offset
The same as the Input signal offset parameter in the corresponding DSB AM
Modulator Passband block.

Carrier frequency (Hz)
The frequency of the carrier in the corresponding DSB AM Modulator Passband
block.

Initial phase (rad)
The initial phase of the carrier in radians.

Lowpass filter design method
The method used to generate the filter. Available methods are Butterworth,
Chebyshev type I, Chebyshev type II, and Elliptic.

 DSB AM Demodulator Passband

2-243

Filter order
The order of the lowpass digital filter specified in the Lowpass filter design
method field .

Cutoff frequency (Hz)
The cutoff frequency of the lowpass digital filter specified in the Lowpass filter
design method field in Hertz.

Passband ripple (dB)
Applies to Chebyshev type I and Elliptic filters only. This is peak-to-peak ripple in
the passband in dB.

Stopband ripple (dB)
Applies to Chebyshev type II and Elliptic filters only. This is the peak-to-peak ripple
in the stopband in dB.

Pair Block

DSB AM Modulator Passband

2 Blocks — Alphabetical List

2-244

DSB AM Modulator Passband
Modulate using double-sideband amplitude modulation

Library

Analog Passband Modulation, in Modulation

Description

The DSB AM Modulator Passband block modulates using double-sideband amplitude
modulation. The output is a passband representation of the modulated signal. Both the
input and output signals are real scalar signals.

If the input is u(t) as a function of time t, then the output is

(()) cos()u t k f tc+ +2p q

where:

• k is the Input signal offset parameter.
• fc is the Carrier frequency parameter.
• θ is the Initial phase parameter.

It is common to set the value of k to the maximum absolute value of the negative part of
the input signal u(t).

Typically, an appropriate Carrier frequency value is much higher than the highest
frequency of the input signal. By the Nyquist sampling theorem, the reciprocal of
the model's sample time (defined by the model's signal source) must exceed twice the
Carrier frequency parameter.

This block works only with real inputs of type double. This block does not work inside a
triggered subsystem.

 DSB AM Modulator Passband

2-245

Dialog Box

Input signal offset
The offset factor k. This value should be greater than or equal to the absolute value of
the minimum of the input signal.

Carrier frequency (Hz)
The frequency of the carrier.

Initial phase (rad)
The initial phase of the carrier.

Pair Block

DSB AM Demodulator Passband

See Also

DSBSC AM Modulator Passband, SSB AM Modulator Passband

2 Blocks — Alphabetical List

2-246

DSBSC AM Demodulator Passband

Demodulate DSBSC-AM-modulated data

Library

Analog Passband Modulation, in Modulation

Description

The DSBSC AM Demodulator Passband block demodulates a signal that was modulated
using double-sideband suppressed-carrier amplitude modulation. The input is a
passband representation of the modulated signal. Both the input and output signals are
real scalar signals.

In the course of demodulating, this block uses a filter whose order, coefficients,
passband ripple and stopband ripple are described by the their respective lowpass filter
parameters.

Typically, an appropriate Carrier frequency value is much higher than the highest
frequency of the input signal. By the Nyquist sampling theorem, the reciprocal of
the model's sample time (defined by the model's signal source) must exceed twice the
Carrier frequency parameter.

This block works only with real inputs of type double. This block does not work inside a
triggered subsystem.

 DSBSC AM Demodulator Passband

2-247

Dialog Box

Carrier frequency (Hz)
The carrier frequency in the corresponding DSBSC AM Modulator Passband block.

Initial phase (rad)
The initial phase of the carrier in radians.

Lowpass filter design method
The method used to generate the filter. Available methods are Butterworth,
Chebyshev type I, Chebyshev type II, and Elliptic.

Filter order
The order of the lowpass digital filter specified in the Lowpass filter design
method field .

Cutoff frequency (Hz)

2 Blocks — Alphabetical List

2-248

The cutoff frequency of the lowpass digital filter specified in the Lowpass filter design
method field in Hertz.

Passband Ripple (dB)
Applies to Chebyshev type I and Elliptic filters only. This is peak-to-peak ripple in
the passband in dB.

Stopband Ripple (dB)
Applies to Chebyshev type II and Elliptic filters only. This is the peak-to-peak ripple
in the stopband in dB.

Pair Block

DSBSC AM Modulator Passband

See Also

DSB AM Demodulator Passband, SSB AM Demodulator Passband

 DSBSC AM Modulator Passband

2-249

DSBSC AM Modulator Passband

Modulate using double-sideband suppressed-carrier amplitude modulation

Library

Analog Passband Modulation, in Modulation

Description

The DSBSC AM Modulator Passband block modulates using double-sideband
suppressed-carrier amplitude modulation. The output is a passband representation of the
modulated signal. Both the input and output signals are real scalar signals.

If the input is u(t) as a function of time t, then the output is

u t f tc() cos()2p q+

where fc is the Carrier frequency parameter and θ is the Initial phase parameter.

Typically, an appropriate Carrier frequency value is much higher than the highest
frequency of the input signal. By the Nyquist sampling theorem, the reciprocal of
the model's sample time (defined by the model's signal source) must exceed twice the
Carrier frequency parameter.

This block works only with real inputs of type double. This block does not work inside a
triggered subsystem.

2 Blocks — Alphabetical List

2-250

Dialog Box

Carrier frequency (Hz)
The frequency of the carrier.

Initial phase (rad)
The initial phase of the carrier in radians.

Pair Block

DSBSC AM Demodulator Passband

See Also

DSB AM Modulator Passband, SSB AM Modulator Passband

 Early-Late Gate Timing Recovery

2-251

Early-Late Gate Timing Recovery
Recover symbol timing phase using early-late gate method

Library

Timing Phase Recovery sublibrary of Synchronization

Description

The Early-Late Gate Timing Recovery block recovers the symbol timing phase of the
input signal using the early-late gate method. This block implements a non-data-aided
feedback method.

Inputs

By default, the block has one input port. Typically, the input signal is the output of a
receive filter that is matched to the transmitting pulse shape.

This block accepts a scalar-valued or column vector input signal. The input uses N
samples to represent each symbol, where N > 1 is the Samples per symbol parameter.

• For a column vector input signal, the block operates in single-rate processing mode. In
this mode, the output signal inherits its sample rate from the input signal. The input
length must be a multiple of N.

• For a scalar input signal, the block operates in multirate processing mode. In this
mode, the input and output signals have different sample rates. The output sample
rate equals N multiplied by the input sample rate.

• This block accepts input signals of type Double or Single

If you set the Reset parameter to On nonzero input via port, then the block has
a second input port, labeled Rst. The Rst input determines when the timing estimation
process restarts, and must be a scalar.

2 Blocks — Alphabetical List

2-252

• If the input signal is a scalar value, the sample time of the Rst input equals the
symbol period

• If the input signal is a column vector, the sample time of the Rst input equals the
input port sample time

• This block accepts reset signals of type Double or Boolean

Outputs

The block has two output ports, labeled Sym and Ph:

• The Sym output is the result of applying the estimated phase correction to the input
signal. This output is the signal value for each symbol, which can be used for decision
purposes. The values in the Sym output occur at the symbol rate:

• For a column vector input signal of length N*R, the Sym output is a column vector
of length R having the same sample rate as the input signal.

• For a scalar input signal, the sample rate of the Sym output equals N multiplied by
the input sample rate.

• The Ph output gives the phase estimate for each symbol in the input.

The Ph output contains nonnegative real numbers less than N. Noninteger values
for the phase estimate correspond to interpolated values that lie between two values
of the input signal. The sample time of the Ph output is the same as that of the Sym
output.

Note If the Ph output is very close to either zero or Samples per symbol, or if the
actual timing phase offset in your input signal is very close to zero, then the block's
accuracy might be compromised by small amounts of noise or jitter. The block works
well when the timing phase offset is significant rather than very close to zero.

• The output signal inherits its data type from the input signal.

Delays

When the input signal is a vector, this block incurs a delay of two symbols. When the
input signal is a scalar, this block incurs a delay of three symbols.

 Early-Late Gate Timing Recovery

2-253

Dialog Box

Samples per symbol
The number of samples, N, that represent each symbol in the input signal. This must
be greater than 1.

Error update gain
A positive real number representing the step size that the block uses for updating
successive phase estimates. Typically, this number is less than 1/N, which
corresponds to a slowly varying phase.

This parameter is tunable in normal mode, Accelerator mode and Rapid Accelerator
mode. If you use the Simulink Coder rapid simulation (RSIM) target to build an

2 Blocks — Alphabetical List

2-254

RSIM executable, then you can tune the parameter without recompiling the model.
For more information, see “Tunable Parameters” in the Simulink User's Guide.

Reset
Determines whether and under what circumstances the block restarts the phase
estimation process. Choices are None, Every frame, and On nonzero input via
port. The last option causes the block to have a second input port, labeled Rst.

Algorithm

This block uses a timing error detector whose result for the kth symbol is e(k), given by

e k a k a k

a k y kT d y kT T d y kT T d

I Q

I I k I k I k

() () ()

() () (/) (/

= +

= + + + - - + -2 2 11

12 2

)

() () (/) (/)

{ }

= + + + - - +{ }-a k y kT d y kT T d y kT T dQ Q k Q k Q k

where

• yI and yQ are the in-phase and quadrature components, respectively, of the block's
input signal

• T is the symbol period
• dk is the phase estimate for the kth symbol

For more information about the role that e(k) plays in this block's algorithm, see
“Feedback Methods for Timing Phase Recovery” in Communications System Toolbox
User's Guide.

References

[1] Mengali, Umberto and Aldo N. D'Andrea, Synchronization Techniques for Digital
Receivers, New York, Plenum Press, 1997.

[2] Sklar, Bernard. Digital Communications: Fundamentals and Applications. Englewood
Cliffs, N.J., Prentice-Hall, 1988.

 Early-Late Gate Timing Recovery

2-255

See Also

Gardner Timing Recovery, Squaring Timing Recovery, Mueller-Muller Timing Recovery

2 Blocks — Alphabetical List

2-256

Error Rate Calculation
Compute bit error rate or symbol error rate of input data

Library

Comm Sinks

Description

The Error Rate Calculation block compares input data from a transmitter with input
data from a receiver. It calculates the error rate as a running statistic, by dividing
the total number of unequal pairs of data elements by the total number of input data
elements from one source.

Use this block to compute either symbol or bit error rate, because it does not consider the
magnitude of the difference between input data elements. If the inputs are bits, then the
block computes the bit error rate. If the inputs are symbols, then it computes the symbol
error rate.

Note: When you set the Output data parameter to Workspace, the block generates no
code. If you need error rate information from generated code, set Output data to Port.

Input Data

This block has between two and four input ports, depending on how you set the dialog
parameters. The inports marked Tx and Rx accept transmitted and received signals,
respectively. The Tx and Rx signals must share the same sampling rate.

The Tx and Rx input ports accept scalar or column vector signals. For information about
the data types each block port supports, see the “Supported Data Types” on page 2-263
table on this page. If Tx is a scalar and Rx is a vector, or vice-versa, then the block
compares the scalar with each element of the vector. (Overall, the block behaves as if

 Error Rate Calculation

2-257

you had preprocessed the scalar signal with the Communications System Toolbox Repeat
block with the Rate options parameter set to Enforce single rate.)

If you select Reset port, then an additional input port appears, labeled Rst. The Rst
input accepts only a scalar signal (of type double or boolean) and must have the same
port sample time as the Tx and Rx ports. When the Rst input is nonzero, the block clears
and then recomputes the error statistics.

If you set the Computation mode parameter to Select samples from port, then
an additional input port appears, labeled Sel. The Sel input indicates which elements of
a frame are relevant for the computation. The Sel input can be a column vector of type
double.

The guidelines below indicate how you should configure the inputs and the dialog
parameters depending on how you want this block to interpret your Tx and Rx data.

• If both data signals are scalar, then this block compares the Tx scalar signal with
the Rx scalar signal. For this configuration, use the Computation mode parameter
default value, Entire frame.

• If both data signals are vectors, then this block compares some or all of the Tx and Rx
data:

• If you set the Computation mode parameter to Entire frame, then the block
compares all of the Tx frame with all of the Rx frame.

• If you set the Computation mode parameter to Select samples from
mask, then the Selected samples from frame field appears in the dialog. This
parameter field accepts a vector that lists the indices of those elements of the Rx
frame that you want the block to consider. For example, to consider only the first
and last elements of a length-six receiver frame, set the Selected samples from
frame parameter to [1 6]. If the Selected samples from frame vector includes
zeros, then the block ignores them.

• If you set the Computation mode parameter to Select samples from port,
then an additional input port, labeled Sel, appears on the block icon. The data at
this input port must have the same format as that of the Selected samples from
frame parameter described above.

• If one data signal is a scalar and the other is a vector, then this block compares the
scalar with each entry of the vector. The three subbullets above are still valid for this
mode, except that if Rx is a scalar, then the phrase “Rx frame” above refers to the
vector expansion of Rx.

2 Blocks — Alphabetical List

2-258

Note This block does not support variable-size signals. If you choose the Select
samples from port option and want the number of elements in the subframe to
vary during the simulation, then you should pad the Sel signal with zeros. The Error
Rate Calculation block ignores zeros in the Sel signal.

Output Data

This block produces a vector of length three, whose entries correspond to:

• The error rate
• The total number of errors, that is, the number of instances that an Rx element does

not match the corresponding Tx element
• The total number of comparisons that the block made

The block sends this output data to the base MATLAB workspace or to an output port,
depending on how you set the Output data parameter:

• If you set the Output data parameter to Workspace and fill in the Variable name
parameter, then that variable in the base MATLAB workspace contains the current
value when the simulation ends. Pausing the simulation does not cause the block to
write interim data to the variable.

If you plan to use this block along with the Simulink Coder software, then you should
not use the Workspace option. Instead, use the Port option and connect the output
port to a Simulink To Workspace block.

• If you set the Output data parameter to Port, then an output port appears. This
output port contains the running error statistics.

Delays

The Receive delay and Computation delay parameters implement two different types
of delays for this block. One delay is useful if you want this block to compensate for the
delay in the received signal. The other is useful if you want to ignore the initial transient
behavior of both input signals.

• The Receive delay parameter represents the number of samples by which the
received data lags behind the transmitted data. The transmit signal is implicitly

 Error Rate Calculation

2-259

delayed by that same amount before the block compares it to the received data. This
value is helpful when you delay the transmit signal so that it aligns with the received
signal. The receive delay persists throughout the simulation.

• The Computation delay parameter represents the number of samples the block
ignores at the beginning of the comparison.

If you do not know the receive delay in your model, you can use the Align Signals block,
which automatically compensates for the delay. If you use the Align Signals block, set the
Receive delay in the Error Rate Calculation block to 0 and the Computation delay to
the value coming out of the Delay port of the Align Signals block.

Alternatively, you can use the Find Delay block to find the value of the delay, and then
set the Receive delay parameter in the Error Rate Calculation block to the delay value.

If you use the Select samples from mask or Select samples from port option,
then each delay parameter refers to the number of samples that the block receives,
whether the block ultimately ignores some of them or not.

Stopping the Simulation Based on Error Statistics

You can configure this block so that its error statistics control the duration of simulation.
This is useful for computing reliable steady-state error statistics without knowing in
advance how long transient effects might last. To use this mode, check Stop simulation.
The block attempts to run the simulation until it detects the number of errors the Target
number of errors parameter specifies. However, the simulation stops before detecting
enough errors if the time reaches the model's Stop time setting (in the Configuration
Parameters dialog box), if the Error Rate Calculation block makes Maximum number
of symbols comparisons, or if another block in the model directs the simulation to stop.

To ignore either of the two stopping criteria in this block, set the corresponding
parameter (Target number of errors or Maximum number of symbols) to Inf. For
example, to reach a target number of errors without stopping the simulation early, set
Maximum number of symbols to Inf and set the model's Stop time to Inf.

Examples

The figure below shows how the block compares pairs of elements and counts the number
of error events. The Tx and Rx inputs are column vectors.

2 Blocks — Alphabetical List

2-260

This example assumes that the sample time of each input signal is 1 second and that the
block's parameters are as follows:

• Receive delay = 2
• Computation delay = 0
• Computation mode = Entire frame

Both input signals are column vectors of length three. However, the schematic arranges
each column vector horizontally and aligns pairs of vectors so as to reflect a receive delay
of two samples. At each time step, the block compares elements of the Rx signal with
those of the Tx signal that appear directly above them in the schematic. For instance,
at time 1, the block compares 2, 4, and 1 from the Rx signal with 2, 3, and 1 from the Tx
signal.

The values of the first two elements of Rx appear as asterisks because they do not
influence the output. Similarly, the 6 and 5 in the Tx signal do not influence the output
up to time 3, though they would influence the output at time 4.

In the error rates on the right side of the figure, each numerator at time t reflects the
number of errors when considering the elements of Rx up through time t.

If the block's Reset port box had been checked and a reset had occurred at
time = 3 seconds, then the last error rate would have been 2/3 instead of 4/10. This
value 2/3 would reflect the comparison of 3, 2, and 1 from the Rx signal with 7, 7, and 1
from the Tx signal. The figure below illustrates this scenario. The Tx and Rx inputs are
column vectors.

 Error Rate Calculation

2-261

Tuning Parameters in an RSim Executable (Simulink Coder Software)

If you use the Simulink Coder rapid simulation (RSim) target to build an RSim
executable, then you can tune the Target number of errors and Maximum number
of symbols parameters without recompiling the model. This is useful for Monte Carlo
simulations in which you run the simulation multiple times (perhaps on multiple
computers) with different amounts of noise.

2 Blocks — Alphabetical List

2-262

Dialog Box

Receive delay
Number of samples by which the received data lags behind the transmitted data. (If
Tx or Rx is a vector, then each entry represents a sample.)

Computation delay
Number of samples that the block should ignore at the beginning of the comparison.

Computation mode

 Error Rate Calculation

2-263

Either Entire frame, Select samples from mask, or Select samples from
port, depending on whether the block should consider all or only part of the input
frames.

Selected samples from frame
A vector that lists the indices of the elements of the Rx frame vector that the block
should consider when making comparisons. This field appears only if Computation
mode is set to Select samples from mask.

Output data
Either Workspace or Port, depending on where you want to send the output data.

Variable name
Name of variable for the output data vector in the base MATLAB workspace. This
field appears only if Output data is set to Workspace.

Reset port
If you check this box, then an additional input port appears, labeled Rst.

Stop simulation
If you check this box, then the simulation runs only until this block detects a
specified number of errors or performs a specified number of comparisons, whichever
comes first.

Target number of errors
The simulation stops after detecting this number of errors. This field is active only if
Stop simulation is checked.

Maximum number of symbols
The simulation stops after making this number of comparisons. This field is active
only if Stop simulation is checked.

Supported Data Types

Port Supported Data Types

Tx • Double-precision floating point
• Single-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

2 Blocks — Alphabetical List

2-264

Port Supported Data Types

Rx • Double-precision floating point
• Single-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Sel • Double-precision floating point
Reset • Double-precision floating point

• Boolean

See Also

Align Signals, Find Delay

 EVM Measurement

2-265

EVM Measurement
Calculate vector magnitude difference between ideal reference signal and measured
signal

Library

Utility Blocks

Description

Error Vector Magnitude (EVM) is a measurement of modulator or demodulator
performance in an impaired signal.

While certain mask selections can change EVM block behavior, the block always has two
input signals: a reference signal (at the reference port, Ref) and a corrupted signal (at
the input port, In). You must select which normalization method the block uses when
performing EVM calculations and which calculations you want as outputs.

The block either normalizes to the average reference signal power, average constellation
power, or peak constellation power. For RMS EVM, Max EVM, and X-percentile EVM,
the output computations reflect the normalization method.

The default EVM output is RMS EVM in percent, with an option of Output maximum
EVM or Output X-percentile EVM values. The maximum EVM represents the worst-
case EVM value per burst. For the X-percentile option, you can select to output the
number of symbols processed in the percentile computations.

The following table shows the output type, the activation (what selects the output
computation), computation units, and the corresponding computation duration.

Output Activation Units Computation Duration

RMS EVM Default Percentage Per burst
Max EVM Parameter setting Percentage Per burst

2 Blocks — Alphabetical List

2-266

Output Activation Units Computation Duration

Percentile EVM Parameter setting Percentage Continuous
Number of symbols Parameter setting if

you select Output X-
percentile EVM

None Continuous

The computation duration in per burst mode spans the symbols in the present burst. The
computation duration in continuous mode spans all the symbols across multiple bursts.

Dimension

The block computes measurements for bursts of data. The data must be of length N,
where N is the size of the burst. When computing RMS EVM or Max EVM, the block
computes a unique output for each incoming burst; therefore, the computation duration is
per burst.

The block computes the X-percentile for all incoming symbols across multiple bursts.
This computation duration is the continuous mode (in contrast to the per burst duration
for RMS EVM or Max EVM).

Input Signals

This block accepts scalar-valued or column vector input signals. The input and reference
signals must have identical dimensions.

Output Signals

The output is always a scalar value.

Data Type

The block accepts double, single, and fixed-point data types. The output of the block is
always double type.

Algorithms

The EVM block provides three different normalization methods. You can normalize
measurements according to the average power of the reference signal, average

 EVM Measurement

2-267

constellation power, or peak constellation power. Different industry standards follow one
of these normalization methods.

The following table lists how the block calculates the RMS EVM value for different
normalization methods.

EVM Normalization Method Algorithm

Reference Signal

EVM
N

e

N
I Q

RMS

k

k

N

k k
k

N
=

+

=

=

Â

Â

1

1
1001

2 2

1

()

()

*

Average Power

EVM
N

e

P
RMS

k
k

N

avg

=
=

Â
1

100
1

()

*

Peak Power

EVM
N

e

P
RMS

k

k

N

= =

Â
1

1001

()

*

max

where,

ek = () ()
~ ~

I I Q Qk k k k- + -
2 2

Ik = In-phase measurement of the kth symbol in the burst

Qk = Quadrature phase measurement of the kth symbol in the burst

N = Input vector length

Pavg = The value for Average constellation power

Pmax = The value for Peak constellation power

2 Blocks — Alphabetical List

2-268

Ik and Qk represent ideal (reference) values. Ik

~

 and Qk

~

 represent measured (received)
symbols.

The max EVM is the maximum EVM value in a frame or EVM EVM
k N

kmax
[,...,]
max= { }

Œ1

where k is the kth symbol in a burst of length N.

The definition for EVMk varies depending upon which normalization method you select
for computing measurements. The block supports the algorithms in the following table.

EVM Normalization Algorithm

Reference Signal
EVM

e

N
I Q

k
k

k k

k

N
=

+

=

Â
1

100

2 2

1

()

*

Average Power
EVM

e

P
k

k

avg

= *100

Peak Power
EVM

e

P
k

k
=

max

*100

The block computes X-percentile EVM by creating a histogram of all the incoming EVMk
values. The output provides the EVM value below which X% of the EVM values lay.

 EVM Measurement

2-269

Dialog Box

Normalize RMS error vector by:
Selects the method by which the block normalizes measurements:

• Average reference signal power

• Average constellation power

• Peak constellation power

This parameter defaults to Average reference signal power.
Average constellation power:

Normalizes EVM measurement by the average constellation power. This parameter
only appears if you set Normalize RMS error vector to Average constellation
power.

Peak constellation power:

2 Blocks — Alphabetical List

2-270

Normalizes EVM measurement by the peak constellation power. This parameter only
appears if you set Normalize RMS error vector to Peak constellation power.

Output maximum EVM
Outputs the maximum EVM of an input vector or frame.

Output X-percentile EVM
Enables an output X-percentile EVM measurement. When you select this option,
specify X-percentile value (%).

X-percentile value (%)
This parameter only appears when you select Output X-percentile EVM. The Xth
percentile is the EVM value below which X% of all the computed EVM values lie.
The parameter defaults to the 95th percentile. Therefore, 95% of all EVM values are
below this output.

Output the number of symbols processed
Outputs the number of symbols that the block uses to compute the Output X-
percentile EVM. This parameter only appears when you select Output X-
percentile EVM.

Examples

To see an example using the EVM block, refer to “Measuring Modulator Accuracy” in the
Communications System Toolbox User's Guide.

References

References

[1] IEEE Standard 802.16-2004: “Part 16: Air interface for fixed broadband wireless
access systems," October 2004. http://ieee802.org/16/published.html

[2] 3 GPP TS 45.005 V8.1.0 (2008-05): “Radio Access Network: Radio transmission and
reception”

[3] IEEE Standard 802.11a-1999: “Part 11: Wireless LAN Medium Access Control (MAC)
and Physical Layer (PHY) specifications: High-speed Physical Layer in the 5 GHz
Band,” 1999.

 EVM Measurement

2-271

See Also

MER Measurement

2 Blocks — Alphabetical List

2-272

Eye Diagram

Display multiple traces of modulated signal

Library

Comm Sinks

Description

The Eye Diagram block displays multiple traces of a modulated signal to produce an eye
diagram. You can use the block to reveal the modulation characteristics of the signal,
such as the effects of pulse shaping or channel distortions.

The Eye Diagram block has one input port. This block accepts a 1-D or 2-D column vector
or scalar input signal. The block accepts a signal with the following data types: double,
single, base integer, and fixed point. All data types cast as double prior to displaying
results.

 Eye Diagram

2-273

Dialog Box

Toolbar

Zoom and Axes Control Buttons

Button Menu Location Shortcut
Keys

Description

Tools >
Zoom In

N/A When this tool is active, you can zoom in on the
scope window. To do so, click in the center of your
area of interest, or click and drag your cursor to

2 Blocks — Alphabetical List

2-274

Button Menu Location Shortcut
Keys

Description

draw a rectangular area of interest inside the
scope window.

Tools >
Zoom X

N/A You access the Zoom X button from the menu
under the Zoom In icon. When this tool is active,
you can zoom in on the x-axis. To do so, click
inside the scope window, or click and drag your
cursor along the x-axis over your area of interest.

Tools >
Zoom Y

N/A You access the Zoom Y button from the menu
under the Zoom In icon. When this tool is active,
you can zoom in on the y-axis. To do so, click
inside the scope window, or click and drag your
cursor along the y-axis over your area of interest.

Tools >
Pan

N/A You access the Pan button from the menu under
the Zoom In icon. When this tool is active, you
can pan on the scope window. To do so, click in
the center of your area of interest and drag your
cursor to the left, right, up, or down, to move the
position of the display.

Tools >
Scale Y-Axes
Limits

Ctrl+A Click this button to scale the axes in the active
scope window.

Alternatively, you can enable automatic axes
scaling by selecting one of the following options
from the Tools menu:

• Scale Axes Limits — When you select this
option, the scope scales the axes as needed
during simulation.

• Scale Axes Limits at Stop — When you
select this option, the scope scales the axes
each time the simulation is stopped.

 Eye Diagram

2-275

Simulation Toolbar

Button Menu Location Shortcut
Keys

Description

Simulation >
Run

Ctrl+T, p,
Space

Start the model simulation. This button
appears only when the model simulation is
stopped.

Simulation >
Continue

p, Space Continue the model simulation. This button
appears only when the model simulation is
paused.

Simulation >
Pause

p, Space Pause the model simulation. This button
appears only when the model simulation is
running.

Simulation >
Step Forward

Right
arrow,
Page
Down

Advance the model simulation forward by
one time step. This button starts the model
simulation, allows it to run for one time step,
and then pauses it again. The scope window
then updates with the latest data.

Simulation >
Stop

Ctrl+T, s Stop the model simulation. This button
appears only when the model simulation is
running or paused.

Simulation >
Simulink
Snapshot

N/A Take a snapshot of the current scope display.
This button temporarily freezes the scope
display, while allowing simulation to continue
running. To unfreeze the scope display and
view the current simulation data, toggle this
button to turn off snapshot mode.

View >
Highlight
Simulink Block

Ctrl+L Bring the model window forward, and
highlight the scope block whose display
you are currently viewing. The scope block
that corresponds to the active scope window
flashes three times in the model.

View >
Configuration
Properties ...

N/A Open the Visuals — Eye Diagram
Properties dialog box.
See the “Visuals — Eye Diagram Properties”
on page 2-276 section for more information.

2 Blocks — Alphabetical List

2-276

You can control whether this toolbar appears in the scope window. From the scope menu,
select View > Simulation Toolbar.

To see a full listing of the shortcut keys for these simulation controls, from the scope
menu, select Help > Keyboard Command Help.

Visuals — Eye Diagram Properties

Main Pane

In the visuals dialog box, you can modify the main options for the Eye Diagram block.
Access the dialog by selecting View > Configuration Properties or by clicking the

Configuration Properties button () on the toolbar.

Symbols per trace

Number of symbols plotted per trace, expressed as a positive integer. This property is
tunable.

 Eye Diagram

2-277

Traces to display

Number of traces plotted. This property is tunable.

Samples per symbol

Number of samples per symbol. Use with Symbols per trace to determine the number
of samples per trace. This property is tunable.

Sample offset

Sample offset, expressed as a nonnegative integer less than the product of Samples per
symbol and Symbols per trace. This specifies the number of samples to omit before
plotting the first point. This property is tunable.

Display Pane

In the visuals dialog box, you can modify the display options for the Eye Diagram block.
Access the dialog by selecting View > Configuration Properties or by clicking the

Configuration Properties button () on the toolbar and then clicking on the Display
tab.

2 Blocks — Alphabetical List

2-278

Title

Specify a label to appear above the eye diagram plot. By default, there is no title. This
property is tunable.

Color fading

Select this check box to fade the points in the display fade as the interval of time after
they are first plotted increases. The default value is false. This property is tunable.

Show grid

Select this check box to turn on the grid. This property is tunable.

Eye diagram to display

Select either In-phase only or In-phase and quadrature to display one or both eye
diagrams. The default value is In-phase only. This property is tunable.

Y-limits (Minimum)

Specify the minimum value of the y-axis. This property is tunable.

 Eye Diagram

2-279

Y-limits (Maximum)

Specify the maximum value of the y-axis. This property is tunable.

In-phase axis label

Specify the text that the scope displays along the in-phase axis. This property is tunable.

Quadrature axis label

Specify the text that the scope displays along the quadrature axis. This property is
tunable.

Style Dialog Box

In the Style dialog box, you can customize the style of the active display. You can change
the color of the figure containing the displays, the background and foreground colors of
display axes, and properties of lines in a display. To open this dialog box, select View >
Style.

2 Blocks — Alphabetical List

2-280

Properties

Figure color

Specify the background color of the scope figure. By default, the figure color is black.

Axes colors

Specify the fill and line colors for the axes.

Line

Specify the line style, line width, and line color for the displayed signal.

Marker

Specify data point markers for the selected signal. This parameter is similar to the
Marker property for MATLAB Handle Graphics plot objects.

Specifier Marker Type

none No marker (default)
Circle
Square
Cross
Point
Plus sign
Asterisk
Diamond
Downward-pointing triangle
Upward-pointing triangle
Left-pointing triangle
Right-pointing triangle
Five-pointed star (pentagram)
Six-pointed star (hexagram)

 Eye Diagram

2-281

Examples

View Eye Diagram

This example shows how to use the Eye Diagram block to display the eye diagram of a
filtered QPSK signal.

Load the model, doc_eye_diagram_scope, from the MATLAB command prompt.

doc_eye_diagram_scope

The model includes:

• A Random Integer Generator block
• A QPSK Modulator Baseband block
• A Raised Cosine Transmit Filter block
• An Eye Diagram block

Run the model and observe that two symbols are displayed.

2 Blocks — Alphabetical List

2-282

Select the Configuration Properties ... button on the eye diagram window to bring up
the main pane. Change the Symbols per trace parameter to 4. Run the simulation and
observe that four symbols are displayed.

 Eye Diagram

2-283

Try changing the Raised Cosine Transmit Filter parameters or changing additional Eye
Diagram parameters to see their effects on the eye diagram.

2 Blocks — Alphabetical List

2-284

Find Delay
Find delay between two signals

Library

Utility Blocks

Description

The Find Delay block finds the delay between a signal and a delayed, and possibly
distorted, version of itself. This is useful when you want to compare a transmitted and
received signal to find the bit error rate, but do not know the delay in the received signal.
This block accepts a column vector or matrix input signal. For a matrix input, the block
outputs a row vector, and finds the delay in each channel of the matrix independently.
See “Delays” for more information about signal delays.

The sRef input port receives the original signal, while the sDel input port receives the
delayed version of the signal. The two input signals must have the same dimensions and
sample times.

The output port labeled delay outputs the delay in units of samples. If you select
Include "change signal" output port, then an output port labeled chg appears.
The chg output port outputs 1 when there is a change from the delay computed at the
previous sample, and 0 when there is no change. The delay output port outputs signals
of type double, and the chg output port outputs signals of type boolean.

The block's Correlation window length parameter specifies how many samples
of the signals the block uses to calculate the cross-correlation. The delay output is a
nonnegative integer less than the Correlation window length.

As the Correlation window length is increased, the reliability of the computed delay
also increases. However, the processing time to compute the delay increases as well.

You can make the Find Delay block stop updating the delay after it computes the same
delay value for a specified number of samples. To do so, select Disable recurring

 Find Delay

2-285

updates, and enter a positive integer in the Number of constant delay outputs to
disable updates field. For example, if you set Number of constant delay outputs to
disable updates to 20, the block will stop recalculating and updating the delay after it
calculates the same value 20 times in succession. Disabling recurring updates causes the
simulation to run faster after the target number of constant delays occurs.

Tips for Using the Block Effectively

• Set Correlation window length sufficiently large so that the computed delay
eventually stabilizes at a constant value. When this occurs, the signal from the
optional chg output port stabilizes at the constant value of zero. If the computed
delay is not constant, you should increase Correlation window length. If the
increased value of Correlation window length exceeds the duration of the
simulation, then you should also increase the duration of the simulation accordingly.

• If the cross-correlation between the two signals is broad, then the Correlation
window length value should be much larger than the expected delay, or else the
algorithm might stabilize at an incorrect value. For example, a CPM signal has a
broad autocorrelation, so it has a broad cross-correlation with a delayed version of
itself. In this case, the Correlation window length value should be much larger
than the expected delay.

• If the block calculates a delay that is greater than 75 percent of the Correlation
window length, the signal sRef is probably delayed relative to the signal sDel. In
this case, you should switch the signal lines leading into the two input ports.

Examples

Finding the Delay Before Calculating an Error Rate

A typical use of this block is to determine the correct Receive delay parameter in
the Error Rate Calculation block. This is illustrated in “Use the Find Delay and Align
Signals Blocks”. In that example, the modulation/demodulation operation introduces
a computational delay into the received signal and the Find Delay block determines
that the delay is 6 samples. This value of 6 becomes a parameter in the Error Rate
Calculation block, which computes the bit error rate of the system.

Another example of this usage is in “Delays”.

2 Blocks — Alphabetical List

2-286

Finding the Delay to Help Align Words

Another typical use of this block is to determine how to align the boundaries of frames
with the boundaries of codewords or other types of data blocks. “Delays” describes when
such alignment is necessary and also illustrates, in the “Aligning Words of a Block Code”
discussion, how to use the Find Delay block to solve the problem.

Setting the Correlation Window Length

The next example illustrates how to tell when the Correlation window length is not
sufficiently large.

The model uses a Delay block to delay a signal by 10 samples. The Find Delay block
compares the original signal with the delayed version. In this model, the Input
processing parameter of the Delay block is set to Columns as channels. The model
then displays the output of the Find Delay block in a scope. If the Correlation window
length is 15, the scope shows that the calculated delay is not constant over time, as you
can see in the following image.

This result tells you to increase the Correlation window length. If you increase it to
50, the calculated delay stabilizes at 10, as shown below.

 Find Delay

2-287

Dialog Box

Correlation window length
The number of samples the block uses to calculate the cross-correlations of the two
signals.

Include "change signal" output port
If you select this option, then the block has an extra output port that emits an
impulse when the current computed delay differs from the previous computed delay.

2 Blocks — Alphabetical List

2-288

Disable recurring updates
Selecting this option causes the block to stop computing the delay after it computes
the same delay value for a specified number of samples.

Number of constant delay outputs to disable updates
A positive integer specifying how many times the block must compute the same delay
before ceasing to update. This field appears only if Disable recurring updates is
selected.

Algorithm

The Find Delay block finds the delay by calculating the cross-correlations of the first
signal with time-shifted versions of the second signal, and then finding the index at
which the cross-correlation is maximized.

See Also

Align Signals, Error Rate Calculation

 FM Demodulator Passband

2-289

FM Demodulator Passband

Demodulate FM-modulated data

Library

Analog Passband Modulation, in Modulation

Description

The FM Demodulator Passband block demodulates a signal that was modulated using
frequency modulation. The input is a passband representation of the modulated signal.
Both the input and output signals are real scalar signals.

For best results, use a carrier frequency which is estimated to be larger than 10% of the
reciprocal of your input signal's sample rate. This is due to the implementation of the
Hilbert transform by means of a filter.

In the following example, we sample a 10Hz input signal at 8000 samples per second.
We then designate a Hilbert Transform filter of order 100. Below is the response of the
Hilbert Transform filter as returned by fvtool.

2 Blocks — Alphabetical List

2-290

Note the bandwidth of the filter's magnitude response. By choosing a carrier frequency
larger than 10% (but less than 90%) of the reciprocal of your input signal's sample time
(8000 samples per second, in this example) or equivalently, a carrier frequency larger
than 400Hz, we ensure that the Hilbert Transform Filter will be operating in the flat
section of the filter's magnitude response (shown in blue), and that our modulated signal
will have the desired magnitude and form.

Typically, an appropriate Carrier frequency value is much higher than the highest
frequency of the input signal. By the Nyquist sampling theorem, the reciprocal of
the model's sample time (defined by the model's signal source) must exceed twice the
Carrier frequency parameter.

This block works only with real inputs of type double. This block does not work inside a
triggered subsystem.

 FM Demodulator Passband

2-291

Dialog Box

Carrier frequency (Hz)
The frequency of the carrier.

Initial phase (rad)
The initial phase of the carrier in radians.

Frequency deviation (Hz)
The frequency deviation of the carrier frequency in Hertz. Sometimes it is referred to
as the "variation" in the frequency.

Hilbert transform filter order
The length of the FIR filter used to compute the Hilbert transform.

Pair Block

FM Modulator Passband

2 Blocks — Alphabetical List

2-292

FM Modulator Passband
Modulate using frequency modulation

Library

Analog Passband Modulation, in Modulation

Description

The FM Modulator Passband block modulates using frequency modulation. The output is
a passband representation of the modulated signal. The output signal's frequency varies
with the input signal's amplitude. Both the input and output signals are real scalar
signals.

If the input is u(t) as a function of time t, then the output is

cos ()2 2
0

p p t t qf t K u dc c

t
+ +Ê

Ë
Á

ˆ
¯
˜Ú

where:

• fc represents the Carrier frequency parameter.
• q represents the Initial phase parameter.
• Kc represents the Frequency deviation parameter.

Typically, an appropriate Carrier frequency value is much higher than the highest
frequency of the input signal.

By the Nyquist sampling theorem, the reciprocal of the model's sample time (defined by
the model's signal source) must exceed twice the Carrier frequency parameter.

This block works only with real inputs of type double. This block does not work inside a
triggered subsystem.

 FM Modulator Passband

2-293

Dialog Box

Carrier frequency (Hz)
The frequency of the carrier.

Initial phase (rad)
The initial phase of the carrier in radians.

Frequency deviation (Hz)
The frequency deviation of the carrier frequency in Hertz. Sometimes it is referred to
as the "variation" in the frequency.

Pair Block

FM Demodulator Passband

2 Blocks — Alphabetical List

2-294

Free Space Path Loss

Reduce amplitude of input signal by amount specified

Library

RF Impairments

Description

The Free Space Path Loss block simulates the loss of signal power due to the distance
between transmitter and receiver. The block reduces the amplitude of the input signal by
an amount that is determined in either of two ways:

• By the Distance (km) and Carrier frequency (MHz) parameters, if you specify
Distance and Frequency in the Mode field

• By the Loss (dB) parameter, if you specify Decibels in the Mode field

This block accepts a column vector input signal. The input signal to this block must be a
complex signal.

 Free Space Path Loss

2-295

Dialog Box

Mode
Method of specifying the amount by which the signal power is reduced. The choices
are Decibels and Distance and Frequency.

Loss
The signal loss in decibels. This parameter appears when you set Mode to
Decibels. The decibel amount shown on the mask is rounded for display purposes
only.

Distance
Distance between transmitter and receiver in kilometers. This parameter appears
when you set Mode to Distance and Frequency.

Carrier frequency (MHz)
The carrier frequency in megahertz. This parameter appears when you set Mode to
Distance and Frequency.

2 Blocks — Alphabetical List

2-296

Examples

The model below illustrates the effect of the Free Space Path Loss block with the
following parameter settings:

• Mode is set to Distance and Frequency.
• Distance (km) is set to 0.5
• Carrier frequency (MHz) is set to 180

See Also

Memoryless Nonlinearity

 Gardner Timing Recovery

2-297

Gardner Timing Recovery

Recover symbol timing phase using Gardner's method

Library

Timing Phase Recovery sublibrary of Synchronization

Description

The Gardner Timing Recovery block recovers the symbol timing phase of the input signal
using Gardner's method. This block implements a non-data-aided feedback method that
is independent of carrier phase recovery. The timing error detector that forms part of this
block's algorithm requires at least two samples per symbol, one of which is the point at
which the decision can be made.

The recovery method estimates the symbol timing phase offset for each incoming symbol
and outputs the signal value corresponding to the estimated symbol sampling instant.

The second output returns the estimated timing phase recovery offset for each symbol,
which is a nonnegative real number less than N, where N is the number of samples per
symbol.

The error update gain parameter is the step size used for updating the successive phase
estimates.

Inputs

By default, this block has one input port. Typically, the input signal is the output of a
receive filter that is matched to the transmitting pulse shape. For best results, the input
signal power should be less than 1.

This block accepts a scalar-valued or column vector input signal. The input uses N
samples to represent each symbol, where N > 1 is the Samples per symbol parameter.

2 Blocks — Alphabetical List

2-298

• For a column vector input signal, the block operates in single-rate processing mode. In
this mode, the output signal inherits its sample rate from the input signal. The input
length must be a multiple of N.

• For a scalar input signal, the block operates in multirate processing mode. In this
mode, the input and output signals have different sample rates. The output sample
rate equals N multiplied by the input sample rate.

• This block accepts input signals of type Double or Single

If you set the Reset parameter to On nonzero input via port, then the block has
a second input port, labeled Rst. The Rst input determines when the timing estimation
process restarts, and must be a scalar.

• If the input signal is a scalar value, the sample time of the Rst input equals the
symbol period

• If the input signal is a column vector, the sample time of the Rst input equals the
input port sample time

• This block accepts reset signals of type Double or Boolean

Outputs

The block has two output ports, labeled Sym and Ph:

• The Sym output is the result of applying the estimated phase correction to the input
signal. This output is the signal value for each symbol, which can be used for decision
purposes. The values in the Sym output occur at the symbol rate:

• For a column vector input signal of length N*R, the Sym output is a column vector
of length R having the same sample rate as the input signal.

• For a scalar input signal, the sample rate of the Sym output equals N multiplied by
the input sample rate.

• The Ph output gives the phase estimate for each symbol in the input.

The Ph output contains nonnegative real numbers less than N. Noninteger values
for the phase estimate correspond to interpolated values that lie between two values
of the input signal. The sample time of the Ph output is the same as that of the Sym
output.

 Gardner Timing Recovery

2-299

Note If the Ph output is very close to either zero or Samples per symbol, or if the
actual timing phase offset in your input signal is very close to zero, then the block's
accuracy might be compromised by small amounts of noise or jitter. The block works
well when the timing phase offset is significant rather than very close to zero.

• The output signal inherits its data type from the input signal.

Delays

When the input signal is a vector, this block incurs a delay of two symbols. When the
input signal is a scalar, this block incurs a delay of three symbols.

2 Blocks — Alphabetical List

2-300

Dialog Box

Samples per symbol
The number of samples, N, that represent each symbol in the input signal. This must
be greater than 1.

Error update gain
A positive real number representing the step size that the block uses for updating
successive phase estimates. Typically, this number is less than 1/N, which
corresponds to a slowly varying phase.

This parameter is tunable in normal mode, Accelerator mode and Rapid Accelerator
mode. If you use the Simulink Coder rapid simulation (RSIM) target to build an

 Gardner Timing Recovery

2-301

RSIM executable, then you can tune the parameter without recompiling the model.
For more information, see “Tunable Parameters” in the Simulink User's Guide.

Reset
Determines whether and under what circumstances the block restarts the phase
estimation process. Choices are None, Every frame, and On nonzero input via
port. The last option causes the block to have a second input port, labeled Rst.

Algorithm

This block uses a timing error detector whose result for the kth symbol is e(k), given by

e k a k a k

a k y k T d y kT d y kT T

I Q

I I k I k I

() () ()

() (()) () (/

= +

= - + - +{ } --1 21 ++

= - + - +{ } - +

-

- -

d

a k y k T d y kT d y kT T d

k

Q Q k Q k Q k

1

1 11 2

)

() (()) () (/)

where

• yI and yQ are the in-phase and quadrature components, respectively, of the block's
input signal

• T is the symbol period
• dk is the phase estimate for the kth symbol

Notice from the expressions in curly braces above that the timing error detector
approximates the derivative of y using finite differences.

For more information about the role that e(k) plays in this block's algorithm, see
“Feedback Methods for Timing Phase Recovery” in Communications System Toolbox
User's Guide.

Supported Data Types

Port Supported Data Types

Input • Double-precision floating point
• Single-precision floating point

2 Blocks — Alphabetical List

2-302

Port Supported Data Types

Reset • Double-precision floating point
• Boolean

Output • Double-precision floating point
• Single-precision floating point

Examples

The commgardnerphrecov demonstration model uses this block.

References

[1] Gardner, F. M., "A BPSK/QPSK Timing-Error Detector for Sampled Receivers", IEEE
Transactions on Communications, Vol. COM-34, No. 5, May 1986, pp. 423-429.

[2] Mengali, Umberto and Aldo N. D'Andrea, Synchronization Techniques for Digital
Receivers, New York, Plenum Press, 1997.

[3] Meyr, Heinrich, Marc Moeneclaey, and Stefan A. Fechtel, Digital Communication
Receivers, Vol 2, New York, Wiley, 1998.

[4] Oerder, M., "Derivation of Gardner's Timing-Error Detector from the ML principle",
IEEE Transactions on Communications, Vol. COM-35, No. 6, June 1987, pp.
684-685.

See Also

Early-Late Gate Timing Recovery, Squaring Timing Recovery, Mueller-Muller Timing
Recovery

 Gaussian Filter

2-303

Gaussian Filter
Filter input signal, possibly downsampling, using Gaussian FIR filter

Library

Comm Filters

Description

Note: The Gaussian Filter block is not recommended. Use the gaussdesign function
and either the Discrete FIR Filter, FIR Interpolation, or FIR Decimation block instead.

The Gaussian Filter block filters the input signal using a Gaussian FIR filter. The block
expects the input signal to be upsampled as its input, so that the Input samples per
symbol parameter, N, is at least 2. The block's icon shows the filter's impulse response."

Characteristics of the Filter

The impulse response of the Gaussian filter is

h t

t

()

exp

=

-Ê

Ë
ÁÁ

ˆ

¯
˜̃

◊

2

22

2

d

p d

where

d
p

=
ln()2

2 BT

and B is the filter's 3-dB bandwidth. The BT product parameter is B times the input
signal's symbol period. For a given BT product, the Signal Processing Toolbox gaussfir

2 Blocks — Alphabetical List

2-304

function generates a filter that is half the bandwidth of the filter generated by the
Communications System Toolbox Gaussian Filter block.

The Group delay parameter is the number of symbol periods between the start of the
filter's response and the peak of the filter's response. The group delay and N determine
the length of the filter's impulse response, which is 2 * N * Group delay + 1.

The Filter coefficient normalization parameter indicates how the block scales the set
of filter coefficients:

• Sum of coefficients means that the sum of the coefficients equals 1.
• Filter energy means that the sum of the squares of the coefficients equals 1.
• Peak amplitude means that the maximum coefficient equals 1.

After the block normalizes the set of filter coefficients as above, it multiplies all
coefficients by the Linear amplitude filter gain parameter. As a result, the output is
scaled by N . If the output of this block feeds the input to the AWGN Channel block,
specify the AWGN signal power parameter to be 1/N.

Input and Output Signals

This block accepts scalar, column vector, and M-by-N matrix input signals. The block
filters an M-by-N input matrix as follows:

• When you set the Input processing parameter to Columns as channels (frame
based), the block treats each column as a separate channel. In this mode, the block
creates N instances of the same filter, each with its own independent state buffer.
Each of the N filters process M input samples at every Simulink time step.

• When you set the Input processing parameter to Elements as channels
(sample based), the block treats each element as a separate channel. In this mode,
the block creates M*N instances of the same filter, each with its own independent
state buffer. Each filter processes one input sample at every Simulink time step.

The output dimensions always equal those of the input signal. For information about the
data types each block port supports, see the table on this page.

Exporting Filter Coefficients to the MATLAB Workspace

To examine or manipulate the coefficients of the filter that this block designs, select
Export filter coefficients to workspace. Then set the Coefficient variable name

 Gaussian Filter

2-305

parameter to the name of a variable that you want the block to create in the MATLAB
workspace. Running the simulation causes the block to create the variable, overwriting
any previous contents in case the variable already exists.

Dialog Box

Input samples per symbol
A positive integer representing the number of samples per symbol in the input signal.

BT product
The product of the filter's 3-dB bandwidth and the input signal's symbol period

2 Blocks — Alphabetical List

2-306

Group delay
A positive integer that represents the number of symbol periods between the start of
the filter response and its peak.

Filter coefficient normalization
The block scales the set of filter coefficients so that this quantity equals 1. Choices
are Sum of coefficients, Filter energy, and Peak amplitude.

Input processing
Specify how the block processes the input signal. You can set this parameter to one of
the following options:

• Columns as channels (frame based) — When you select this option, the
block treats each column of the input as a separate channel.

• Elements as channels (sample based) — When you select this option, the
block treats each element of the input as a separate channel.

Note: The Inherited (this choice will be removed - see release
notes) option will be removed in a future release. See “Frame-Based Processing” in
the Communications System Toolbox Release Notes for more information.

This parameter is available only when you set the Rate options parameter to Allow
multirate processing.

Linear amplitude filter gain
A positive scalar used to scale the filter coefficients after the block uses the
normalization specified in the Filter coefficient normalization parameter.

Export filter coefficients to workspace
If you check this box, then the block creates a variable in the MATLAB workspace
that contains the filter coefficients.

Coefficient variable name
The name of the variable to create in the MATLAB workspace. This field appears
only if Export filter coefficients to workspace is selected.

Visualize filter with FVTool
If you click this button, then MATLAB launches the Filter Visualization Tool,
fvtool, to analyze the Gaussian filter whenever you apply any changes to the
block's parameters. If you launch fvtool for the filter, and subsequently change

 Gaussian Filter

2-307

parameters in the mask, fvtool will not update. You will need to launch a new
fvtool in order to see the new filter characteristics. Also note that if you have
launched fvtool, then it will remain open even after the model is closed.

Rounding mode
Select the rounding mode for fixed-point operations. The filter coefficients do not
obey this parameter; they always round to Nearest. The block uses the Rounding
selection if a number cannot be represented exactly by the specified data type
and scaling, it is rounded to a representable number. For more information, see
“Rounding Modes” in the DSP System Toolbox documentation or “Rounding Mode:
Simplest” in the Fixed-Point Designer documentation.

Overflow mode

2 Blocks — Alphabetical List

2-308

Select the overflow mode for fixed-point operations. The filter coefficients do not obey
this parameter; they are always saturated.

Coefficients
The block implementation uses a Direct-Form FIR filter. The Coefficients
parameter controls which data type represents the coefficients when the input data is
a fixed-point signal.

Choose how you specify the word length and the fraction length of the filter
coefficients (numerator and/or denominator). See “Filter Structure Diagrams” in
the DSP System Toolbox Reference Guide for illustrations depicting the use of the
coefficient data types in this block:

• When you select Same word length as input, the word length of the filter
coefficients match that of the input to the block. In this mode, the fraction length
of the coefficients is automatically set to the binary-point only scaling that
provides you with the best precision possible given the value and word length of
the coefficients.

• When you select Specify word length, you are able to enter the word length
of the coefficients, in bits. In this mode, the fraction length of the coefficients is
automatically set to the binary-point only scaling that provides you with the best
precision possible given the value and word length of the coefficients.

• When you select Binary point scaling, you are able to enter the word length
and the fraction length of the coefficients, in bits. If applicable, you are able to
enter separate fraction lengths for the numerator and denominator coefficients.

• When you select Slope and bias scaling, you are able to enter the word
length, in bits, and the slope of the coefficients. If applicable, you are able to
enter separate slopes for the numerator and denominator coefficients. This block
requires power-of-two slope and a bias of zero.

• The filter coefficients do not obey the Rounding mode and the Overflow mode
parameters; they are always saturated and rounded to Nearest.

Product output
Use this parameter to specify how you would like to designate the product output
word and fraction lengths. See “Multiplication Data Types” and “Multiplication Data
Types” in the DSP System Toolbox Reference Guide for illustrations depicting the use
of the product output data type in this block:

• When you select Same as input, these characteristics match those of the input
to the block.

 Gaussian Filter

2-309

• When you select Binary point scaling, you are able to enter the word length
and the fraction length of the product output, in bits.

• When you select Slope and bias scaling, you are able to enter the word
length, in bits, and the slope of the product output. This block requires power-of-
two slope and a bias of zero.

Accumulator
Use this parameter to specify how you would like to designate the accumulator word
and fraction lengths. See “Filter Structure Diagrams” and “Multiplication Data
Types” for illustrations depicting the use of the accumulator data type in this block:

• When you select Same as input, these characteristics match those of the input
to the block.

• When you select Same as product output, these characteristics match those
of the product output.

• When you select Binary point scaling, you are able to enter the word length
and the fraction length of the accumulator, in bits.

• When you select Slope and bias scaling, you are able to enter the word
length, in bits, and the slope of the accumulator. This block requires power-of-two
slope and a bias of zero.

Output
Choose how you specify the output word length and fraction length:

• When you select Same as input, these characteristics match those of the input
to the block.

• When you select Same as accumulator, these characteristics match those of the
accumulator.

• When you select Binary point scaling, you are able to enter the word length
and the fraction length of the output, in bits.

• When you select Slope and bias scaling, you are able to enter the word
length, in bits, and the slope of the output. This block requires power-of-two slope
and a bias of zero.

Lock scaling against changes by the autoscaling tool
Select this parameter to prevent any fixed-point scaling you specify in this block
mask from being overridden by the autoscaling tool in the Fixed-Point Tool.

2 Blocks — Alphabetical List

2-310

Supported Data Type

Port Supported Data Types

In • Double-precision floating point
• Single-precision floating point
• Signed fixed-point

Out • Double-precision floating point
• Single-precision floating point
• Signed fixed-point

See Also

Raised Cosine Receive Filter, gaussdesign

References

[1] 3GPP TS 05.04 V8.4.0 — 3rd Generation Partnership Project; Technical Specification
Group GSM/EDGE Radio Access Network; Digital cellular telecommunications
system (Phase 2+); Modulation (Release 1999)

 Gaussian Noise Generator

2-311

Gaussian Noise Generator
Generate Gaussian distributed noise with given mean and variance values

Library

Noise Generators sublibrary of Comm Sources

Description

The Gaussian Noise Generator block generates discrete-time white Gaussian noise. You
must specify the Initial seed vector in the simulation.

The Mean Value and the Variance can be either scalars or vectors. If either of these is
a scalar, then the block applies the same value to each element of a sample-based output
or each column of a frame-based output. Individual elements or columns, respectively,
are uncorrelated with each other.

When the Variance is a vector, its length must be the same as that of the Initial seed
vector. In this case, the covariance matrix is a diagonal matrix whose diagonal elements
come from the Variance vector. Since the off-diagonal elements are zero, the output
Gaussian random variables are uncorrelated.

When the Variance is a square matrix, it represents the covariance matrix. Its off-
diagonal elements are the correlations between pairs of output Gaussian random
variables. In this case, the Variance matrix must be positive definite, and it must be N-
by-N, where N is the length of the Initial seed.

The probability density function of n-dimensional Gaussian noise is

f x K x K xn T() () det exp () () /
/

= () - - -()
-

-2 2
1 2 1

p m m

where x is a length-n vector, K is the n-by-n covariance matrix, µ is the mean value
vector, and the superscript T indicates matrix transpose.

2 Blocks — Alphabetical List

2-312

Initial Seed

The Initial seed parameter initializes the random number generator that the Gaussian
Noise Generator block uses to add noise to the input signal. For best results, the Initial
seed should be a prime number greater than 30. Also, if there are other blocks in a model
that have an Initial seed parameter, you should choose different initial seeds for all
such blocks.

You can choose seeds for the Gaussian Noise Generator block using the Communications
System Toolbox randseed function. At the MATLAB prompt, enter

randseed

This returns a random prime number greater than 30. Entering randseed again
produces a different prime number. If you supply an integer argument, randseed always
returns the same prime for that integer. For example, randseed(5) always returns the
same answer.

Attributes of Output Signal

The output signal can be a frame-based matrix, a sample-based row or column vector, or
a sample-based one-dimensional array. These attributes are controlled by the Frame-
based outputs, Samples per frame, and Interpret vector parameters as 1-D
parameters. See “Sources and Sinks” in the Communications System Toolbox User's
Guide for more details.

If the Initial seed parameter is a vector, then its length becomes the number of columns
in a frame-based output or the number of elements in a sample-based vector output. In
this case, the shape (row or column) of the Initial seed parameter becomes the shape of
a sample-based two-dimensional output signal. If the Initial seed parameter is a scalar
but either the Mean value or Variance parameter is a vector, then the vector length
determines the output attributes mentioned above.

 Gaussian Noise Generator

2-313

Dialog Box

Mean value
The mean value of the random variable output.

Variance
The covariance among the output random variables.

Initial seed
The initial seed value for the random number generator.

Sample time
The period of each sample-based vector or each row of a frame-based matrix.

Frame-based outputs
Determines whether the output is frame-based or sample-based. This box is active
only if Interpret vector parameters as 1-D is unchecked.

Samples per frame

2 Blocks — Alphabetical List

2-314

The number of samples in each column of a frame-based output signal. This field is
active only if Frame-based outputs is checked.

Interpret vector parameters as 1-D
If this box is checked, then the output is a one-dimensional signal. Otherwise, the
output is a two-dimensional signal. This box is active only if Frame-based outputs
is unchecked.

Output data type
The output can be set to double or single data types.

See Also

Random Source (DSP System Toolbox documentation), AWGN Channel, rand (built-in
MATLAB function), randseed

 General Block Deinterleaver

2-315

General Block Deinterleaver

Restore ordering of symbols in input vector

Library

Block sublibrary of Interleaving

Description

The General Block Deinterleaver block rearranges the elements of its input vector
without repeating or omitting any elements. If the input contains N elements, then the
Permutation vector parameter is a column vector of length N. The column vector
indicates the indices, in order, of the output elements that came from the input vector.
That is, for each integer k between 1 and N,
Output(Permutation vector(k)) = Input(k)

The Permutation vector parameter must contain unique integers between 1 and N.

Both the input and the Permutation vector parameter must be column vector signals.

This block can output sequences that vary in length during simulation. For more
information about sequences that vary in length, or variable-size signals, see “Variable-
Size Signal Basics” in the Simulink documentation.

This block accept the following data types: int8, uint8, int16, uint16, int32,
uint32, boolean, single, double, and fixed-point. The output signal inherits its data
type from the input signal.

To use this block as an inverse of the General Block Interleaver block, use the same
Permutation vector parameter in both blocks. In that case, the two blocks are inverses
in the sense that applying the General Block Interleaver block followed by the General
Block Deinterleaver block leaves data unchanged.

2 Blocks — Alphabetical List

2-316

Dialog Box

The General Block Deinterleaver dialog box is shown for the case in which the
Permutation vector source parameter is set to Dialog.

The General Block Deinterleaver dialog box is shown for the case in which the
Permutation vector source parameter is set to Input port.

 General Block Deinterleaver

2-317

Permutation vector source
A selection that specifies the source of the permutation vector. The source can be
either Dialog or Input port. The default value is Dialog.

Permutation vector
A vector of length N that lists the indices of the output elements that came from the
input vector. This parameter is available only when Permutation vector source is
set to Dialog.

Examples

This example reverses the operation in the example on the General Block Interleaver
block reference page. If you set Permutation vector to [4,1,3,2]' and you set the
General Block Deinterleaver block input to [1;40;59;32], then the output of the
General Block Deinterleaver block is [40;32;59;1].

Pair Block

General Block Interleaver

2 Blocks — Alphabetical List

2-318

See Also

perms (MATLAB function)

 General Block Interleaver

2-319

General Block Interleaver
Reorder symbols in input vector

Library

Block sublibrary of Interleaving

Description

The General Block Interleaver block rearranges the elements of its input vector
without repeating or omitting any elements. If the input contains N elements, then the
Permutation vector parameter is a column vector of length N. The column vector
indicates the indices, in order, of the input elements that form the length-N output
vector; that is,
Output(k) = Input(Permutation vector(k))

for each integer k between 1 and N. The contents of Permutation vector must be
integers between 1 and N, and must have no repetitions.

Both the input and the Permutation vector parameter must be column vector signals.

This block can output sequences that vary in length during simulation. For more
information about sequences that vary in length, or variable-size signals, see “Variable-
Size Signal Basics” in the Simulink documentation.

This block accept the following data types: int8, uint8, int16, uint16, int32,
uint32, boolean, single, double, and fixed-point. The output signal inherits its data
type from the input signal.

Dialog Box

The General Block Interleaver dialog box is shown for the case in which the
Permutation vector source parameter is set to Dialog.

2 Blocks — Alphabetical List

2-320

The General Block Interleaver dialog box is shown for the case in which the
Permutation vector source parameter is set to Input port.

Permutation vector source

 General Block Interleaver

2-321

A selection that specifies the source of the permutation vector. The source can be
either Dialog or Input port. The default value is Dialog.

Permutation vector
A vector of length N that lists the indices of the output elements that came from the
input vector. This parameter is available only when Permutation vector source is
set to Dialog.

Examples

If Permutation vector is [4;1;3;2] and the input vector is [40;32;59;1], then the
output vector is [1;40;59;32]. Notice that all of these vectors have the same length
and that the vector Permutation vector is a permutation of the vector [1:4]'.

Pair Block

General Block Deinterleaver

See Also

perms (MATLAB function)

2 Blocks — Alphabetical List

2-322

General CRC Generator
Generate CRC bits according to generator polynomial and append to input data frames

Library

CRC sublibrary of Error Correction and Detection

Description

The General CRC Generator block generates cyclic redundancy code (CRC) bits for each
input data frame and appends them to the frame. This block accepts a binary column
vector input signal.

You specify the generator polynomial for the CRC algorithm using the Generator
polynomial parameter. This block is general in the sense that the degree of the
polynomial does not need to be a power of two. You represent the polynomial in one of
these ways:

• As a binary row vector containing the coefficients in descending order of powers. For
example, [1 1 0 1] represents the polynomial x3 + x2 + 1.

• As an integer row vector containing the powers of nonzero terms in the polynomial, in
descending order. For example, [3 2 0] represents the polynomial x3 + x2 + 1.

You specify the initial state of the internal shift register by the Initial states parameter.
The Initial states parameter is either a scalar or a binary row vector of length equal
to the degree of the generator polynomial. A scalar value is expanded to a row vector of
length equal to the degree of the generator polynomial. For example, the default initial
state of [0] is expanded to a row vector of all zeros.

You specify the number of checksums that the block calculates for each input frame by
the Checksums per frame parameter. The Checksums per frame value must evenly
divide the size of the input frame. If the value of Checksums per frame is k, the block
does the following:

1 Divides each input frame into k subframes of equal size

 General CRC Generator

2-323

2 Prefixes the Initial states vector to each of the k subframes
3 Applies the CRC algorithm to each augmented subframe
4 Appends the resulting checksums at the end of each subframe
5 Outputs concatenated subframes

If the size of the input frame is m and the degree of the generator polynomial is r, the
output frame has size m + k * r.

This block supports double and boolean data types. The block inherits the output data
type from the input signal.

Example

Suppose the size of the input frame is 10, the degree of the generator polynomial is 3,
Initial states is [0], and Checksums per frame is 2. The block divides each input
frame into two subframes of size 5 and appends a checksum of size 3 to each subframe, as
shown below. The initial states are not shown in this example, because an initial state of
[0] does not affect the output of the CRC algorithm. The output frame then has size 5 +
3 + 5 + 3 = 16.

1
0
0
1
0
1
1
1
0
0

Message word
First half of message word

1
0
0
1
0
1
1
0
1
1
1
0
0
1
0
0

Transmitted codeword1
0
0
1
0

First checksum
1
1
0

Second half of message word

1
1
1
0
0

Second checksum
1
0
0

2 Blocks — Alphabetical List

2-324

Example of Cyclic Redundancy Check Encoding

This example clarifies the operation of the General CRC Generator block by comparing
the generated CRC bits from the library block with those generated from primitive
Simulink blocks. To open the model, enter doc_crcgen at the MATLAB command line.

For a known input message with a length of 6 bits, the model generates CRC bits for a
generator polynomial, g x x x() = + +

3
1 , and a specific initial state of the register.

You can experiment with different initial states by changing the value of Initial states
prior to running the simulation. For all values, the comparison (generated CRC bits from
the library block with those generated from primitive Simulink blocks) holds true.

Using the General CRC Generator block allows you to easily specify the generator
polynomial (especially for higher order polynomials).

Signal Attributes

The General CRC Generator block has one input port and one output port. Both ports
support binary column vector signals.

 General CRC Generator

2-325

Dialog Box

Generator polynomial
A binary or integer row vector specifying the generator polynomial, in descending
order of powers.

Initial conditions
Binary scalar or a binary row vector of length equal to the degree of the generator
polynomial, specifying the initial state of the internal shift register.

2 Blocks — Alphabetical List

2-326

Direct method
When you select this check box, the object uses the direct algorithm for CRC
checksum calculations. When you clear this check box, the object uses the non-direct
algorithm for CRC checksum calculations.

Reflect input bytes
When you select this check box, the block flips the input data on a bytewise basis
prior to entering the data into the shift register. For this application, the input frame
length (and any current input frame length for variable-size signals) divided by the
value for the Checksums per frame parameter must be a multiple of eight. When
you clear this check box, the block does not flip the input data.

Reflect checksums before final XOR
When you select this check box, the block flips the CRC checksums around their
centers after the input data are completely through the shift register. When you clear
this check box, the block does not flip the CRC checksums.

Final XOR
Specify the value with which the CRC checksum is to be XORed as a binary scalar
or vector. The block applies the XOR operation just prior to appending the input
data. The vector length is the degree of the generator polynomial that you specify
in the Generator polynomial parameter. When you specify the final XOR value
as a scalar, the block expands the value to a row vector with a length equal to the
degree of the generator polynomial. The default value of this parameter is 0, which is
equivalent to no XOR operation.

Checksums per frame
Specify the number of checksums the block calculates for each input frame. This
value must be a positive integer. The input frame length (and any current input
frame length for variable-size signals) must be a multiple of this parameter value.

Algorithm
For a description of the CRC algorithm as implemented by this block, see “Cyclic
Redundancy Check Codes” in Communications System Toolbox User's Guide.

References

[1] Sklar, Bernard, Digital Communications: Fundamentals and Applications. Englewood
Cliffs, N.J., Prentice-Hall, 1988.

 General CRC Generator

2-327

[2] Wicker, Stephen B., Error Control Systems for Digital Communication and Storage,
Upper Saddle River, N.J., Prentice Hall, 1995.

Pair Block

General CRC Syndrome Detector

See Also

CRC-N Generator, CRC-N Syndrome Detector

2 Blocks — Alphabetical List

2-328

General CRC Generator HDL Optimized
Generate CRC code bits and append to input data, optimized for HDL code generation

Library

CRC sublibrary of Error Correction and Detection

Description

This hardware-friendly CRC generator block, like the General CRC Generator block,
generates the CRC bits and appends them to the input message bits. The output consists
of CRC checksum plus the message. With the General CRC Generator HDL Optimized
block, the processing is optimized for HDL code generation. Instead of processing an
entire frame at once, the block processes samples of data. Control signals are added at
both input and output for easy data synchronization.

Signal Attributes

The General CRC Generator HDL Optimized block has four input ports and four output
ports.

Port Direction Description Data Type

dataIn Input Message data. Data can be a column
vector of binary values, or a scalar integer
representing several bits. That is, vector
input [0,0,0,1,0,0,1,1] is equivalent to
uint8 input 19. Data width must be less
than or equal to the CRC length, and
the CRC length must be divisible by the

Vector:
double,
boolean, or
fixdt(0,1,0)

Scalar :
unsigned

 General CRC Generator HDL Optimized

2-329

Port Direction Description Data Type

data width. For example, for CRC-CCITT/
CRC-16, the valid data widths are 16, 8,
4, 2 and 1.

integer
(uint8/16/32)
or fixdt(0,N,0)

startIn Input Indicates the start of a frame of data. Boolean or
fixdt(0,1,0)

endIn Input Indicates the end of a frame of data. Boolean or
fixdt(0,1,0)

validIn Input Indicates that input data is valid. Boolean or
fixdt(0,1,0)

dataOut Output Message data with the checksum
appended. The data width and type is the
same as the input data port.

Same as
dataIn

startOut Output Indicates the start of a frame of data. Boolean or
fixdt(0,1,0)

endOut Output Indicates the end of a frame of data,
including checksum.

Boolean or
fixdt(0,1,0)

validOut Output Indicates that output data is valid. Boolean or
fixdt(0,1,0)

2 Blocks — Alphabetical List

2-330

Dialog Box

Polynomial
A double, boolean, or fixdt(0,1) row or column vector specifying the polynomial, in
descending order of powers. CRC length is length(polynomial)-1. The default value is
[1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1].

Initial state
A double, boolean, or fixdt(0,1) scalar or vector of length equal to the CRC length,
specifying the initial state of the internal shift register. The default value is 0.

Direct method

• When checked, the block uses the direct algorithm for CRC checksum
calculations.

 General CRC Generator HDL Optimized

2-331

• When unchecked, the block uses the non-direct algorithm for CRC checksum
calculations.

The default value is unchecked.

Refer to “Cyclic Redundancy Check Codes” to learn about the direct and non-direct
algorithms.

Reflect input

• The input data width must be a multiple of 8.
• When checked, each input byte is flipped before entering the shift register.
• When unchecked, the message data is passed to the shift register unchanged.

The default value is unchecked.
Reflect CRC checksum

• The CRC length must be a multiple of 8.
• When checked, each checksum byte is flipped before it is passed to the final XOR

stage.
• When unchecked, the checksum byte is passed to the final XOR stage unchanged.

The default value is unchecked.
Final XOR value

The value with which the CRC checksum is to be XORed just prior to being appended
to the input data. A double, boolean, or fixdt(0,1) scalar or vector of length equal to
the CRC length, specifying the FinalXOR value. The default value is 0.

Simulate using
Type of simulation to run. This parameter does not affect generated HDL code.

• Code generation (default)

Simulate model using generated C code. The first time you run a simulation,
Simulink generates C code for the block. The C code is reused for subsequent
simulations, as long as the model does not change. This option requires
additional startup time but provides faster simulation speed than Interpreted
execution.

• Interpreted execution

2 Blocks — Alphabetical List

2-332

Simulate model using the MATLAB interpreter. This option shortens startup time
but has slower simulation speed than Code generation.

Algorithm

Timing Diagram

Timing diagram of CRC generator

Initial Delay

The General CRC Generator HDL Optimized block introduces a latency on the output.
This latency can be computed with the following equation:

initialdelay = CRC length/input data width + 2

 General CRC Generator HDL Optimized

2-333

Example

See Using HDL Optimized CRC Library Blocks.

HDL Code Generation

This block supports HDL code generation using HDL Coder. HDL Coder provides
additional configuration options that affect HDL implementation and synthesized
logic. For more information on implementations, properties, and restrictions for HDL
code generation, see General CRC Generator HDL Optimized in the HDL Coder
documentation.

Pair Block

General CRC Syndrome Detector HDL Optimized

See Also
comm.HDLCRCGenerator | General CRC Generator

2 Blocks — Alphabetical List

2-334

General CRC Syndrome Detector
Detect errors in input data frames according to generator polynomial

Library

CRC sublibrary of Error Correction and Detection

Description

The General CRC Syndrome Detector block computes checksums for its entire input
frame. This block accepts a binary column vector input signal.

The block's second output is a vector whose size is the number of checksums, and whose
entries are 0 if the checksum computation yields a zero value, and 1 otherwise. The
block's first output is the set of message words with the checksums removed.

The first output is the data frame with the CRC bits removed and the second output
indicates if an error was detected in the data frame.

The block's parameter settings should agree with those in the General CRC Generator
block.

You specify the number of checksums the block calculates for each frame by the
Checksums per frame parameter. If the Checksums per frame value is k, the size of
the input frame is n, and the degree of the generator polynomial is r, then k must divide
n - k*r, which is the size of the message word.

This block supports double and boolean data types. The block inherits the output data
type from the input signal.

Example

Suppose the received codeword has size 16, the generator polynomial has degree 3,
Initial states is [0], and Checksums per frame is 2. The block computes the two

 General CRC Syndrome Detector

2-335

checksums of size 3, one from the first half of the received codeword, and the other from
the second half of the received codeword, as shown in the following figure. The initial
states are not shown in this example, because an initial state of [0] does not affect the
output of the CRC algorithm. The block concatenates the two halves of the message
word as a single vector of size 10 and outputs this vector through the first output port.
The block outputs a 2-by-1 binary frame vector whose entries depend on whether the
computed checksums are zero. The following figure shows an example in which the
first checksum is nonzero and the second checksum is zero. This indicates that an error
occurred in transmitting the first half of the codeword.

First checksum
is nonzero

0
1
1

Second checksum
is zero

1
0
0

First half of message word

1
0
0
1
0
1
1
1
0
0

First output

1
0

Second output

1
0
0
1
0
1
0
1
1
1
1
0
0
1
0
0

Received codeword 1
0
0
1
0

1
0
1

Second half of message word

1
1
1
0
0

1
0
0

Signal Attributes

The General CRC Syndrome Detector block has one input port and two output ports.
These ports accept binary column vector signals.

2 Blocks — Alphabetical List

2-336

Dialog Box

Generator polynomial
A binary or integer row vector specifying the generator polynomial, in descending
order of powers.

Initial conditions

 General CRC Syndrome Detector

2-337

A binary scalar or a binary row vector of length equal to the degree of the generator
polynomial, specifying the initial state of the internal shift register.

Direct method
When you select this check box, the object uses the direct algorithm for CRC
checksum calculations. When you clear this check box, the object uses the non-direct
algorithm for CRC checksum calculations.

Reflect input bytes
When you select this check box, the block flips the input data on a bytewise basis
prior to entering the data into the shift register. For this application, the input frame
length (and any current input frame length for variable-size signals) divided by the
value for the Checksums per frame parameter minus the degree of the generator
polynomial, which you specify in the Generator polynomial parameter, must be
a multiple of eight. When you clear this check box, the block does not flip the input
data.

Reflect checksums before final XOR
When you select this check box, the block flips the CRC checksums around their
centers after the input data are completely through the shift register. When you clear
this check box, the block does not flip the CRC checksums.

Final XOR
Specify the value with which the CRC checksum is to be XORed as a binary scalar
or vector. The block applies the XOR operation just prior to appending the input
data. The vector length is the degree of the generator polynomial that you specify
in the Generator polynomial parameter. When you specify the final XOR value
as a scalar, the block expands the value to a row vector with a length equal to the
degree of the generator polynomial. The default value of this parameter is 0, which is
equivalent to no XOR operation.

Checksums per frame
Specify the number of checksums the block calculates for each input frame. This
value must be a positive integer. The input frame length (and any current input
frame length for variable-size signals) must be a multiple of this parameter value.

Algorithm

For a description of the CRC algorithm as implemented by this block, see “Cyclic
Redundancy Check Codes” in Communications System Toolbox User's Guide.

2 Blocks — Alphabetical List

2-338

References

[1] Sklar, Bernard. Digital Communications: Fundamentals and Applications. Englewood
Cliffs, N.J., Prentice-Hall, 1988.

[2] Wicker, Stephen B., Error Control Systems for Digital Communication and Storage,
Upper Saddle River, N.J., Prentice Hall, 1995.

Pair Block

General CRC Generator

See Also

CRC-N Generator, CRC-N Syndrome Detector

 General CRC Syndrome Detector HDL Optimized

2-339

General CRC Syndrome Detector HDL Optimized
Detect errors in input data using CRC

Library

CRC sublibrary of Error Correction and Detection

Description

This hardware-friendly CRC detector block performs a CRC on data and compares
the resulting checksum with the appended checksum. An error is detected if the two
checksums do not match. Instead of frame processing, the block processes data at the
streaming mode. Control signals are added at both input and output of the block for easy
data synchronization.

Signal Attributes

The General CRC Syndrome Detector HDL Optimized block has four input ports and five
output ports.

Port Direction Description Data Type

dataIn Input Message data plus checksum. Data can
be a column vector of binary values, or a
scalar integer representing several bits.
That is, vector input [0,0,0,1,0,0,1,1] is
equivalent to uint8 input 19. Data width
must be less than or equal to the CRC

Vector:
double,
boolean, or
fixdt(0,1,0)

2 Blocks — Alphabetical List

2-340

Port Direction Description Data Type

length, and the CRC length must be
divisible by the data width. For example,
for CRC-CCITT/CRC-16, the valid data
widths are 16, 8, 4, 2 and 1.

Scalar :
unsigned
integer
(uint8/16/32)
or fixdt(0,N,0)

startIn Input Indicates the start of a frame of data
including checksum.

Boolean or
fixdt(0,1,0)

endIn Input Indicates the end of a frame of data. Boolean or
fixdt(0,1,0)

validIn Input Indicates that input data is valid. Boolean or
fixdt(0,1,0)

dataOut Output Message data. The data width and type is
the same as the input data port.

Same as
dataIn

startOut Output Indicates the start of a frame of data. Boolean or
fixdt(0,1,0)

endOut Output Indicates the end of a frame of data. Boolean or
fixdt(0,1,0)

validOut Output Indicates that output data is valid. Boolean or
fixdt(0,1,0)

err Output Indicates the corruption of the received
data when error is high.

Boolean or
fixdt(0,1,0)

 General CRC Syndrome Detector HDL Optimized

2-341

Dialog Box

Polynomial
A double, boolean, or fixdt(0,1) row or column vector specifying the polynomial, in
descending order of powers. CRC length is length(polynomial)-1. The default value is
[1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1].

Initial state
A double, boolean, or fixdt(0,1) scalar or vector of length equal to the CRC length,
specifying the initial state of the internal shift register. The default value is 0.

Direct method

• When checked, the block uses the direct algorithm for CRC checksum
calculations.

2 Blocks — Alphabetical List

2-342

• When unchecked, the block uses the non-direct algorithm for CRC checksum
calculations.

The default value is unchecked.

Refer to “Cyclic Redundancy Check Codes” to learn about the direct and non-direct
algorithms.

Reflect input

• The input data width must be a multiple of 8.
• When checked, each input byte is flipped before entering the shift register.
• When unchecked, the message data is passed to the shift register unchanged.

The default value is unchecked.
Reflect CRC checksum

• The CRC length must be a multiple of 8.
• When checked, each checksum byte is flipped before it is passed to the final XOR

stage.
• When unchecked, the checksum byte is passed to the final XOR stage unchanged.

The default value is unchecked.
Final XOR value

The value with which the CRC checksum is to be XORed just prior to being appended
to the input data. A double, boolean, or fixdt(0,1) scalar or vector of length equal to
the CRC length, specifying the FinalXOR value. The default value is 0.

Simulate using
Type of simulation to run. This parameter does not affect generated HDL code.

• Code generation (default)

Simulate model using generated C code. The first time you run a simulation,
Simulink generates C code for the block. The C code is reused for subsequent
simulations, as long as the model does not change. This option requires
additional startup time but provides faster simulation speed than Interpreted
execution.

• Interpreted execution

 General CRC Syndrome Detector HDL Optimized

2-343

Simulate model using the MATLAB interpreter. This option shortens startup time
but has slower simulation speed than Code generation.

Algorithm

Timing Diagram

Timing diagram of CRC detector

Initial Delay

The General CRC Syndrome Detector HDL Optimized block introduces a latency on the
output. This latency can be computed with the following equation:

initialdelay = (3 * CRC length/input data width) + 2

2 Blocks — Alphabetical List

2-344

Example

See Using HDL Optimized CRC Library Blocks.

HDL Code Generation

This block supports HDL code generation using HDL Coder. HDL Coder provides
additional configuration options that affect HDL implementation and synthesized logic.
For more information on implementations, properties, and restrictions for HDL code
generation, see General CRC Syndrome Detector HDL Optimized in the HDL Coder
documentation.

Pair Block

General CRC Generator HDL Optimized

See Also

General CRC Syndrome Detector | comm.HDLCRCDetector

 General Multiplexed Deinterleaver

2-345

General Multiplexed Deinterleaver

Restore ordering of symbols using specified-delay shift registers

Library

Convolutional sublibrary of Interleaving

Description

The General Multiplexed Deinterleaver block restores the original ordering of a sequence
that was interleaved using the General Multiplexed Interleaver block.

In typical usage, the parameters in the two blocks have the same values. As a result,
the Interleaver delay parameter, V, specifies the delays for each shift register in the
corresponding interleaver, so that the delays of the deinterleaver's shift registers are
actually max(V)-V.

This block accepts a scalar or column vector input signal, which can be real or complex.
The output signal has the same sample time as the input signal.

The block can accept the data types int8, uint8, int16, uint16, int32, uint32,
boolean, single, double, and fixed-point. The block inherist data type of this output
will be the same as that of the input signal.

2 Blocks — Alphabetical List

2-346

Dialog Box

Interleaver delay (samples)
A vector that lists the number of symbols that fit in each shift register of the
corresponding interleaver. The length of this vector is the number of shift registers.

Initial conditions
The values that fill each shift register when the simulation begins.

HDL Code Generation

This block supports HDL code generation using HDL Coder. HDL Coder provides
additional configuration options that affect HDL implementation and synthesized logic.
For more information on implementations, properties, and restrictions for HDL code
generation, see General Multiplexed Deinterleaver in the HDL Coder documentation.

 General Multiplexed Deinterleaver

2-347

Pair Block

General Multiplexed Interleaver

See Also

Convolutional Deinterleaver, Helical Deinterleaver

References

[1] Heegard, Chris and Stephen B. Wicker. Turbo Coding. Boston: Kluwer Academic
Publishers, 1999.

2 Blocks — Alphabetical List

2-348

General Multiplexed Interleaver

Permute input symbols using set of shift registers with specified delays

Library

Convolutional sublibrary of Interleaving

Description

The General Multiplexed Interleaver block permutes the symbols in the input signal.
Internally, it uses a set of shift registers, each with its own delay value.

This block accepts a scalar or column vector input signal, which can be real or complex.
The input and output signals have the same sample time.

The block can accept the data types int8, uint8, int16, uint16, int32, uint32,
boolean, single, double, and fixed-point. The output signal has the same data type as
the input signal.

 General Multiplexed Interleaver

2-349

Dialog Box

Interleaver delay (samples)
A column vector listing the number of symbols that fit into each shift register. The
length of this vector is the number of shift registers. (In sample-based mode, it can
also be a row vector.)

Initial conditions
The values that fill each shift register at the beginning of the simulation.

If Initial conditions is a scalar, then its value fills all shift registers. If Initial
conditions is a column vector, then each entry fills the corresponding shift register.
(In sample-based mode, Initial conditions can also be a row vector.) If a given
shift register has zero delay, then the value of the corresponding entry in the Initial
conditions vector is unimportant.

HDL Code Generation
This block supports HDL code generation using HDL Coder. HDL Coder provides
additional configuration options that affect HDL implementation and synthesized logic.

2 Blocks — Alphabetical List

2-350

For more information on implementations, properties, and restrictions for HDL code
generation, see General Multiplexed Interleaver in the HDL Coder documentation.

Pair Block

General Multiplexed Deinterleaver

See Also

Convolutional Interleaver, Helical Interleaver

References

[1] Heegard, Chris and Stephen B. Wicker. Turbo Coding. Boston: Kluwer Academic
Publishers, 1999.

 General QAM Demodulator Baseband

2-351

General QAM Demodulator Baseband

Demodulate QAM-modulated data

Library

AM, in Digital Baseband sublibrary of Modulation

Description

The General QAM Demodulator Baseband block demodulates a signal that was
modulated using quadrature amplitude modulation. The input is a baseband
representation of the modulated signal.

The input must be a discrete-time complex signal. The Signal constellation parameter
defines the constellation by listing its points in a length-M vector of complex numbers.
The block maps the mth point in the Signal constellation vector to the integer m-1.

This block accepts a scalar or column vector input signal. For information about the data
types each block port supports, see the “Supported Data Types” on page 2-363 table on
this page.

2 Blocks — Alphabetical List

2-352

Dialog Box

 General QAM Demodulator Baseband

2-353

Signal constellation
A real or complex vector that lists the constellation points.

Output type
Determines whether the block produces integers or binary representations of
integers.

If you set this parameter to Integer, the block produces integers.

If you set this parameter to Bit, the block produces a group of K bits, called a binary
word, for each symbol, when Decision type is set to Hard decision. If Decision
type is set to Log-likelihood ratio or Approximate log-likelihood ratio,
the block outputs bitwise LLR and approximate LLR, respectively.

Decision type
This field appears when Bit is selected in the pull-down list Output type.

Specifies the use of hard decision, LLR, or approximate LLR during demodulation.
See “Exact LLR Algorithm” and “Approximate LLR Algorithm” in the
Communications System Toolbox User's Guide for algorithm details.

Noise variance source
This field appears when you set Approximate log-likelihood ratio or Log-
likelihood ratio for Decision type.

When you set this parameter to Dialog, you can then specify the noise variance in
the Noise variance field. When you set this option to Port, a port appears on the
block through which the noise variance can be input.

Noise variance
This parameter appears when the Noise variance source is set to Dialog and
specifies the noise variance in the input signal. This parameter is tunable in normal
mode, Accelerator mode and Rapid Accelerator mode.

If you use the Simulink Coder rapid simulation (RSIM) target to build an RSIM
executable, then you can tune the parameter without recompiling the model. This is
useful for Monte Carlo simulations in which you run the simulation multiple times
(perhaps on multiple computers) with different amounts of noise.

The LLR algorithm involves computing exponentials of very large or very small
numbers using finite precision arithmetic and would yield:

2 Blocks — Alphabetical List

2-354

• Inf to -Inf if Noise variance is very high
• NaN if Noise variance and signal power are both very small

In such cases, use approximate LLR, as its algorithm does not involve computing
exponentials.

Fixed-Point Signal Flow Diagrams

Fixed-Point Signal Flow Diagram for Hard Decision Mode

Note: In the figure above, M represents the size of the Signal constellation .

The general QAM Demodulator Baseband block supports fixed-point operations for
computing Hard Decision (Output type set to Bit and Decision type is set to Hard
decision) and Approximate LLR (Output type is set to Bit and Decision type is set
to Approximate Log-Likelihood ratio) output values. The input values must have
fixed-point data type for fixed-point operations.

Note: Fixed-Point operations are NOT yet supported for Exact LLR output values.

 General QAM Demodulator Baseband

2-355

Fixed-Point Signal Flow Diagram for Approximate LLR Mode

Note: In the figure above, M represents the size of the Signal constellation.

2 Blocks — Alphabetical List

2-356

Fixed-Point Signal Flow Diagram for Approximate LLR Mode: Noise Variance Operation Modes

Note: If Noise variance is set to Dialog, the block performs the operations shown
inside the dotted line once during initialization. The block also performs these operations
if the Noise variance value changes during simulation.

 General QAM Demodulator Baseband

2-357

Data Types Attributes

Fixed-Point Attributes for Hard Decision Mode

2 Blocks — Alphabetical List

2-358

Output
The block supports the following Output options:

When you set the parameter to Inherit via internal rule (default setting), the
block inherits the output data type from the input port. The output data type is the
same as the input data type if the input is of type single or double.

For integer outputs, you can set this block's output to Inherit via internal
rule (default setting), Smallest unsigned integer, int8, uint8, int16,
uint16, int32, uint32, single, and double.

For bit outputs, when you set Decision type to Hard decision, you can set the
output to Inherit via internal rule, Smallest unsigned integer, int8,
uint8, int16, uint16, int32, uint32, boolean, single, or double.

When you set Decision type to Hard decision or Approximate log-
likelihood ratio and the input is a floating point data type, then the output
inherits its data type from the input. For example, if the input is of data type
double, the output is also of data type double. When you set Decision type to
Hard decision or Approximate log-likelihood ratio, and the input is a
fixed-point signal, the Output parameter, located in the Fixed-Point algorithm
parameters region of the Data-Type tab, specifies the output data type.

When you set the parameter to Smallest unsigned integer, the output data
type is selected based on the settings used in the Hardware Implementation
pane of the Configuration Parameters dialog box. If you select ASIC/FPGA in the
Hardware Implementation pane, the output data type is the ideal minimum size,
i.e., ufix(1) for bit outputs, and ufix Mlog2ÈÍ ˘̇() for integer outputs. For all other
choices, the Output data type is an unsigned integer with the smallest available
word length large enough to fit the ideal minimum size, usually corresponding to the
size of a char (e.g., uint8).

Rounding Mode Parameter
Use this parameter to specify the rounding method to be used when the result of a
fixed-point calculation does not map exactly to a number representable by the data
type and scaling storing the result.

For more information, see “Rounding Modes” in the DSP System Toolbox
documentation “Rounding Mode: Simplest” in the Fixed-Point Designer
documentation.

Overflow Mode Parameter

 General QAM Demodulator Baseband

2-359

Use this parameter to specify the method to be used if the magnitude of a fixed-point
calculation result does not fit into the range of the data type and scaling that stores
the result:

• Saturate represents positive overflows as the largest positive number in the
range being used, and negative overflows as the largest negative number in the
range being used.

• Wrap uses modulo arithmetic to cast an overflow back into the representable
range of the data type. See “Modulo Arithmetic” for more information.

For more information, see the Rounding Mode Parameter subsection of “Specify
Fixed-Point Attributes for Blocks”.

Signal constellation
Use this parameter to define the data type of the Signal constellation parameter.

• When you select Same word length as input the word length of the Signal
constellation parameter matches that of the input to the block. The fraction
length is computed to provide the best precision for given signal constellation
values.

• When you select Specify word length, the Word Length field appears, and
you may enter a value for the word length. The fraction length is computed to
provide the best precision for given signal constellation values.

Accumulator 1
Use this parameter to specify the data type for Accumulator 1:

• When you select Inherit via internal rule, the block automatically
calculates the output word and fraction lengths. For more information, see the
“Inherit via Internal Rule” subsection of the DSP System Toolbox User's Guide.

• When you select Binary point scaling, you can enter the word length and the
fraction length of Accumulator 1, in bits.

Product Input
Use this parameter to specify the data type for Product input.

• When you select Same as accumulator 1, the Product Input characteristics
match those of Accumulator 1.

• When you select Binary point scaling you can enter the word length and the
fraction length of Product input, in bits.

2 Blocks — Alphabetical List

2-360

Product Output
Use this parameter to select the data type for Product output.

• When you select Inherit via internal rule, the block automatically
calculates the output signal type. For more information, see the “Inherit via
Internal Rule” subsection of the DSP System Toolbox User's Guide.

• When you select Binary point scaling enter the word length and the fraction
length for Product output, in bits.

Accumulator 2
Use this parameter to specify the data type for Accumulator 2:

• When you select Inherit via internal rule, the block automatically
calculates the accumulator data type. The internal rule calculates the ideal, full-
precision word length and fraction length as follows:

WLideal accumulator 2 = WLinput to accumulator 2

FLideal accumulator 2 = FL input to accumulator 2

After the full-precision result is calculated, your particular hardware may still
affect the final word and fraction lengths set by the internal rule. For more
information, see “The Effect of the Hardware Implementation Pane on the
Internal Rule” subsection of the DSP System Toolbox User's Guide.

The internal rule always sets the sign of data-type to Unsigned .
• When you select Binary point scaling, you are able to enter the word length

and the fraction length of Accumulator 2, in bits.

 General QAM Demodulator Baseband

2-361

Fixed-Point Attributes for Approximate LLR Mode

2 Blocks — Alphabetical List

2-362

The settings for the following fixed-point parameters only apply when you set Decision
type to Approximate log-likelihood ratio.

Accumulator 3
When you select Inherit via internal rule, the block automatically calculates
the accumulator data type. The internal rule first calculates ideal, full-precision word
length and fraction length as follows:

WLideal accumulator 3 = WLinput to accumulator 3 + 1

FL ideal accumulator 3 = FL input to accumulator 3.

After the full-precision result is calculated, your particular hardware may still affect
the final word and fraction lengths set by the internal rule. For more information, see
“The Effect of the Hardware Implementation Pane on the Internal Rule” subsection
of the DSP System Toolbox User's Guide.

The internal rule always sets the sign of data-type to Signed.
Noise scaling input

• When you select Same as accumulator 3, the Noise scaling input
characteristics match those of Accumulator 3.

• When you select Binary point scaling you are able to enter the word length
and the fraction length of Noise scaling input, in bits.

Inverse noise variance
This field appears when Noise variance source is set to Dialog.

• When you select Same word length as input the word length of the Inverse
noise variance parameter matches that of the input to the block. The fraction
length is computed to provide the best precision for a given inverse noise variance
value.

• When you select Specify word length, the Word Length field appears, and
you may enter a value for the word length. The fraction length is computed to
provide the best precision for a given inverse noise variance value.

Output
When you select Inherit via internal rule , the Output data type is
automatically set for you.

 General QAM Demodulator Baseband

2-363

If you set the Noise variance source parameter to Dialog, the output is a result
of product operation as shown in the Noise Variance Operation Modes Signal Flow
Diagram Fixed-Point Signal Flow Diagram for Approximate LLR Mode: Noise
Variance Operation Modes. In this case, it follows the internal rule for Product
data types specified in the “Inherit via Internal Rule” subsection of the DSP System
Toolbox User's Guide.

If the Noise variance source parameter is set to Port, the output is a result of
division operation as shown in the signal flow diagram. In this case, the internal rule
calculates the ideal, full-precision word length and fraction length as follows:

WL output = max(WL Noise scaling input, WL Noise variance)

FL output = FL Noise scaling input (dividend)– FL Noise variance (divisor) .

After the full-precision result is calculated, your particular hardware may still affect
the final word and fraction lengths set by the internal rule. For more information, see
“The Effect of the Hardware Implementation Pane on the Internal Rule” subsection
of the DSP System Toolbox User's Guide.

The internal rule for Output always sets the sign of data-type to Signed.

For additional information about the parameters pertaining to fixed-point applications,
see “Specify Fixed-Point Attributes for Blocks”.

Supported Data Types

Port Supported Data Types

Input • Double-precision floating point
• Single-precision floating point
• Signed fixed–point when Output type is Integer or Output type is Bit and

Decision type is either Hard-decision or Approximate LLR
Var • Double-precision floating point

• Single-precision floating point
Output • Double-precision floating point

• Single-precision floating point
• Boolean when Output type is Bit and Decision type is Hard-decision.

2 Blocks — Alphabetical List

2-364

Port Supported Data Types

• 8-, 16-, and 32-bit signed integers when Output type is Integer or Output
type is Bit and Decision type is Hard-decision

• 8-, 16-, and 32-bit unsigned integers when Output type is Integer or Output
type is Bit and Decision type is Hard-decision

• ufix(1) in ASIC/FPGA when Output type is Bit and Decision type is Hard-
decision

•
ufix Mlog2ÈÍ ˘̇() in ASIC/FPGA when Output type is Integer

• Signed fixed-point when Output type is Bit and Decision type is
Approximate LLR

Pair Block

General QAM Modulator Baseband

See Also

Rectangular QAM Demodulator Baseband

 General QAM Modulator Baseband

2-365

General QAM Modulator Baseband

Modulate using quadrature amplitude modulation

Library

AM, in Digital Baseband sublibrary of Modulation

Description

The General QAM Modulator Baseband block modulates using quadrature amplitude
modulation. The output is a baseband representation of the modulated signal.

The Signal constellation parameter defines the constellation by listing its points in a
length-M vector of complex numbers. The input signal values must be integers between
0 and M-1. The block maps an input integer m to the (m+1)st value in the Signal
constellation vector.

This block accepts a scalar or column vector input signal. For information about the data
types each block port supports, see the “Supported Data Types” on page 2-367 table on
this page.

Constellation Visualization

The General QAM Modulator Baseband block provides the capability to visualize a signal
constellation from the block mask. This Constellation Visualization feature allows you to
visualize a signal constellation for specific block parameters. For more information, see
the “Constellation Visualization” section of the Communications System Toolbox User's
Guide.

2 Blocks — Alphabetical List

2-366

Dialog Box

Signal constellation
A real or complex vector that lists the constellation points.

Output data type
The output data type can be set to double, single, Fixed-point, User-defined,
or Inherit via back propagation.

Setting this to Fixed-point or User-defined will enable fields in which you can
further specify details. Setting this to Inherit via back propagation, sets the
output data type and scaling to match the following block..

Output word length
Specify the word length, in bits, of the fixed-point output data type. This parameter is
only visible when you select Fixed-point for the Output data type parameter.

User-defined data type
Specify any signed built-in or signed fixed-point data type. You can specify fixed-
point data types using the sfix, sint, sfrac, and fixdt functions from Fixed-Point
Designer software. This parameter is only visible when you select User-defined for
the Output data type parameter.

 General QAM Modulator Baseband

2-367

Set output fraction length to
Specify the scaling of the fixed-point output by either of the following two methods:

• Choose Best precision to have the output scaling automatically set such that
the output signal has the best possible precision.

• Choose User-defined to specify the output scaling in the Output fraction
length parameter.

This parameter is only visible when you select Fixed-point for the Output data
type parameter, or when you select User-defined and the specified output data
type is a fixed-point data type.

Output fraction length
For fixed-point output data types, specify the number of fractional bits, or bits to
the right of the binary point. This parameter is only visible when you select Fixed-
point or User-defined for the Output data type parameter and User-defined
for the Set output fraction length to parameter.

Supported Data Types

Port Supported Data Types

Input • Double-precision floating point
• Single-precision floating point
• 8-, 16-, 32-bit signed integers
• 8-, 16-, 32-bit unsigned integers
•

ufix Mlog2ÈÍ ˘̇()
Output • Double-precision floating point

• Single-precision floating point
• Signed fixed-point

Pair Block

General QAM Demodulator Baseband

2 Blocks — Alphabetical List

2-368

See Also

Rectangular QAM Modulator Baseband

 General TCM Decoder

2-369

General TCM Decoder
Decode trellis-coded modulation data, mapped using arbitrary constellation

Library

TCM, in Digital Baseband sublibrary of Modulation

Description

The General TCM Decoder block uses the Viterbi algorithm to decode a trellis-coded
modulation (TCM) signal that was previously modulated using an arbitrary signal
constellation.

The Trellis structure and Signal constellation parameters in this block should match
those in the General TCM Encoder block, to ensure proper decoding. In particular, the
Signal constellation parameter must be in set-partitioned order.

Input and Output Signals

This block accepts a column vector input signal containing complex numbers. The input
signal must be double or single. The reset port signal must be double or Boolean.
For information about the data types each block port supports, see “Supported Data
Types” on page 2-372.

If the convolutional encoder described by the trellis structure represents a rate k/n code,
then the General TCM Decoder block's output is a binary column vector whose length is k
times the vector length of the input signal.

Operation Modes

The block has three possible methods for transitioning between successive frames. The
Operation mode parameter controls which method the block uses. This parameter also
affects the range of possible values for the Traceback depth parameter, D.

2 Blocks — Alphabetical List

2-370

• In Continuous mode, the block initializes all state metrics to zero at the beginning
of the simulation, waits until it accumulates D symbols, and then uses a sequence of
D symbols to compute each of the traceback paths. D can be any positive integer. At
the end of each frame, the block saves its internal state metric for use with the next
frame.

If you select Enable the reset input port, the block displays another input port,
labeled Rst. This port receives an integer scalar signal. Whenever the value at the
Rst port is nonzero, the block resets all state metrics to zero and sets the traceback
memory to zero.

• In Truncated mode, the block treats each frame independently. The traceback path
starts at the state with the lowest metric. D must be less than or equal to the vector
length of the input.

• In Terminated mode, the block treats each frame independently. The traceback path
always starts at the all-zeros state. D must be less than or equal to the vector length
of the input. If you know that each frame of data typically ends at the all-zeros state,
then this mode is an appropriate choice.

Decoding Delay

If you set Operation mode to Continuous, then this block introduces a decoding delay
equal to Traceback depth*k bits for a rate k/n convolutional code. The decoding delay is
the number of zeros that precede the first decoded bit in the output.

The block incurs no delay for other values of Operation mode.

 General TCM Decoder

2-371

Dialog Box

Trellis structure
MATLAB structure that contains the trellis description of the convolutional encoder.

Signal constellation
A complex vector that lists the points in the signal constellation in set-partitioned
order.

Traceback depth
The number of trellis branches (equivalently, the number of symbols) the block uses
in the Viterbi algorithm to construct each traceback path.

Operation mode

2 Blocks — Alphabetical List

2-372

The operation mode of the Viterbi decoder. The choices are Continuous, Truncated,
and Terminated.

Enable the reset input port
When you select this check box, the block has a second input port labeled Rst.
Providing a nonzero value to this port causes the block to set its internal memory to
the initial state before processing the input data. This field appears only if you set
Operation mode to Continuous.

Output data type
Select the data type for the block output signal as boolean or single. By default,
the block sets this to double.

Supported Data Types
Port Supported Data Types

Input • Double-precision floating point
• Single-precision floating point

Reset • Double-precision floating point
• Boolean

Output • Double-precision floating point
• Boolean

Pair Block
General TCM Encoder

See Also
M-PSK TCM Decoder, Rectangular QAM TCM Decoder, poly2trellis

References

[1] Biglieri, E., D. Divsalar, P. J. McLane, and M. K. Simon, Introduction to Trellis-Coded
Modulation with Applications, New York, Macmillan, 1991.

 General TCM Decoder

2-373

[2] Proakis, John G., Digital Communications, Fourth edition, New York, McGraw-Hill,
2001.

2 Blocks — Alphabetical List

2-374

General TCM Encoder
Convolutionally encode binary data and map using arbitrary constellation

Library

TCM, in Digital Baseband sublibrary of Modulation

Description

The General TCM Encoder block implements trellis-coded modulation (TCM) by
convolutionally encoding the binary input signal and mapping the result to an arbitrary
signal constellation. The Signal constellation parameter lists the signal constellation
points in set-partitioned order. This parameter is a complex vector with a length, M,
equal to the number of possible output symbols from the convolutional encoder. (That is,
log2M is equal to n for a rate k/n convolutional code.)

Input Signals and Output Signals

If the convolutional encoder represents a rate k/n code, then the General TCM Encoder
block's input must be a binary column vector with a length of L*k for some positive
integer L.

This block accepts a binary-valued input signal. The output signal is a complex column
vector of length L. For information about the data types each block port supports, see
“Supported Data Types” on page 2-378.

Specifying the Encoder

To define the convolutional encoder, use the Trellis structure parameter. This
parameter is a MATLAB structure whose format is described in the section “Trellis
Description of a Convolutional Code” in the Communications System Toolbox
documentation. You can use this parameter field in two ways:

 General TCM Encoder

2-375

• If you want to specify the encoder using its constraint length, generator polynomials,
and possibly feedback connection polynomials, then use a poly2trellis command
within the Trellis structure field. For example, to use an encoder with a constraint
length of 7, code generator polynomials of 171 and 133 (in octal numbers), and a
feedback connection of 171 (in octal), set the Trellis structure parameter to

poly2trellis(7,[171 133],171)

• If you have a variable in the MATLAB workspace that contains the trellis structure,
then enter its name as the Trellis structure parameter. This way is faster because it
causes Simulink software to spend less time updating the diagram at the beginning of
each simulation, compared to the usage in the previous bulleted item.

The encoder registers begin in the all-zeros state. You can configure the encoder so that
it resets its registers to the all-zeros state during the course of the simulation. To do this,
set the Operation mode to Reset on nonzero input via port. The block then opens
a second input port, labeled Rst. The signal at the Rst port is a scalar signal. When it is
nonzero, the encoder resets before processing the data at the first input port.

Signal Constellations

The trellis-coded modulation technique partitions the constellation into subsets called
cosets so as to maximize the minimum distance between pairs of points in each coset.

Note When you set the Signal constellation parameter, you must ensure that the
constellation vector is already in set-partitioned order. Otherwise, the block might
produce unexpected or suboptimal results.

As an example, the diagram below shows one way to devise a set-partitioned order for
the points for an 8-PSK signal constellation. The figure at the top of the tree is the entire
8-PSK signal constellation, while the eight figures at the bottom of the tree contain
one constellation point each. Each level of the tree corresponds to a different bit in a
binary sequence (b3,b2,b1), while each branch in a given level of the tree corresponds to
a particular value for that bit. Listing the constellation points using the sequence at the
bottom of the tree leads to the vector

exp(2*pi*j*[0 4 2 6 1 5 3 7]/8)

which is a valid value for the Signal constellation parameter in this block.

2 Blocks — Alphabetical List

2-376

b3=1b3=1b3=1b3=1 b3=0

b2=1b2=0

b1=1b1=0

b2=1b2=0

b3=0b3=0b3=0

000 100 010 110 001 101 011 111

For other examples of signal constellations in set-partitioned order, see [1] or the
reference pages for the M-PSK TCM Encoder and Rectangular QAM TCM Encoder
blocks.

Coding Gains

Coding gains of 3 to 6 decibels, relative to the uncoded case can be achieved in the
presence of AWGN with multiphase trellis codes [3].

 General TCM Encoder

2-377

Dialog Box

Trellis structure
MATLAB structure that contains the trellis description of the convolutional encoder.

Operation mode
In Continuous mode (default setting), the block retains the encoder states at the
end of each frame, for use with the next frame.

In Truncated (reset every frame) mode, the block treats each frame
independently. I.e., the encoder states are reset to all-zeros state at the start of each
frame.

In Terminate trellis by appending bits mode, the block treats each frame
independently. For each input frame, extra bits are used to set the encoder states to
all-zeros state at the end of the frame. The output length is given by y n x s k= ◊ +() / ,
where x is the number of input bits, and s = -constraint length 1 (or, in the case

2 Blocks — Alphabetical List

2-378

of multiple constraint lengths, s =sum(ConstraintLength(i)-1)). The block
supports this mode for column vector input signals.

In Reset on nonzero input via port mode, the block has an additional input
port, labeled Rst. When the Rst input is nonzero, the encoder resets to the all-zeros
state.

Signal constellation
A complex vector that lists the points in the signal constellation in set-partitioned
order.

Output data type
The output type of the block can be specified as a single or double. By default, the
block sets this to double.

Supported Data Types

Port Supported Data Types

Input • Double-precision floating point
• Single-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers
• ufix(1)

Output • Double-precision floating point
• Single-precision floating point

Pair Block

General TCM Decoder

See Also

M-PSK TCM Encoder, Rectangular QAM TCM Encoder, poly2trellis

 General TCM Encoder

2-379

References

[1] Biglieri, E., D. Divsalar, P. J. McLane, and M. K. Simon, Introduction to Trellis-Coded
Modulation with Applications, New York, Macmillan, 1991.

[2] Proakis, John G., Digital Communications, Fourth edition, New York, McGraw-Hill,
2001.

[3] Ungerboeck, G., “Channel Coding with Multilevel/Phase Signals”, IEEE Trans. on
Information Theory, Vol IT28, Jan. 1982, pp. 55–67.

2 Blocks — Alphabetical List

2-380

GMSK Demodulator Baseband

Demodulate GMSK-modulated data

Library

CPM, in Digital Baseband sublibrary of Modulation

Description

The GMSK Demodulator Baseband block uses a Viterbi algorithm to demodulate a signal
that was modulated using the Gaussian minimum shift keying method. The input to this
block is a baseband representation of the modulated signal.

Integer-Valued Signals and Binary-Valued Signals

This block accepts a scalar-valued or column vector input signal with a data type of
single or double. If you set the Output type parameter to Integer, then the block
produces values of 1 and -1. If you set the Output type parameter to Bit, then the block
produces values of 0 and 1.

Single-Rate Processing

In single-rate processing mode, the input and output signals have the same port sample
time. The block implicitly implements the rate change by making a size change at the
output when compared to the input. The input width must be an integer multiple of the
Samples per symbol parameter value, and the input can be a column vector.

• When you set Output type to Bit, the output width is two times the number of input
symbols.

• When you set Output type to Integer, the output width is the number of input
symbols.

 GMSK Demodulator Baseband

2-381

For a column vector input signal, the width of the input equals the product of the number
of symbols and the value for the Samples per symbol parameter.

Multirate Processing

In multirate processing mode, the input and output signals have different port sample
times. The input must be a scalar. The output symbol time is the product of the input
sample time and the Samples per symbol parameter value.

• When you set Output type to Bit, the output width equals the number of bits per
symbol.

• When you set Output type to Integer, the output is a scalar.

Traceback Depth and Output Delays

Internally, this block creates a trellis description of the modulation scheme and uses the
Viterbi algorithm. The Traceback depth parameter, D, in this block is the number of
trellis branches used to construct each traceback path. D influences the output delay,
which is the number of zero symbols that precede the first meaningful demodulated
value in the output.

• When you set the Rate options parameter to Allow multirate processing, and
the model uses a variable-step solver or a fixed-step solver with the Tasking Mode
parameter set to SingleTasking, then the delay consists of D+1 zero symbols.

• When you set the Rate options parameter to Enforce single-rate processing,
then the delay consists of D zero symbols.

The optimal Traceback depth parameter value is dependent on minimum squared
Euclidean distance calculations. Alternatively, a typical value, dependent on the
number of states, can be chosen using the “five-times-the-constraint-length” rule,
which corresponds to 5 2◊ log ()numStates . The number of states is determined by the
following equation:

numStates
p for evenm

p for odd m

L

L
=

◊

◊

Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂

-

-

2

2 2

1

1

()

()

,

,

where:

2 Blocks — Alphabetical List

2-382

• h = m/p is the modulation index in proper rational form

• m = numerator of modulation index
• p = denominator of modulation index

• L is the Pulse length

Dialog Box

Output type

 GMSK Demodulator Baseband

2-383

Determines whether the output consists of bipolar or binary values.
BT product

The product of bandwidth and time.
Pulse length (symbol intervals)

The length of the frequency pulse shape.
Symbol prehistory

The data symbols the modulator uses before the start of the simulation.
Phase offset (rad)

The initial phase of the modulated waveform.
Samples per symbol

The number of input samples that represent each modulated symbol, which must be
a positive integer. For more information, see “Upsample Signals and Rate Changes”
in Communications System Toolbox User's Guide.

Rate options
Select the rate processing method for the block.

• Enforce single-rate processing — When you select this option, the input
and output signals have the same port sample time. The block implements the
rate change by making a size change at the output when compared to the input.
The output width is the number of symbols (which is given by dividing the input
length by the Samples per symbol parameter value when the Output type
parameter is set to Integer).

• Allow multirate processing — When you select this option, the input and
output signals have different port sample times. The output period is the same as
the symbol period and equals the product of the input period and the Samples
per symbol parameter value.

Note: The option Inherit from input (this choice will be removed
- see release notes) will be removed in a future release. See “Frame-
Based Processing” in the Communications System Toolbox Release Notes for more
information.

For more information, see Single-Rate Processing and Multirate Processing in the
Description section of this page.

Traceback depth

2 Blocks — Alphabetical List

2-384

The number of trellis branches that the GMSK Demodulator Baseband block uses to
construct each traceback path.

Output data type
The output data type can be boolean, int8, int16, int32, or double.

Supported Data Types

Port Supported Data Types

Input • Double-precision floating point
• Single-precision floating point

Output • Double-precision floating point
• Boolean (When Output type set to Bit)
• 8-, 16-, and 32-bit signed integers (When Output type set to Integer)

Pair Block

GMSK Modulator Baseband

See Also

CPM Demodulator Baseband, Viterbi Decoder

References

[1] Anderson, John B., Tor Aulin, and Carl-Erik Sundberg. Digital Phase Modulation.
New York: Plenum Press, 1986.

 GMSK Modulator Baseband

2-385

GMSK Modulator Baseband
Modulate using Gaussian minimum shift keying method

Library

CPM, in Digital Baseband sublibrary of Modulation

Description

The GMSK Modulator Baseband block modulates using the Gaussian minimum shift
keying method. The output is a baseband representation of the modulated signal.

The BT product parameter represents bandwidth multiplied by time. This parameter
is a nonnegative scalar. It is used to reduce the bandwidth at the expense of increased
intersymbol interference. The Pulse length parameter measures the length of the
Gaussian pulse shape, in symbol intervals. For an explanation of the pulse shape, see
the work by Anderson, Aulin, and Sundberg among the references listed below. The
frequency pulse shape is defined by the following equations.

g t
T

Q B

t
T

Q B

t
T

b b()
ln() ln()

=
-È

Î

Í
Í
Í

˘

˚

˙
˙
˙

-
+È

Î

Í
Í
Í

˘

˚

˙
˙
˙

Ï
1

2
2 2

2
2 2

2
p pÌÌ

ÔÔ

Ó
Ô
Ô

¸

˝
ÔÔ

˛
Ô
Ô

=
•

-ÚQ t e d

t

()
/1

2

2
2

p
tt

For this block, an input symbol of 1 causes a phase shift of π/2 radians.

The group delay is the number of samples between the start of a filter's response and
its peak. The group delay that the block introduces is Pulse length/2 * Samples per
symbol (using a reference of output sample periods). For GMSK, Pulse length denotes
the truncated frequency pulse length in symbols. The net delay effect at the receiver

2 Blocks — Alphabetical List

2-386

(demodulator) is due to the Traceback depth parameter, which in most cases would be
larger than the group delay.

Integer-Valued Signals and Binary-Valued Signals

When you set the Input type parameter to Integer, then the block accepts values of 1
and -1.

When you set the Input type parameter to Bit, then the block accepts values of 0 and 1.

This block accepts a scalar-valued or column vector input signal. For a column vector
input signal, the width of the output equals the product of the number of symbols and the
value for the Samples per symbol parameter.

Single-Rate Processing

In single-rate processing mode, the input and output signals have the same port sample
time. The block implicitly implements the rate change by making a size change at the
output when compared to the input. In this mode, the input to the block can be multiple
symbols.

• When you set Input type to Integer, the input can be a column vector, the length of
which is the number of input symbols.

• When you set Input type to Bit, the input width must be an integer multiple of 2.

The output width equals the product of the number of input symbols and the Samples
per symbol parameter value.

Multirate Processing

In multirate processing mode, the input and output signals have different port sample
times. In this mode, the input to the block must be one symbol.

• When you set Input type to Integer, the input must be a scalar.
• When you set Input type to Bit, the input width must equal the number of bits per

symbol.

The output sample time equals the symbol period divided by the Samples per symbol
parameter value.

 GMSK Modulator Baseband

2-387

Dialog Box

Input type
Indicates whether the input consists of bipolar or binary values.

BT product
The product of bandwidth and time.

The block uses this parameter to reduce bandwidth at the expense of increased
intersymbol interference. Enter a nonnegative scalar value for this parameter.

Pulse length (symbol intervals)
The length of the frequency pulse shape.

Symbol prehistory

2 Blocks — Alphabetical List

2-388

A scalar or vector value that specifies the data symbols the block uses before the start
of the simulation, in reverse chronological order. If it is a vector, then its length must
be one less than the Pulse length parameter.

Phase offset (rad)
The initial phase of the output waveform, measured in radians.

Samples per symbol
The number of output samples that the block produces for each integer or bit in the
input, which must be a positive integer. For all non-binary schemes, as defined by the
pulse shapes, this value must be greater than 1.

For more information, see “Upsample Signals and Rate Changes” in Communications
System ToolboxUser's Guide.

Rate options
Select the rate processing option for the block.

• Enforce single-rate processing — When you select this option, the input
and output signals have the same port sample time. The block implements the
rate change by making a size change at the output when compared to the input.
The output width equals the product of the number of symbols and the Samples
per symbol parameter value.

• Allow multirate processing — When you select this option, the input and
output signals have different port sample times. The output sample time equals
the symbol period divided by the Samples per symbol parameter value.

Note: The option Inherit from input (this choice will be removed
- see release notes) will be removed in a future release. See “Frame-
Based Processing” in the Communications System Toolbox Release Notes for more
information.

Output data type
The output type of the block can be specified as a single or double. By default, the
block sets this to double.

Supported Data Types
Port Supported Data Types

Input • Double-precision floating point

 GMSK Modulator Baseband

2-389

Port Supported Data Types

• Boolean (When Input type set to Bit)
• 8-, 16-, and 32-bit signed integers (When Input type set to Integer)

Output • Double-precision floating point
• Single-precision floating point

Pair Block

GMSK Demodulator Baseband

See Also

CPM Modulator Baseband

References

[1] Anderson, John B., Tor Aulin, and Carl-Erik Sundberg. Digital Phase Modulation.
New York: Plenum Press, 1986.

2 Blocks — Alphabetical List

2-390

Gold Sequence Generator

Generate Gold sequence from set of sequences

Library

Sequence Generators sublibrary of Comm Sources

Description

The Gold Sequence Generator block generates a Gold sequence. Gold sequences form a
large class of sequences that have good periodic cross-correlation properties.

This block can output sequences that vary in length during simulation. For more
information about variable-size signals, see “Variable-Size Signal Basics” in the Simulink
documentation.

Gold Sequences

The Gold sequences are defined using a specified pair of sequences u and v, of period
N = 2n - 1, called a preferred pair, as defined in “Preferred Pairs of Sequences” on page
2-393 below. The set G(u, v) of Gold sequences is defined by

G u v u v u v u Tv u T v u T v
N(,) { , , , , , ..., }= ≈ ≈ ≈ ≈

-2 1

where T represents the operator that shifts vectors cyclically to the left by one place, and
≈ represents addition modulo 2. Note that G(u,v) contains N + 2 sequences of period
N. The Gold Sequence Generator block outputs one of these sequences according to the
block's parameters.

Gold sequences have the property that the cross-correlation between any two, or between
shifted versions of them, takes on one of three values: -t(n), -1, or t(n) - 2, where

 Gold Sequence Generator

2-391

t n
n

n

n

n
()

()/

()/
=

+

+

Ï
Ì
Ô

ÓÔ

+

+

1 2

1 2

1 2

2 2

 even

 odd

The Gold Sequence Generator block uses two PN Sequence Generator blocks to generate
the preferred pair of sequences, and then XORs these sequences to produce the output
sequence, as shown in the following diagram.

You can specify the preferred pair by the Preferred polynomial [1] and Preferred
polynomial [2] parameters in the dialog for the Gold Sequence Generator block. These
polynomials, both of which must have degree n, describe the shift registers that the PN
Sequence Generator blocks use to generate their output. For more details on how these
sequences are generated, see the reference page for the PN Sequence Generator block.
You can specify the preferred polynomials using either of the following formats:

• A vector that lists the coefficients of the polynomial in descending order of powers.
The first and last entries must be 1. Note that the length of this vector is one more
than the degree of the generator polynomial.

• A vector containing the exponents of z for the nonzero terms of the polynomial in
descending order of powers. The last entry must be 0.

For example, the vectors [5 2 0] and [1 0 0 1 0 1] both represent the polynomial z5

+ z2 + 1.

The following table provides a short list of preferred pairs.

n N Preferred Polynomial[1] Preferred Polynomial[2]

5 31 [5 2 0] [5 4 3 2 0]

2 Blocks — Alphabetical List

2-392

n N Preferred Polynomial[1] Preferred Polynomial[2]

6 63 [6 1 0] [6 5 2 1 0]

7 127 [7 3 0] [7 3 2 1 0]

9 511 [9 4 0] [9 6 4 3 0]

10 1023 [10 3 0] [10 8 3 2 0]

11 2047 [11 2 0] [11 8 5 2 0]

The Initial states[1] and Initial states[2] parameters are vectors specifying the initial
values of the registers corresponding to Preferred polynomial [1] and Preferred
polynomial [2], respectively. These parameters must satisfy these criteria:

• All elements of the Initial states[1] and Initial states[2] vectors must be binary
numbers.

• The length of the Initial states[1] vector must equal the degree of the Preferred
polynomial[1], and the length of the Initial states[2] vector must equal the degree
of the Preferred polynomial[2].

Note At least one element of the Initial states vectors must be nonzero in order for
the block to generate a nonzero sequence. That is, the initial state of at least one of
the registers must be nonzero.

The Sequence index parameter specifies which sequence in the set G(u, v) of Gold
sequences the block outputs. The range of Sequence index is [-2, -1, 0, 1, 2, ..., 2n–2].
The correspondence between Sequence index and the output sequence is given in the
following table.

Sequence Index Output Sequence

-2 u
-1 v
0 u v≈

1 u Tv≈

2
u T v≈

2

... ...

 Gold Sequence Generator

2-393

Sequence Index Output Sequence

2n-2
u T v

n

≈
-2 2

You can shift the starting point of the Gold sequence with the Shift parameter, which is
an integer representing the length of the shift.

You can use an external signal to reset the values of the internal shift register to the
initial state by selecting Reset on nonzero input. This creates an input port for
the external signal in the Gold Sequence Generator block. The way the block resets
the internal shift register depends on whether its output signal and the reset signal
are sample-based or frame-based. The following example demonstrates the possible
alternatives. See “Example: Resetting a Signal” on page 2-763 for an example.

Preferred Pairs of Sequences

The requirements for a pair of sequences u, v of period N = 2n–1 to be a preferred pair are
as follows:

• n is not divisible by 4
• v = u[q], where

• q is odd
• q = 2k+1 or q = 22k–2k+1
• v is obtained by sampling every qth symbol of u

•
gcd(,)

mod

mod
n k

n

n
=

∫

∫

Ï
Ì
Ó

1 1 2

2 2 4

2 Blocks — Alphabetical List

2-394

Dialog Box

Preferred polynomial[1]
Vector specifying the polynomial for the first sequence of the preferred pair.

Initial states[1]

 Gold Sequence Generator

2-395

Vector of initial states of the shift register for the first sequence of the preferred pair.
Preferred polynomial[2]

Vector specifying the polynomial for the second sequence of the preferred pair.
Initial states[2]

Vector of initial states of the shift register for the second sequence of the preferred
pair.

Sequence index
Integer specifying the index of the output sequence from the set of sequences.

Shift
Integer scalar that determines the offset of the Gold sequence from the initial time.

Output variable-size signals
Select this check box if you want the output sequences to vary in length during
simulation. The default selection outputs fixed-length signals.

Maximum output size source
Specify how the block defines maximum output size for a signal.

• When you select Dialog parameter, the value you enter in the Maximum
output size parameter specifies the maximum size of the output. When you make
this selection, the oSiz input port specifies the current size of the output signal
and the block output inherits sample time from the input signal. The input value
must be less than or equal to the Maximum output size parameter.

• When you select Inherit from reference port, the block output inherits
sample time, maximum size, and current size from the variable-sized signal at the
Ref input port.

This parameter only appears when you select Output variable-size signals. The
default selection is Dialog parameter.

Maximum output size
Specify a two-element row vector denoting the maximum output size for the block.
The second element of the vector must be 1 For example, [10 1] gives a 10-by-1
maximum sized output signal. This parameter only appears when you select Output
variable-size signals.

Sample time
Period of each element of the output signal.

Frame-based outputs

2 Blocks — Alphabetical List

2-396

Determines whether the output is frame-based or sample-based.
Samples per frame

The number of samples in a frame-based output signal. This field is active only if you
select Frame-based outputs.

Reset on nonzero input
When selected, you can specify an input signal that resets the internal shift registers
to the original values of the Initial states parameter

Output data type
The output type of the block can be specified as boolean, double or Smallest
unsigned integer. By default, the block sets this to double.

When the parameter is set to Smallest unsigned integer, the output data type
is selected based on the settings used in the “Hardware Implementation pane” of the
Configuration Parameters dialog box of the model. If ASIC/FPGA is selected in the
Hardware Implementation pane, the output data type is the ideal minimum one-bit
size, i.e., ufix(1). For all other selections, it is an unsigned integer with the smallest
available word length large enough to fit one bit, usually corresponding to the size of
a char (e.g., uint8).

See Also

Kasami Sequence Generator, PN Sequence Generator

References

[1] Proakis, John G., Digital Communications, Third edition, New York, McGraw Hill,
1995.

[2] Gold, R., "Maximal Recursive Sequences with 3-valued Recursive Cross-Correlation
Functions," IEEE Trans. Infor. Theory, Jan., 1968, pp. 154-156.

[3] Gold, R., "Optimal Binary Sequences for Spread Spectrum Multiplexing, IEEE Trans.
Infor. Theory, Oct., 1967, pp. 619-621.

[4] Sarwate, D.V., and M.B. Pursley, "Crosscorrelation Properties of Pseudorandom and
Related Sequences," Proc. IEEE, Vol. 68, No. 5, May, 1980, pp. 583-619.

 Gold Sequence Generator

2-397

[5] Dixon, Robert, Spread Spectrum Systems with Commercial Applications, Third
Edition, Wiley–Interscience, 1994.

2 Blocks — Alphabetical List

2-398

Hadamard Code Generator

Generate Hadamard code from orthogonal set of codes

Library

Sequence Generators sublibrary of Comm Sources

Description

The Hadamard Code Generator block generates a Hadamard code from a Hadamard
matrix, whose rows form an orthogonal set of codes. Orthogonal codes can be used for
spreading in communication systems in which the receiver is perfectly synchronized with
the transmitter. In these systems, the despreading operation is ideal, as the codes are
decorrelated completely.

The Hadamard codes are the individual rows of a Hadamard matrix. Hadamard matrices
are square matrices whose entries are +1 or -1, and whose rows and columns are
mutually orthogonal. If N is a nonnegative power of 2, the N-by-N Hadamard matrix,
denoted HN, is defined recursively as follows.

H

H
H H

H H
N

N N

N N

1

2

1= []

=
-

È

Î
Í

˘

˚
˙

The N-by-N Hadamard matrix has the property that
HNHN

T = NIN

where IN is the N-by-N identity matrix.

The Hadamard Code Generator block outputs a row of HN. The output is bipolar. You
specify the length of the code, N, by the Code length parameter. The Code length must

 Hadamard Code Generator

2-399

be a power of 2. You specify the index of the row of the Hadamard matrix, which is an
integer in the range [0, 1, ... , N-1], by the Code index parameter.

Dialog Box

Code length
A positive integer that is a power of two specifying the length of the Hadamard code.

Code index

2 Blocks — Alphabetical List

2-400

An integer between 0 and N-1, where N is the Code length, specifying a row of the
Hadamard matrix.

Sample time
A positive real scalar specifying the sample time of the output signal.

Frame-based outputs
Determines whether the output is frame-based or sample-based.

Samples per frame
The number of samples in a frame-based output signal. This field is active only if you
select Frame-based outputs.

Output data type
The output type of the block can be specified as an int8 or double. By default, the
block sets this to double.

Examples

Orthogonal Spreading - Single-User vs. Two-User Comparison

This example model compares a single-user system vs. a two-user data transmission
system with the two data streams being independently spread by different orthogonal
codes.

The model uses random binary data which is BPSK modulated (real), spread by
Hadamard codes of length 64 and then transmitted over an AWGN channel. The
receiver consists of a despreader followed by a BPSK demodulator. Open the model here:
hadamard_block_example1.

modelname = 'hadamard_block_example1';

open_system(modelname);

sim(modelname);

 Hadamard Code Generator

2-401

For the same data and channel settings, the model calculates the performance for one-
and two-user transmissions.

Note that for the individual users, the error rates are exactly the same in both cases.
This shows that perfect despreading is possible due to the ideal cross-correlation
properties of the Hadamard codes.

To experiment with this model further, specify a different Code length or Code index
for the individual users to examine the variations in relative performance.

2 Blocks — Alphabetical List

2-402

close_system(modelname, 0);

Orthogonal Spreading - Multipath Scenario

This example model considers a single-user system in which the signal is transmitted
over multiple paths. This is similar to a mobile channel environment where the signals
are received over multiple paths, each of which have different amplitudes and delays. To
take advantage of the multipath transmission, the receiver employs diversity reception
which combines the independent paths coherently.

Note, to keep the system simple, no shadowing effects are considered and the receiver
has a priori knowledge of the number of paths and their respective delays. Open the
model here: hadamard_block_example2.

modelname = 'hadamard_block_example2';

open_system(modelname);

sim(modelname);

For the data transmission with the same spreading code that was used in the first
example, we now see deterioration in performance when compared with that example
(compare the 180 errors with 81 in the previous case). This can be attributed to the non-
ideal auto-correlation values of the orthogonal spreading codes chosen, which prevents
perfect resolution of the individual paths. Consequently, we don't see the merits of
diversity combining.

 Hadamard Code Generator

2-403

To experiment with this model further, try selecting other path delays to see how the
performance varies for the same code. Also try different codes with the same delays.

close_system(modelname, 0);

See Also

OVSF Code Generator, Walsh Code Generator

2 Blocks — Alphabetical List

2-404

Hamming Decoder

Decode Hamming code to recover binary vector data

Library

Block sublibrary of Error Detection and Correction

Description

The Hamming Decoder block recovers a binary message vector from a binary Hamming
codeword vector. For proper decoding, the parameter values in this block should match
those in the corresponding Hamming Encoder block.

If the Hamming code has message length K and codeword length N, then N must have
the form 2M-1 for some integer M greater than or equal to 3. Also, K must equal N-M.

This block accepts a column vector input signal of length N. The output signal is a
column vector of length K.

The coding scheme uses elements of the finite field GF(2M). You can either specify the
primitive polynomial that the algorithm should use, or you can rely on the default
setting:

• To use the default primitive polynomial, simply enter N and K as the first and second
dialog parameters, respectively. The algorithm uses gfprimdf(M) as the primitive
polynomial for GF(2M).

• To specify the primitive polynomial, enter N as the first parameter and a binary
vector as the second parameter. The vector represents the primitive polynomial
by listing its coefficients in order of ascending exponents. You can create primitive
polynomials using the Communications System Toolbox gfprimfd function.

For information about the data types each block port supports, see the “Supported Data
Type” on page 2-405 table on this page.

 Hamming Decoder

2-405

Dialog Box

Codeword length N
The codeword length N, which is also the input vector length.

Message length K, or M-degree primitive polynomial
Either the message length, which is also the output vector length; or a binary vector
that represents a primitive polynomial for GF(2M).

Supported Data Type

Port Supported Data Types

In • Double-precision floating point
• Single-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers
• Fixed-point

2 Blocks — Alphabetical List

2-406

Port Supported Data Types

Out • Double-precision floating point
• Single-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers
• Fixed-point

Pair Block

Hamming Encoder

See Also

hammgen (Communications System Toolbox)

 Hamming Encoder

2-407

Hamming Encoder

Create Hamming code from binary vector data

Library

Block sublibrary of Error Detection and Correction

Description

The Hamming Encoder block creates a Hamming code with message length K and
codeword length N. The number N must have the form 2M-1, where M is an integer
greater than or equal to 3. Then K equals N-M.

This block accepts a column vector input signal of length K. The output signal is a
column vector of length N.

The coding scheme uses elements of the finite field GF(2M). You can either specify the
primitive polynomial that the algorithm should use, or you can rely on the default
setting:

• To use the default primitive polynomial, simply enter N and K as the first and second
dialog parameters, respectively. The algorithm uses gfprimdf(M) as the primitive
polynomial for GF(2M).

• To specify the primitive polynomial, enter N as the first parameter and a binary
vector as the second parameter. The vector represents the primitive polynomial
by listing its coefficients in order of ascending exponents. You can create primitive
polynomials using the Communications System Toolbox gfprimfd function.

For information about the data types each block port supports, see the “Supported Data
Type” on page 2-408 table on this page.

2 Blocks — Alphabetical List

2-408

Dialog Box

Codeword length N
The codeword length, which is also the output vector length.

Message length K, or M-degree primitive polynomial
Either the message length, which is also the input vector length; or a binary vector
that represents a primitive polynomial for GF(2M).

Supported Data Type

Port Supported Data Types

In • Double-precision floating point
• Single-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers
• Fixed-point

 Hamming Encoder

2-409

Port Supported Data Types

Out • Double-precision floating point
• Single-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers
• Fixed-point

Pair Block

Hamming Decoder

See Also

hammgen (Communications System Toolbox)

2 Blocks — Alphabetical List

2-410

Helical Deinterleaver

Restore ordering of symbols permuted by helical interleaver

Library

Convolutional sublibrary of Interleaving

Description

The Helical Deinterleaver block permutes the symbols in the input signal by placing
them in an array row by row and then selecting groups in a helical fashion to send to the
output port.

The block uses the array internally for its computations. If C is the Number of columns
in helical array parameter, then the array has C columns and unlimited rows. If N is
the Group size parameter, then the block accepts an input of length C·N at each time
step and inserts them into the next N rows of the array. The block also places the Initial
condition parameter into certain positions in the top few rows of the array (not only to
accommodate the helical pattern but also to preserve the vector indices of symbols that
pass through the Helical Interleaver and Helical Deinterleaver blocks in turn).

The output consists of consecutive groups of N symbols. Counting from the beginning of
the simulation, the block selects the kth output group in the array from column k mod C.
The selection is helical because of the reduction modulo C and because the first symbol in
the kth group is in row 1+(k-1)*s, where s is the Helical array step size parameter.

This block accepts a column vector input signal containing C·N elements.

The block can accept the data types int8, uint8, int16, uint16, int32, uint32,
boolean, single, double, and fixed-point. The data type of this output will be the same
as that of the input signal.

 Helical Deinterleaver

2-411

Delay of Interleaver-Deinterleaver Pair

After processing a message with the Helical Interleaver block and the Helical
Deinterleaver block, the deinterleaved data lags the original message by

CN
s C

N

()-È

Í
Í

˘

˙
˙

1

samples. Before this delay elapses, the deinterleaver output is either the Initial
condition parameter in the Helical Deinterleaver block or the Initial condition
parameter in the Helical Interleaver block.

If your model incurs an additional delay between the interleaver output and the
deinterleaver input, then the restored sequence lags the original sequence by the sum of
the additional delay and the amount in the formula above. For proper synchronization,
the delay between the interleaver and deinterleaver must be m· C · N for some
nonnegative integer m. You can use the DSP System Toolbox Delay block to adjust delays
manually, if necessary.

2 Blocks — Alphabetical List

2-412

Dialog Box

Number of columns in helical array
The number of columns, C, in the helical array.

Group size
The size, N, of each group of symbols. The input width is C times N.

Helical array step size
The number of rows of separation between consecutive output groups as the block
selects them from their respective columns of the helical array.

 Helical Deinterleaver

2-413

Initial conditions
A scalar that fills the array before the first input is placed.

Pair Block

Helical Interleaver

See Also

General Multiplexed Deinterleaver

References

[1] Berlekamp, E. R. and P. Tong. "Improved Interleavers for Algebraic Block Codes." U.
S. Patent 4559625, Dec. 17, 1985.

2 Blocks — Alphabetical List

2-414

Helical Interleaver

Permute input symbols using helical array

Library

Convolutional sublibrary of Interleaving

Description

The Helical Interleaver block permutes the symbols in the input signal by placing them
in an array in a helical fashion and then sending rows of the array to the output port.

The block uses the array internally for its computations. If C is the Number of columns
in helical array parameter, then the array has C columns and unlimited rows. If N is
the Group size parameter, then the block accepts an input of length C·N at each time
step and partitions the input into consecutive groups of N symbols. Counting from the
beginning of the simulation, the block places the kth group in the array along column
k mod C. The placement is helical because of the reduction modulo C and because the
first symbol in the kth group is in row 1+(k-1)· s, where s is the Helical array step
size parameter. Positions in the array that do not contain input symbols have default
contents specified by the Initial condition parameter.

The block sends C·N symbols from the array to the output port by reading the next
N rows sequentially. At a given time step, the output symbols might be the Initial
condition parameter value, symbols from that time step's input vector, or symbols left
in the array from a previous time step.

This block accepts a column vector input signal containing C·N elements.

The block can accept the data types int8, uint8, int16, uint16, int32, uint32,
boolean, single, double, and fixed-point. The data type of this output will be the same
as that of the input signal.

 Helical Interleaver

2-415

Dialog Box

Number of columns in helical array
The number of columns, C, in the helical array.

Group size
The size, N, of each group of input symbols. The input width is C times N.

Helical array step size
The number of rows of separation between consecutive input groups in their
respective columns of the helical array.

2 Blocks — Alphabetical List

2-416

Initial conditions
A scalar that fills the array before the first input is placed.

Examples

Suppose that C = 3, N = 2, the Helical array step size parameter is 1, and the Initial
condition parameter is -1. After receiving inputs of [1:6]', [7:12]', and [13:18]',
the block's internal array looks like the schematic below. The coloring of the inputs and
the array indicate how the input symbols are placed within the array. The outputs at
the first three time steps are [1; -1; -1; 2; 3; -1], [7; 4; 5; 8; 9; 6], and
[13; 10; 11; 14; 15; 12]. (The outputs are not color-coded in the schematic.)

Inputs

. . .

. . .

. . .

Outputs from successive
rows of array

Block's Internal Array

13

14

13

14

15

16

15

16

17

18
17

18

7

8
7

8
9

10
9

10
11

12

11

12

1
1 -1 -1

-1
2

2

3

4

3

4

5

6

5

6

13

10

11

14

15

12

7

4

5

8

9

6

1

-1

-1

2

3

-1

Pair Block

Helical Deinterleaver

See Also

General Multiplexed Interleaver

 Helical Interleaver

2-417

References

[1] Berlekamp, E. R. and P. Tong. "Improved Interleavers for Algebraic Block Codes." U.
S. Patent 4559625, Dec. 17, 1985.

2 Blocks — Alphabetical List

2-418

Ideal Rectangular Pulse Filter

Shape input signal using ideal rectangular pulses

Library

Comm Filters

Description

The Ideal Rectangular Pulse Filter block upsamples and shapes the input signal using
rectangular pulses. The block replicates each input sample N times, where N is the
Pulse length parameter. After replicating input samples, the block can also normalize
the output signal and/or apply a linear amplitude gain.

If the Pulse delay parameter is nonzero, then the block outputs that number of zeros at
the beginning of the simulation, before starting to replicate any of the input values.

This block accepts a scalar, column vector, or matrix input signal. For information about
the data types each block port supports, see the “Supported Data Type” on page 2-424
table on this page.

The vector size, the pulse length, and the pulse delay are mutually independent. They do
not need to satisfy any conditions with respect to each other.

Single-Rate Processing

When you set the Rate options parameter to Enforce single-rate processing,
the input and output of the block have the same sample rate. To generate the output
while maintaining the input sample rate, the block resamples the data in each column
of the input such that the frame size of the output (Mo) is L times larger than that of the
input (Mo = Mi*L), where L is the Pulse length (number of samples) parameter value.

 Ideal Rectangular Pulse Filter

2-419

Multirate Processing

When you set the Rate options parameter to Allow multirate processing, the
input and output of the block are the same size. However, the sample rate of the output
is L times faster than that of the input (i.e. the output sample time is 1/N times the input
sample time). When the block is in multirate processing mode, you must also specify a
value for the Input processing parameter:

• When you set the Input processing parameter to Elements as channels
(sample based), the block treats an M-by-N matrix input as M*N independent
channels, and processes each channel over time. The output sample period (Tso) is L
times shorter than the input sample period (Tso = Tsi/L), while the input and output
sizes remain identical.

• When you set the Input processing parameter to Columns as channels (frame
based), the block treats an Mi-by-N matrix input as N independent channels. The
block processes each column of the input over time by keeping the frame size constant
(Mi=Mo), while making the output frame period (Tfo) L times shorter than the input
frame period (Tfo = Tfi/L).

Normalization Methods

You determine the block's normalization behavior using the Normalize output signal
and Linear amplitude gain parameters.

• If you clear Normalize output signal, then the block multiplies the set of replicated
values by the Linear amplitude gain parameter. This parameter must be a scalar.

• If you select Normalize output signal, then the Normalization method
parameter appears. The block scales the set of replicated values so that one of these
conditions is true:

• The sum of the samples in each pulse equals the original input value that the
block replicated.

• The energy in each pulse equals the energy of the original input value that the
block replicated. That is, the sum of the squared samples in each pulse equals the
square of the input value.

After the block applies the scaling specified in the Normalization method parameter,
it multiplies the scaled signal by the constant scalar value specified in the Linear
amplitude gain parameter.

2 Blocks — Alphabetical List

2-420

The output is scaled by N . If the output of this block feeds the input to the AWGN
Channel block, specify the AWGN signal power parameter to be 1/N.

Dialog Box

Pulse length (number of samples)
The number of samples in each output pulse; that is, the number of times the block
replicates each input value when creating the output signal.

 Ideal Rectangular Pulse Filter

2-421

Pulse delay (number of samples)
The number of zeros that appear in the output at the beginning of the simulation,
before the block replicates any input values.

Input processing
Specify how the block processes the input signal. You can set this parameter to one of
the following options:

• Columns as channels (frame based) — When you select this option, the
block treats each column of the input as a separate channel.

• Elements as channels (sample based) — When you select this option, the
block treats each element of the input as a separate channel.

Note: The Inherited (this choice will be removed - see release
notes) option will be removed in a future release. See “Frame-Based Processing” in
the Communications System Toolbox Release Notes for more information.

Rate options
Specify the method by which the block should upsample and shape the input signal.
You can select one of the following options:

• Enforce single-rate processing — When you select this option, the block
maintains the input sample rate, and processes the signal by increasing the
output frame size by a factor of L. To select this option, you must set the Input
processing parameter to Columns as channels (frame based).

• Allow multirate processing — When you select this option, the block
processes the signal such that the output sample rate is L times faster than the
input sample rate.

Normalize output signal
If you select this, then the block scales the set of replicated values before applying the
linear amplitude gain.

Normalization method
The quantity that the block considers when scaling the set of replicated values.
Choices are Sum of samples and Energy per pulse. This field appears only if
you select Normalize method.

Linear amplitude gain

2 Blocks — Alphabetical List

2-422

A positive scalar used to scale the output signal.

Rounding mode
Use this parameter to specify the rounding method to be used when the result of a
fixed-point calculation does not map exactly to a number representable by the data
type and scaling storing the result. The filter coefficients do not obey this parameter;
they always round to Nearest.

For more information, see “Rounding Modes” in the DSP System Toolbox
documentation or “Rounding Mode: Simplest” in the Fixed-Point Designer
documentation.

Overflow mode
Select the overflow mode for fixed-point operations. The filter coefficients do not obey
this parameter; they are always saturated.

Coefficients

 Ideal Rectangular Pulse Filter

2-423

Choose how you specify the word length and the fraction length of the filter
coefficients (numerator and/or denominator). See “Filter Structure Diagrams” in DSP
System Toolbox Reference Guide for illustrations depicting the use of the coefficient
data types in this block:

• When you select Same word length as input, the word length of the filter
coefficients match that of the input to the block. In this mode, the fraction length
of the coefficients is automatically set to the binary-point only scaling that
provides you with the best precision possible given the value and word length of
the coefficients.

• When you select Specify word length, you are able to enter the word length
of the coefficients, in bits. In this mode, the fraction length of the coefficients is
automatically set to the binary-point only scaling that provides you with the best
precision possible given the value and word length of the coefficients.

• When you select Binary point scaling, you are able to enter the word length
and the fraction length of the coefficients, in bits. If applicable, you are able to
enter separate fraction lengths for the numerator and denominator coefficients.

• When you select Slope and bias scaling, you are able to enter the word
length, in bits, and the slope of the coefficients. If applicable, you are able to
enter separate slopes for the numerator and denominator coefficients. This block
requires power-of-two slope and a bias of zero.

• The filter coefficients do not obey the Rounding mode and the Overflow mode
parameters; they are always saturated and rounded to Nearest.

Product output
Use this parameter to specify how you would like to designate the product output
word and fraction lengths. See “Filter Structure Diagrams” and “Multiplication Data
Types” in DSP System Toolbox Reference Guide for illustrations depicting the use of
the product output data type in this block:

• When you select Same as input, these characteristics match those of the input
to the block.

• When you select Binary point scaling, you are able to enter the word length
and the fraction length of the product output, in bits.

• When you select Slope and bias scaling, you are able to enter the word
length, in bits, and the slope of the product output. This block requires power-of-
two slope and a bias of zero.

Accumulator

2 Blocks — Alphabetical List

2-424

Use this parameter to specify how you would like to designate the accumulator word
and fraction lengths. See “Filter Structure Diagrams” and “Multiplication Data
Types” for illustrations depicting the use of the accumulator data type in this block:

• When you select Same as input, these characteristics match those of the input
to the block.

• When you select Same as product output, these characteristics match those
of the product output.

• When you select Binary point scaling, you are able to enter the word length
and the fraction length of the accumulator, in bits.

• When you select Slope and bias scaling, you are able to enter the word
length, in bits, and the slope of the accumulator. This block requires power-of-two
slope and a bias of zero.

Output
Choose how you specify the output word length and fraction length:

• When you select Same as input, these characteristics match those of the input
to the block.

• When you select Same as accumulator, these characteristics match those of the
accumulator.

• When you select Binary point scaling, you are able to enter the word length
and the fraction length of the output, in bits.

• When you select Slope and bias scaling, you are able to enter the word
length, in bits, and the slope of the output. This block requires power-of-two slope
and a bias of zero.

Lock scaling against changes by the autoscaling tool
Select this check box to prevent any fixed-point scaling you specify in the block mask
from being overridden by the autoscaling tool in the Fixed-Point Tool.

Supported Data Type
Port Supported Data Types

In • Double-precision floating point
• Single-precision floating point
• Fixed-point

 Ideal Rectangular Pulse Filter

2-425

Port Supported Data Types

Out • Double-precision floating point
• Single-precision floating point
• Signed fixed-point

Examples

If Pulse length is 4 and Pulse delay is the scalar 3, then the table below shows how
the block treats the beginning of a ramp (1, 2, 3,...) in several situations. (The values
shown in the table do not reflect vector sizes but merely indicate numerical values.)

Normalization Method, If Any Linear Amplitude Gain First Several Output Values

None (Normalize output
signal cleared)

1 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3,
3, 3, 3,...

None (Normalize output
signal cleared)

10 0, 0, 0, 10, 10, 10, 10, 20,
20, 20, 20, 30, 30, 30, 30,...

Sum of samples 1 0, 0, 0, 0.25, 0.25, 0.25,
0.25, 0.5, 0.5, 0.5, 0.5,
0.75, 0.75, 0.75, 0.75,...,
where 0.25*4=1

Sum of samples 10 0, 0, 0, 2.5, 2.5, 2.5, 2.5,
5, 5, 5, 5, 7.5, 7.5, 7.5,
7.5,...

Energy per pulse 1 0, 0, 0, 0.5, 0.5, 0.5, 0.5,
1.0, 1.0, 1.0, 1.0, 1.5,
1.5, 1.5, 1.5,..., where
(0.5)^2*4=1^2

Energy per pulse 10 0, 0, 0, 5, 5, 5, 5, 10, 10, 10,
10, 15, 15, 15, 15,...

See Also

Upsample, Integrate and Dump

2 Blocks — Alphabetical List

2-426

Insert Zero

Distribute input elements in output vector

Library

Sequence Operations

Description

The Insert Zero block constructs an output vector by inserting zeros among the elements
of the input vector. The input signal can be real or complex. Both the input signal and
the Insert zero vector parameter are column vector signals. The number of 1s in the
Insert zero vector parameter must be evenly divisible by the input data length. If
the input vector length is greater than the number of 1s in the Insert zero vector
parameter, then the block repeats the insertion pattern until it has placed all input
elements in the output vector.

The block determines where to place the zeros by using the Insert zero vector
parameter.

• For each 1 the block places the next element of the input vector in the output vector
• For each 0 the block places a 0 in the output vector

The block accepts the following data types: int8, uint8, int16, uint16, int32,
uint32, boolean, single, double, and fixed-point. The output signal inherits its data
type from the input signal.

To implement punctured coding using the Puncture and Insert Zero blocks, use the same
vector for the Insert zero vector parameter in this block and for the Puncture vector
parameter in the Puncture block.

 Insert Zero

2-427

Dialog Box

Insert zero vector
A binary vector with a pattern of 0s and 1s that indicate where the block places
either 0s or input vector elements in the output vector.

Examples

If the Insert zero vector parameter is the six-element vector [1;0;1;1;1;0], then
the block inserts zeros after the first and last elements of each consecutive grouping of
four input elements. It considers groups of four elements because the Insert zero vector
parameter has four 1s.

The diagram below depicts the block's operation using this Insert zero vector
parameter. Notice that the insertion pattern applies twice.

2 Blocks — Alphabetical List

2-428

1

4

3

5

7

9

10

11

1

4

3

5

7

9

10

11

0

0

0

0

Compare this example with that on the reference page for the Puncture block.

 Insert Zero

2-429

See Also

Puncture

2 Blocks — Alphabetical List

2-430

Integer-Input RS Encoder
Create Reed-Solomon code from integer vector data

Library

Block sublibrary of Error Detection and Correction

Description

The Integer-Input RS Encoder block creates a Reed-Solomon code with message length,
K, and codeword length, (N - number of punctures). You specify both N and K directly
in the block dialog. The symbols for the code are integers between 0 and 2M-1, which
represent elements of the finite field GF(2M). Restrictions on M and N are described in
“Restrictions on M and the Codeword Length N” on page 2-431 below.

This block can output shortened codewords when N and K are appropriately specified.
To specify output codewords that are shortened by a length S, N and K must be specified
in the dialog box as Nfull – S and Kfull – S, where Nfull and Kfull are the N and K of an
unshortened code. If S Nfull< +()1 2 , the encoder can automatically determine the value
of Nfull and Kfull. However, if S Nfull≥ +()1 2 , Primitive polynomial must be specified
in order to properly define the extension field for the code.

The input and output are integer-valued signals that represent messages and codewords,
respectively. This block accepts a column vector input signal with a length that is an
integer multiple of K. The column vector output, with a length that is the same integer
multiple of N, inherits its data type from the input signal. For information about the data
types each block port supports, see the “Supported Data Type” on page 2-435 table on
this page.

For more information on representing data for Reed-Solomon codes, see the section
“Integer Format (Reed-Solomon Only)” in Communications System Toolbox User's Guide.

If the encoder is processing multiple codewords per frame, then the same puncture
pattern holds for all codewords.

 Integer-Input RS Encoder

2-431

The default value of M is the smallest integer that is greater than or equal to log2(N
+1), that is, ceil(log2(N+1)). You can change the value of M from the default by
specifying the primitive polynomial for GF(2M), as described in “Specifying the Primitive
Polynomial” on page 2-431 below. If N is less than 2M-1, the block uses a shortened
Reed-Solomon code.

An (N, K) Reed-Solomon code can correct up to floor((N-K)/2) symbol errors (not bit
errors) in each codeword.

Specifying the Primitive Polynomial

You can specify the primitive polynomial that defines the finite field GF(2M),
corresponding to the integers that form messages and codewords. To do so, first select
Specify primitive polynomial. Then, in the Primitive polynomial field, enter a
binary row vector that represents a primitive polynomial over GF(2) of degree M, in
descending order of powers. For example, to specify the polynomial x3+x+1, enter the
vector [1 0 1 1].

If you do not select Specify primitive polynomial, the block uses the default primitive
polynomial of degree M = ceil(log2(N+1)). You can display the default polynomial by
entering primpoly(ceil(log2(N+1))) at the MATLAB prompt.

Restrictions on M and the Codeword Length N

The restrictions on the degree M of the primitive polynomial and the codeword length N
are as follows:

• If you do not select Specify primitive polynomial, N must lie in the range 7 < N ≤
216–1.

• If you do select Specify primitive polynomial, N must lie in the range 7 ≤ N ≤ 2M–1
and M must lie in the range 3 ≤ M ≤ 16.

Specifying the Generator Polynomial

You can specify the generator polynomial for the Reed-Solomon code. To do so, first select
Specify generator polynomial. Then, in the Generator polynomial field, enter
an integer row vector whose entries are between 0 and 2M-1. The vector represents a

2 Blocks — Alphabetical List

2-432

polynomial, in descending order of powers, whose coefficients are elements of GF(2M)
represented in integer format. See the section “Integer Format (Reed-Solomon Only)”
for more information about integer format. The generator polynomial must be equal to a
polynomial with a factored form
g(x) = (x+Ab)(x+Ab+1)(x+Ab+2)...(x+Ab+N-K-1)

where A is the primitive element of the Galois field over which the input message is
defined, and b is an integer.

If you do not select Specify generator polynomial, the block uses the default
generator polynomial, corresponding to b=1, for Reed-Solomon encoding. You can
display the default generator polynomial by entering rsgenpoly(N1,K1), where N1
= 2^M-1 and K1 = K+(N1-N), at the MATLAB prompt, if you are using the default
primitive polynomial. If the Specify primitive polynomial box is selected, and you
specify the primitive polynomial specified as poly, the default generator polynomial is
rsgenpoly(N1,K1,poly).

Note: The degree of the generator polynomial, M, must be equal to the codeword length,
N, minus the message length, K, that is, M = N − K.

Puncture Codes

The block supports puncturing when you select the Puncture code parameter. This
enables the Puncture vector parameter, which takes in a binary vector to specify the
puncturing pattern. For a puncture vector, 1 represents that the data symbol passes
unaltered, and 0 represents that the data symbol gets punctured, or removed, from the
data stream. This convention is carried for both the encoder and the decoder. For more
information, see “Shortening, Puncturing, and Erasures”.

Examples

Suppose M = 3, N = 23-1 = 7, and K = 5. Then a message is a vector of length 5 whose
entries are integers between 0 and 7. A corresponding codeword is a vector of length
7 whose entries are integers between 0 and 7. The following figure illustrates possible
input and output signals to this block when Codeword length N is set to 7, Message
length K is set to 5, and the default primitive and generator polynomials are used.

 Integer-Input RS Encoder

2-433

6

7

4 message

0

4

2

3

5

2

0

t=0t=1

4

0

4

code

5

2

5

2

2

3

6

7

0

1

4

t=0t=1

RS encoder

Dialog Box

2 Blocks — Alphabetical List

2-434

Codeword length N
The codeword length.

Message length K
The message length.

Specify primitive polynomial
Selecting this check box enables the Primitive polynomial parameter.

Primitive polynomial
Binary row vector representing the primitive polynomial in descending order of
powers. When you provide a Primitive polynomial, the number of input bits must be
an integer multiple of K times the order of the Primitive polynomial instead.

This parameter applies when only when you select Specify primitive polynomial.
Specify generator polynomial

Selecting this check box enables the Generator polynomial parameter.
Generator polynomial

This field is available only when Specify generator polynomial is selected.

Integer row vector, whose entries are in the range from 0 to 2M-1, representing the
generator polynomial in descending order of powers. Each coefficient is an element of
the Galois field defined by the primitive polynomial.

Puncture code
Selecting this check box enables the Puncture vector parameter.

Puncture vector
This field is available only when Puncture code is selected.

A column vector of length N-K. In a puncture vector, 1 represents that the data
symbol passes unaltered, and 0 represents that the data symbol gets punctured, or
removed, from the data stream.

The default value is [ones(2,1); zeros(2,1)].

This parameter applies only when you select Puncture code.

 Integer-Input RS Encoder

2-435

Supported Data Type

Port Supported Data Types

In • Double-precision floating point
• Single-precision floating point
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Out • Double-precision floating point
• Single-precision floating point
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Pair Block

Integer-Output RS Decoder

See Also

Binary-Input RS Encoder

2 Blocks — Alphabetical List

2-436

Integer-Input RS Encoder HDL Optimized
Encode data using a Reed-Solomon encoder

Library

Block sublibrary of Error Correction and Detection

Description

Reed-Solomon encoding follows the same standards as any other cyclic redundancy
code. The Integer-Input RS Encoder HDL Optimized block can be used to model many
communication system Forward Error Correcting (FEC) codes.

For more about the Reed-Solomon encoder, see the Integer-Input RS Encoder block
reference. For more information on representing data for Reed-Solomon codes, see
“Integer Format (Reed-Solomon Only)”.

Signal Attributes

The Integer-Input RS Encoder HDL Optimized block has four input ports and four output
ports.

Port Direction Description Data Type

datain Input Message data, one symbol at a time. Integer or
fixdt() with

 Integer-Input RS Encoder HDL Optimized

2-437

Port Direction Description Data Type

any binary
point scaling.
Doubles are
allowed for
simulation
but not for
HDL code
generation.

start Input Indicates the start of a frame of data. Boolean or
fixdt(0,1)

end Input Indicates the end of a frame of data. Boolean or
fixdt(0,1)

valid Input Indicates that input data is valid. Boolean or
fixdt(0,1)

dataout Output Message data with the checksum
appended. The data type is the same as
datain.

Same as
datain

startout Output Indicates the start of a frame of data. Boolean or
fixdt(0,1)

endout Output Indicates the end of a frame of data,
including checksum.

Boolean or
fixdt(0,1)

validout Output Indicates that output data is valid. Boolean or
fixdt(0,1)

Limitations

• The length of the code word N must be less than 2^16-1. The number of parity
symbols N-K must be a positive even integer. A shortened code is inferred anytime the
number of input data samples is less than 2^M-1 for M between 3 and 16.

• The generator polynomial is not specified explicitly. However, it is defined by the code
word length, the message length, and the B value for the starting exponent of the
roots. To get the value of B from a generator polynomial, use the genpoly2b function.

• For HDL code generation, the block does not handle double-precision floating point
data type numbers. You can simulate using double-precision values, but if you
attempt HDL code generation, you receive a error message.

2 Blocks — Alphabetical List

2-438

Block Dialog

Integer-Input RS Encoder HDL Optimized Block Mask, Default View

Integer-Input RS Encoder HDL Optimized Block Mask, Expanded View

 Integer-Input RS Encoder HDL Optimized

2-439

Codeword length
The codeword length.

Message length
The message length.

Source of primitive polynomial
Select Property to enable the Primitive polynomial parameter.

Primitive polynomial
Binary row vector representing the primitive polynomial in descending order of
powers. When you provide a primitive polynomial, the number of input bits must be
an integer multiple of K times the order of the primitive polynomial instead.

This parameter applies when only when Property is selected for Primitive
polynomial.

Source of puncture pattern
Select Property to enable the Puncture pattern vector parameter.

Puncture pattern vector
A column vector of length N-K. In a puncture vector, 1 represents that the data
symbol passes unaltered. The value 0 represents that the data symbol is punctured,
or removed from the data stream.

The default value is [ones(2,1); zeros(2,1)].

This field is available only when Property is selected for Source of puncture
pattern.

Source of B, the starting power for roots of the primitive polynomial
Select Property to enable the B value parameter.

B value
The starting exponent of the roots.

This field is available only when you select Property for Source of B, the starting
power for roots of the primitive polynomial.

Simulate using
Type of simulation to run. This parameter does not affect generated HDL code.

• Code generation (default)

2 Blocks — Alphabetical List

2-440

Simulate model using generated C code. The first time you run a simulation,
Simulink generates C code for the block. The C code is reused for subsequent
simulations, as long as the model does not change. This option requires
additional startup time but provides faster simulation speed than Interpreted
execution.

• Interpreted execution

Simulate model using the MATLAB interpreter. This option shortens startup time
but has slower simulation speed than Code generation.

Algorithm

Timing Diagram

HDL Code Generation

This block supports HDL code generation using HDL Coder. HDL Coder provides
additional configuration options that affect HDL implementation and synthesized
logic. For more information on implementations, properties, and restrictions for HDL
code generation, see Integer-Input RS Encoder HDL Optimized in the HDL Coder
documentation.

 Integer-Input RS Encoder HDL Optimized

2-441

Examples

“Using HDL Optimized RS Encoder/Decoder Library Blocks”

Pair Block

Integer-Output RS Decoder HDL Optimized

See Also
comm.HDLRSEncoder | Integer-Input RS Encoder

2 Blocks — Alphabetical List

2-442

Integer-Output RS Decoder
Decode Reed-Solomon code to recover integer vector data

Library

Block sublibrary of Error Detection and Correction

Description

The Integer-Output RS Decoder block recovers a message vector from a Reed-Solomon
codeword vector. For proper decoding, the parameter values in this block should match
those in the corresponding Integer-Input RS Encoder block.

The Reed-Solomon code has message length, K, and codeword length, (N - number of
punctures). You specify both N and K directly in the block dialog. The symbols for the
code are integers between 0 and 2M-1, which represent elements of the finite field GF(2M).
Restrictions on M and N are described in “Restrictions on M and the Codeword Length
N” on page 2-431 below.

This block can output shortened codewords when N and K are appropriately specified.
To specify output codewords that are shortened by a length S, N and K must be specified
in the dialog box as Nfull – S and Kfull – S, where Nfull and Kfull are the N and K of an
unshortened code. If S Nfull< +()1 2 , the encoder can automatically determine the value
of Nfull and Kfull. However, if S Nfull≥ +()1 2 , Primitive polynomial must be specified
in order to properly define the extension field for the code.

The input and output are integer-valued signals that represent codewords and messages,
respectively. This block accepts a column vector input signal with a length that is an
integer multiple of (N - number of punctures). The output signal is a column vector with
a length that is the same integer multiple of K. The block inherits the output data type
from the input data type. For information about the data types each block port supports,
see the “Supported Data Type” on page 2-446 table on this page.

 Integer-Output RS Decoder

2-443

For more information on representing data for Reed-Solomon codes, see the section
“Integer Format (Reed-Solomon Only)” in the Communications System Toolbox User's
Guide.

If the decoder is processing multiple codewords per frame, then the same puncture
pattern holds for all codewords.

The default value of M is ceil(log2(N+1)), that is, the smallest integer greater than
or equal to log2(N+1). You can change the value of M from the default by specifying the
primitive polynomial for GF(2M), as described in “Specifying the Primitive Polynomial” on
page 2-431 below. If N is less than 2M-1, the block uses a shortened Reed-Solomon code.

You can also specify the generator polynomial for the Reed-Solomon code, as described in
“Specifying the Generator Polynomial” on page 2-431.

An (N, K) Reed-Solomon code can correct up to floor((N-K)/2) symbol errors (not bit
errors) in each codeword.

The second output is the number of errors detected during decoding of the codeword. A
-1 indicates that the block detected more errors than it could correct using the coding
scheme. An (N,K) Reed-Solomon code can correct up to floor((N-K)/2) symbol errors
(not bit errors) in each codeword. The data type of this output is also inherited from the
input signal.

You can disable the second output by deselecting Output number of corrected errors.
This removes the block's second output port.

In the case of a decoder failure, the message portion of the decoder input is returned
unchanged as the decoder output.

The sample times of the input and output signals are equal.

Punctured Codes

This block supports puncturing when you select the Punctured code parameter. This
selection enables the Puncture vector parameter, which takes in a binary vector to
specify the puncturing pattern. For a puncture vector, 1 represents that the data symbol
passes unaltered, and 0 represents that the data symbol gets punctured, or removed,
from the data stream. This convention is carried for both the encoder and the decoder.
For more information, see “Shortening, Puncturing, and Erasures”.

2 Blocks — Alphabetical List

2-444

Note: 1s and 0s have precisely opposite meanings for the puncture and erasure vectors.
For an erasure vector, 1 means that the data symbol is to be replaced with an erasure
symbol, and 0 means that the data symbol is passed unaltered. This convention is carried
for both the encoder and the decoder.

Dialog Box

Codeword length N
The codeword length.

Message length K

 Integer-Output RS Decoder

2-445

The message length.
Specify primitive polynomial

Selecting this check box enables the field Primitive polynomial.
Primitive polynomial

This parameter applies only when you select Specify primitive polynomial.

Binary row vector representing the primitive polynomial in descending order of
powers.

Specify generator polynomial
Selecting this check box enables the field Generator polynomial.

Generator polynomial

Integer row vector, whose entries are in the range from 0 to 2M-1, representing the
generator polynomial in descending order of powers. Each coefficient is an element of
the Galois field defined by the primitive polynomial.

This parameter applies only when you select Specify generator polynomial.
Puncture code

Selecting this check box enables the field Puncture vector.
Puncture vector

A column vector of length N-K. In the Puncture vector, a value of 1 represents
that the data symbol passes unaltered, and 0 represents that the data symbol gets
punctured, or removed, from the data stream.

The default value is [ones(2,1); zeros(2,1)].

This parameter applies only when you select Puncture code.
Enable erasures input port

Selecting this check box will open the port, Era. This port accepts a binary column
vector input signal with the same size as the codeword.

Erasure values of 1 represents symbols in the same position in the codeword that get
erased, and values of 0 represent symbols that do not get erased.

Output number of corrected errors
When you select this check box, the block outputs the number of corrected errors in
each word through a second output port. A decoding failure occurs when a certain

2 Blocks — Alphabetical List

2-446

word in the input contains more than (N-K)/2 errors. A value of -1 indicates a
decoding failure in the corresponding position in the second output vector.

Algorithm

This block uses the Berlekamp-Massey decoding algorithm. For information about this
algorithm, see the references listed below.

Supported Data Type

Port Supported Data Types

In • Double-precision floating point
• Single-precision floating point
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Out • Double-precision floating point
• Single-precision floating point
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Era • Double-precision floating point
• Boolean

Err • Double-precision floating point
• Single-precision floating point
• 8-, 16-, and 32-bit signed integers
• If the input is uint8, uint16, or uint32, then the number of

errors output datatype is int8, int16, or int32, respectively.

Pair Block

Integer-Input RS Encoder

 Integer-Output RS Decoder

2-447

References

[1] Wicker, Stephen B., Error Control Systems for Digital Communication and Storage,
Upper Saddle River, N.J., Prentice Hall, 1995.

[2] Berlekamp, Elwyn R., Algebraic Coding Theory, New York, McGraw-Hill, 1968.

[3] Clark, George C., Jr., and J. Bibb Cain, Error-Correction Coding for Digital
Communications, New York, Plenum Press, 1981.

See Also

Binary-Output RS Decoder

2 Blocks — Alphabetical List

2-448

Integer-Output RS Decoder HDL Optimized
Decode data using a Reed-Solomon decoder

Library
Block sublibrary of Error Correction and Detection

Description

Reed-Solomon encoding follows the same standards as any other cyclic redundancy
code. The Integer-Output RS Decoder HDL Optimized block can be used to model many
communication system Forward Error Correcting (FEC) codes.

For more about the Reed-Solomon decoder, see the Integer-Output RS Decoder block
reference. For more information on representing data for Reed-Solomon codes, see
“Integer Format (Reed-Solomon Only)”.

Signal Attributes

The Integer-Output RS Decoder HDL Optimized block has four input ports and six
output ports (5 required, 1 optional).

Port Direction Description Data Type

datain Input Message data, one symbol at a time. Integer or fixdt()
with any binary
point scaling.
Doubles are

 Integer-Output RS Decoder HDL Optimized

2-449

Port Direction Description Data Type

allowed for
simulation but
not for HDL code
generation.

start Input Indicates the start of a frame of
data.

Boolean or
fixdt(0,1)

end Input Indicates the end of a frame of data. Boolean or
fixdt(0,1)

valid Input Indicates that input data is valid. Boolean or
fixdt(0,1)

dataout Output Message data with the checksum
appended. The data width is the
same as the input data port.

Same as datain

startout Output Indicates the start of a frame of
data.

Boolean or
fixdt(0,1)

endout Output Indicates the end of a frame of data,
including checksum.

Boolean or
fixdt(0,1)

validout Output Indicates that output data is valid. Boolean or
fixdt(0,1)

err Output Indicates the corruption of the
received data when error is high.

Boolean

numerrs Output Optional. uint8

Limitations

• The length of the code word N must be less than 2^16-1. The number of parity
symbols N-K must be a positive even integer. A shortened code is inferred when the
number of valid data samples between start and end is less than the codeword
length. A shortened code still requires N cycles to perform the Chien search. If the
input is less than N symbols, leave guard interval of N-size inactive cycles before
starting the next message.

• The generator polynomial is not specified explicitly. However, it is defined by the code
word length, the message length, and the B value for the starting exponent of the
roots. To get the value of B from a generator polynomial, use the genpoly2b function.

2 Blocks — Alphabetical List

2-450

• For HDL code generation, the block does not handle double-precision floating point
data type numbers. You can simulate using double-precision values, but if you
attempt HDL code generation, you receive a error message.

Dialog Box

Integer-Output RS Decoder HDL Optimized Block Mask, Default View

Integer-Output RS Decoder HDL Optimized Block Mask, Expanded View

 Integer-Output RS Decoder HDL Optimized

2-451

Codeword length
The codeword length.

Message length
The message length.

Source of primitive polynomial
Select Property to enable the Primitive polynomial parameter.

Primitive polynomial
Binary row vector representing the primitive polynomial in descending order of
powers. When you provide a primitive polynomial, the number of input bits must be
an integer multiple of K times the order of the primitive polynomial instead.

This parameter applies when only when Property is selected for Primitive
polynomial.

Source of B, the starting power for roots of the primitive polynomial
Select Property to enable the B value parameter.

B value
The starting exponent of the roots.

2 Blocks — Alphabetical List

2-452

This field is available only when you select Property for Source of B, the starting
power for roots of the primitive polynomial.

Enable number of errors output
Check this box to enable the number of errors output port.

Simulate using
Type of simulation to run. This parameter does not affect generated HDL code.

• Code generation (default)

Simulate model using generated C code. The first time you run a simulation,
Simulink generates C code for the block. The C code is reused for subsequent
simulations, as long as the model does not change. This option requires
additional startup time but provides faster simulation speed than Interpreted
execution.

• Interpreted execution

Simulate model using the MATLAB interpreter. This option shortens startup time
but has slower simulation speed than Code generation.

Algorithm

Timing Diagram

 Integer-Output RS Decoder HDL Optimized

2-453

HDL Code Generation

This block supports HDL code generation using HDL Coder. HDL Coder provides
additional configuration options that affect HDL implementation and synthesized
logic. For more information on implementations, properties, and restrictions for HDL
code generation, see Integer-Output RS Decoder HDL Optimized in the HDL Coder
documentation.

Examples

“Using HDL Optimized RS Encoder/Decoder Library Blocks”

Pair Block

Integer-Input RS Encoder HDL Optimized

See Also

Integer-Output RS Decoder | comm.HDLRSDecoder

2 Blocks — Alphabetical List

2-454

Integer to Bit Converter

Map vector of integers to vector of bits

Library

Utility Blocks

Description

The Integer to Bit Converter block maps each integer (or fixed-point value) in the input
vector to a group of bits in the output vector.

The block maps each integer value (or stored integer when you use a fixed point input)
to a group of M bits, using the selection for the Output bit order to determine the most
significant bit. The resulting output vector length is M times the input vector length.

When you set the Number of bits per integer parameter to M and Treat input
values as to Unsigned, then the input values must be between 0 and 2M-1. When you
set Number of bits per integer to M and Treat input values as to Signed, then the
input values must be between –2M-1 and 2M-1-1. During simulation, the block performs a
run-time check and issues an error if any input value is outside of the appropriate range.
When the block generates code, it does not perform this run-time check.

This block is single-rate and single-channel. It accepts a length N column vector or a
scalar-valued (N = 1) input signal and outputs a length N·M column vector.

The block can accept the data types int8, uint8, int16, uint16, int32, uint32,
single, double, and fixed point.

 Integer to Bit Converter

2-455

Dialog Box

Number of bits per integer
The number of bits the block uses to represent each integer of the input. This
parameter must be an integer between 1 and 32.

Treat input values as
Indicate if the integer value input ranges should be treated as signed or unsigned.
The default setting is Unsigned.

Output bit order
Define whether the first bit of the output signal is the most significant bit (MSB) or
the least significant bit (LSB). The default selection is MSB first.

Output data type
You can choose the following Output data type options:

• Inherit via internal rule

2 Blocks — Alphabetical List

2-456

• Smallest integer

• Same as input

• double

• single

• uint8

• uint16

• uint32

The default selection for this parameter is Inherit via internal rule.

When the parameter is set to Inherit via internal rule, the block determines
the output data type based on the input data type.

• If the input signal is floating-point (either single or double), the output data
type is the same as the input data type.

• If the input data type is not floating-point, the output data type is determined as
if the parameter is set to Smallest integer.

When the parameter is set to Smallest integer, the block selects the output
data type based on settings used in the “Hardware Implementation” pane of the
Configuration Parameters dialog box.

• If you select ASIC/FPGA, the output data type is the ideal one-bit size; ufix1.
• For all other selections, the output data type is an unsigned integer with the

smallest available word length, as defined in the Hardware Implementation
settings (e.g. uint8)

Examples

Fixed-Point Integer To Bit and Bit To Integer Conversion (Audio Scrambling
and Descrambling Example)

Overview

This example illustrates how to use the Bit to Integer and Integer to Bit Converter blocks
with fixed-point signals.

 Integer to Bit Converter

2-457

This example uses a simplified audio scrambler configuration and a 16-bit, fixed-point
digital audio source, which is recorded speech. The left-side of the model represents the
audio scrambler subsystem and the right-side represents the descrambler subsystem.

Opening the Model

You can open the model by typing doc_audioscrambler at the MATLAB command
line.

Structure

In the audio scrambler subsystem, the Integer to Bit Converter block unpacks each 16-
bit audio sample into a binary, 1-bit signal. The binary signal passes to a linear feedback
shift register (LFSR) scrambler, which randomizes the bits in a controllable way, thereby
scrambling the signal. The Communications System Toolbox Scrambler block is used in
the LFSR implementation. From the LFSR, the scrambled audio bits pass to the Bit to
Integer Converter block. This block packs the scrambled 1-bit samples into 16-bit audio
samples. The audio samples pass to the Data Type Conversion block, which converts the
integer-based audio samples back into fixed-point samples.

The fixed-point samples pass from the scrambler subsystem to a channel. The channel
sends the samples to the descrambler subsystem. For illustrative purposes, this example
uses a noiseless channel. In an actual system, a channel may introduce noise. Removing
such noise requires a more sophisticated design.

In the audio descrambler subsystem, the Integer to Bit Converter block unpacks each
16-bit audio sample into a binary, 1-bit signal. The binary signal passes to a linear
feedback shift register (LFSR) descrambler, which randomizes the bits in a controllable
way, reversing the scrambling process. This LFSR descrambler implementation uses the
Communications System Toolbox Descrambler block. From the LFSR, the descrambled
audio bits pass to the Bit to Integer Converter block. This block packs the descrambled
1-bit samples into 16-bit audio samples. The audio samples pass to the Data Type
Conversion block, which converts the integer-based audio samples back into fixed-point
samples.

In Simulink, the sfix16_En15 data type represents a signed (s) fixed-point (fix) signal
with word length 16 and fraction length 15. Therefore, this model represents audio
signals using the sfix16_En15 data type, except when converting to and from 1-bit binary
signals. All 1-bit signals are represented by ufix1, as seen at the output of the Integer to
Bit Converter block. The audio source has a frame size (or number of samples per frame)
of 1024. For more information on fixed-point signals, please refer to Fixed-Point Numbers
in the Simulink documentation.

2 Blocks — Alphabetical List

2-458

Running the Model

You must run the example before you can listen to any of the audio signals.

You can run the example by clicking Simulation > Run.

You can hear the audio signals by clicking the model’s yellow, audio icons.

Converter Block Settings

In the audio scrambler and descrambler subsystems, the Integer to Bit Converter block
settings are:

• Number of bits per integer: 16

 Integer to Bit Converter

2-459

• Treat input values as: Signed
• Output bit order: MSB first
• Output data type: Inherit via internal rule

In the audio scrambler and descrambler subsystems, the Bit to Integer Converter block
settings are:

• Number of bits per integer: 16
• Input bit order: MSB first
• After bit packing, treat resulting integer values as: Signed
• Output data type: Inherit via internal rule

Pair Block

“Bit to Integer Converter”

See Also

de2bi and dec2bin

2 Blocks — Alphabetical List

2-460

Integrate and Dump
Integrate discrete-time signal, resetting to zero periodically

Library

Comm Filters

Description

The Integrate and Dump block creates a cumulative sum of the discrete-time input
signal, while resetting the sum to zero according to a fixed schedule. When the
simulation begins, the block discards the number of samples specified in the Offset
parameter. After this initial period, the block sums the input signal along columns
and resets the sum to zero every N input samples, where N is the Integration period
parameter value. The reset occurs after the block produces its output at that time step.

Receiver models often use the integrate-and-dump operation when the system's
transmitter uses a simple square-pulse model. Fiber optics and in spread-spectrum
communication systems, such as CDMA (code division multiple access) applications, also
use the operation.

This block accepts a scalar, column vector, or matrix input signal. When the input signal
is not a scalar value, it must contain k·N rows for some positive integer k. For these input
signals, the block processes each column independently.

Selecting Output intermediate values affects the contents, dimensions, and sample
time as follows:

• If you clear the check box, then the block outputs the cumulative sum at each reset
time.

• If the input is a scalar value, then the output sample time is N times the input
sample time and the block experiences a delay whose duration is one output
sample period. In this case, the output dimensions match the input dimensions.

 Integrate and Dump

2-461

• If the input is a (k·N)-by-n matrix, then the output is k-by-n. In this case, the block
experiences no delay and the output period matches the input period.

• If you select the check box, then the block outputs the cumulative sum at each time
step. The output has the same sample time and the same matrix dimensions as the
input.

Transients and Delays

A nonzero value in the Offset parameter causes the block to output one or more zeros
during the initial period while it discards input samples. If the input is a matrix with
n columns and the Offset parameter is a length-n vector, then the mth element of the
Offset vector is the offset for the mth column of data. If Offset is a scalar, then the
block applies the same offset to each column of data. The output of initial zeros due to a
nonzero Offset value is a transient effect, not a persistent delay.

When you clear Output intermediate values, the block's output is delayed, relative to
its input, throughout the simulation:

• If the input is a scalar value, then the output is delayed by one sample after any
transient effect is over. That is, after removing transients from the input and output,
you can see the result of the mth integration period in the output sample indexed by m
+1.

• If the input is a column vector or matrix and the Offset parameter is nonzero, then
after the transient effect is over, the result of each integration period appears in the
output frame corresponding to the last input sample of that integration period. This is
one frame later than the output frame corresponding to the first input sample of that
integration period, in cases where an integration period spans two input frames. For
an example of this situation, see “Example of Transient and Delay” on page 2-466.

2 Blocks — Alphabetical List

2-462

Dialog Box

Integration period
The number of input samples between resets.

Offset
A nonnegative integer vector or scalar specifying the number of input samples to
discard from each column of input data at the beginning of the simulation.

Output intermediate values
Determines whether the block outputs the intermediate cumulative sums between
successive resets.

 Integrate and Dump

2-463

Fixed-Point Signal Flow Diagram

Fixed-Point Attributes

2 Blocks — Alphabetical List

2-464

The settings for the following parameters only apply when block inputs are fixed-point
signals.

Rounding mode
Use this parameter to specify the rounding method to be used when the result of a
fixed-point calculation does not map exactly to a number representable by the data
type and scaling storing the result.

For more information, see “Rounding Modes” in the DSP System Toolbox
documentation or “Rounding Mode: Simplest” in the Fixed-Point Designer
documentation.

Overflow mode
Use this parameter to specify the method to be used if the magnitude of a fixed-point
calculation result does not fit into the range of the data type and scaling that stores
the result:

• Saturate represents positive overflows as the largest positive number in the
range being used, and negative overflows as the largest negative number in the
range being used.

• Wrap uses modulo arithmetic to cast an overflow back into the representable
range of the data type. See “Modulo Arithmetic” for more information.

Accumulator—Mode
Use the Accumulator—Mode parameter to specify how you would like to designate
the accumulator word and fraction lengths:

• When you select Inherit via internal rule, the block automatically
calculates the accumulator output word and fraction lengths.

• When you select Same as input, these characteristics match those of the input
to the block.

• When you select Binary point scaling, you are able to enter the word length
and the fraction length of the accumulator, in bits.

• When you select Slope and bias scaling, you are able to enter the word
length, in bits, and the slope of the accumulator.

Output
Use the Output parameter to choose how you specify the word length and fraction
length of the output of the block:

 Integrate and Dump

2-465

• When you select Same as accumulator, these characteristics match those of the
accumulator.

• When you select Same as input, these characteristics match those of the input
to the block.

• When you select Binary point scaling, enter the word length and the fraction
length of the output, in bits.

• When you select Slope and bias scaling, enter the word length, in bits, and
the slope of the output.

For additional information about the parameters pertaining to fixed-point applications,
see “Specify Fixed-Point Attributes for Blocks”.

Supported Data Type

Port Supported Data Types

In • Double-precision floating point
• Single-precision floating point
• Fixed-point

Out • Double-precision floating point
• Single-precision floating point
• Fixed-point

Examples

If Integration period is 4 and Offset is the scalar 3, then the table below shows how
the block treats the beginning of a ramp (1, 2, 3, 4,...) in several situations. (The values
shown in the table do not reflect vector sizes but merely indicate numerical values.)

Output intermediate
values Check Box

Input Signal Properties First Several Output Values

Cleared Scalar 0, 0, 4+5+6+7, and 8+9+10+11,
where one 0 is an initial transient

2 Blocks — Alphabetical List

2-466

Output intermediate
values Check Box

Input Signal Properties First Several Output Values

value and the other 0 is a delay value
that results from the cleared check
box and scalar value input.

Cleared Column vector of length
4

0, 4+5+6+7, and 8+9+10+11, where
0 is an initial delay value that results
from the nonzero offset. The output is
a scalar value.

Selected Scalar 0, 0, 0, 4, 4+5, 4+5+6, 4+5+6+7,
8, 8+9, 8+9+10, 8+9+10+11, and
12, where the three 0s are initial
transient values.

Selected Column vector of length
4

0, 0, 0, 4, 4+5, 4+5+6, 4+5+6+7,
8, 8+9, 8+9+10, 8+9+10+11, and
12, where the three 0s are initial
transient values. The output is a
column vector of length 4.

In all cases, the block discards the first three input samples (1, 2, and 3).

Example of Transient and Delay

The figure below illustrates a situation in which the block exhibits both a transient effect
for three output samples, as well as a one-sample delay in alternate subsequent output
samples for the rest of the simulation. The figure also indicates how the input and output
values are organized as column vectors. In each vector in the figure, the last sample of
each integration period is underlined, discarded input samples are white, and transient
zeros in the output are white.

 Integrate and Dump

2-467

Integrate

and Dump

Integration period = 5

O�set = 13

Output intermediate values cleared Input signal
 = column vector of length 10

The transient effect lasts for ceil(13/5) output samples because the block discards
13 input samples and the integration period is 5. The first output sample after the
transient effect is over, 80, corresponds to the sum 14+15+16+17+18 and appears at
the time of the input sample 18. The next output sample, 105, corresponds to the sum
19+20+21+22+23 and appears at the time of the input sample 23. Notice that the
input sample 23 is one frame later than the input sample 19; that is, this five-sample
integration period spans two input frames. As a result, the output of 105 is delayed
compared to the first input (19) that contributes to that sum.

See Also

Windowed Integrator, Discrete-Time Integrator (Simulink documentation), Ideal
Rectangular Pulse Filter

2 Blocks — Alphabetical List

2-468

Interlacer

Alternately select elements from two input vectors to generate output vector

Library

Sequence Operations

Description

The Interlacer block accepts two inputs that have the same vector size, complexity, and
sample time. It produces one output vector by alternating elements from the first input
(labeled O for odd) and from the second input (labeled E for even) . As a result, the output
vector size is twice that of either input. The output vector has the same complexity and
sample time of the inputs.

Both input ports accept scalars or column vectors with the same number of elements. The
block accepts the data types int8, uint8, int16, uint16, int32, uint32, boolean,
single, double, and fixed-point. The output signal inherits its data type from the input
signal.

This block can be useful for combining in-phase and quadrature information from
separate vectors into a single vector.

 Interlacer

2-469

Dialog Box

Examples

If the two input vectors have the values [1; 2; 3; 4] and [5; 6; 7; 8], then the
output vector is [1; 5; 2; 6; 3; 7; 4; 8].

Pair Block

Deinterlacer

See Also

General Block Interleaver; Mux (Simulink documentation)

2 Blocks — Alphabetical List

2-470

I/Q Imbalance

Create complex baseband model of signal impairments caused by imbalances between in-
phase and quadrature receiver components

Library

RF Impairments

Description

The I/Q Imbalance block creates a complex baseband model of the signal impairments
caused by imbalances between in-phase and quadrature receiver components. Typically,
these are caused by differences in the physical channels for the two components of the
signal.

The I/Q Imbalance block applies amplitude and phase imbalances to the in-phase and
quadrature components of the input signal, and then combines the results into a complex
signal. The block

1 Separates the signal into its in-phase and quadrature components.
2 Applies amplitude and phase imbalances, specified by the I/Q amplitude

imbalance (dB) and I/Q phase imbalance (deg) parameters, respectively, to both
components.

3 Combines the in-phase and quadrature components into a complex signal.
4 Applies an in-phase dc offset, specified by the I dc offset parameter, and a

quadrature offset, specified by the Q dc offset parameter, to the signal.

The block performs these operations in the subsystem shown in the following diagram,
which you can view by right-clicking the block and selecting Mask > Look under mask:

 I/Q Imbalance

2-471

Let

Ia = I/Q amplitude imbalance

Ip = I/Q phase imbalance

IDC = in-phase DC offset

QDC = quadrature DC offset

Also let x = xr + j *xi be the complex input to the block, with xr and xi being the real and
imaginary parts, respectively, of x. Let y be the complex output of the block.

Then, for an I/Q amplitude imbalance, Ia

y AmplitudeImbalance = [*] [*]
(. *) (. *)

10 10
0 5

20
0 5

20

I

r

I

i

a a

x j x+

-

@ y rAmplitudeImbalance + j*yiAmplitudeImbalance

For an I/Q phase imbalance Ip

yPhaseImbalance =

[exp(. * * *) *] {exp[(. *
Im

- + +0 5 0 5
180 2

j y j
I

r
p

Ampli tude balance
p p

p **)]* }
Im

I

i
p

Amplitude balance
y

180

2 Blocks — Alphabetical List

2-472

@ yrPhaseImbalance+ j * yiPhaseImbalance

For DC offsets IDC and QDC

y = (yr PhaseImbalance + IDC) + j * (yiPhaseImbalance + QDC)

The value of the I/Q amplitude imbalance (dB) parameter is divided between the in-
phase and quadrature components such that the block applies a gain of +X/2 dB to the
in-phase component and a gain of -X/2 dB to the quadrature component where X can be
positive or negative.

The effects of changing the block's parameters are illustrated by the following scatter
plots of a signal modulated by 16-ary quadrature amplitude modulation (QAM) with an
average power of 0.01 watts. The usual 16-ary QAM constellation without distortion is
shown in the first scatter plot:

The following figure shows a scatter plot of an output signal, modulated by 16-ary
QAM, from the I/Q block with I/Q amplitude imbalance (dB) set to 8 and all other
parameters set to 0:

 I/Q Imbalance

2-473

Observe that the scatter plot is stretched horizontally and compressed vertically
compared to the undistorted constellation.

If you set IQ phase imbalance (deg) to 30 and all other parameters to 0, the scatter
plot is skewed clockwise by 30 degrees, as shown below:

2 Blocks — Alphabetical List

2-474

Setting the I dc offset to 0.02 and the Q dc offset to 0.04 shifts the constellation 0.02
to the right and 0.04 up, as shown below:

 I/Q Imbalance

2-475

See “Illustrate RF Impairments That Distort a Signal” for a description of the model that
generates this plot.

Dialog Box

I/Q amplitude imbalance (dB)
Scalar specifying the I/Q amplitude imbalance in decibels.

I/Q phase imbalance (deg)
Scalar specifying the I/Q phase imbalance in degrees.

I dc offset
Scalar specifying the in-phase dc offset.

Q dc offset
Scalar specifying the amplitude dc offset.

2 Blocks — Alphabetical List

2-476

See Also

Memoryless Nonlinearity

 I/Q Compensator Coefficient to Imbalance

2-477

I/Q Compensator Coefficient to Imbalance
Convert compensator coefficient into amplitude and phase imbalance

Library
RF Impairments Correction

Description
The I/Q Compensator Coefficient to Imbalance block converts a compensator coefficient
into its equivalent amplitude and phase imbalance.

This block has a single input port, which accepts a complex coefficient or a vector of
coefficients. There are amplitude and phase imbalance output ports both of which are
real. The amplitude imbalance is expressed in dB while the phase imbalance is expressed
in degrees.

Dialog Box

2 Blocks — Alphabetical List

2-478

There are no parameters to set in the block.

Algorithms

See the iqcoef2imbal function reference page for more information on the inputs,
outputs, and algorithms.

Supported Data Types

Port Supported Data Types

Compensator Coefficient • Double-precision, complex floating point
• Single-precision, complex floating point

Amplitude Imbalance (dB) • Double-precision floating point
• Single-precision floating point

Phase Imbalance (deg) • Double-precision floating point
• Single-precision floating point

See Also

I/Q Imbalance Compensator

iqcoef2imbal

 I/Q Imbalance Compensator

2-479

I/Q Imbalance Compensator

Compensate for imbalance between in-phase and quadrature components

Library

RF Impairments Correction

Description

The I/Q Imbalance Compensator mitigates the effects of an amplitude and phase
imbalance between the in-phase and quadrature components of a modulated signal. The
supported modulation schemes include OFDM, M-PSK, and M-QAM, where M > 2.

This block accepts up to three input ports, of which one is the input signal. When you
set the Source of compensator coefficient parameter to Estimated from input
signal, two additional input ports are enabled. The first is enabled when you set the
Source of adaptation step size parameter to Input port and the second is enabled
when you check the Coefficient adaptation input port box. The two options are
independent. Additionally, you can check the Estimated coefficient output port box
to create an optional output port from which the estimated compensator coefficients are
made available.

When you set the Source of compensator coefficient parameter to Input port, only
one possible configuration is possible (input signal port, coefficient input port, and output
signal port).

2 Blocks — Alphabetical List

2-480

Dialog Box

Source of compensator coefficient
Specify the source of the compensator coefficients as Estimated from input
signal or Input port. If set to Estimated from input signal, the
compensator calculates the coefficients from the input signal. If set to Input port,
all other properties are disabled and you must provide the coefficients through the
input port. The default value is Estimated from input signal.

Initial compensator coefficient
Specify the initial coefficient used by the internal algorithm to compensate for the I/Q
imbalance. The default value is 0+0j.

 I/Q Imbalance Compensator

2-481

Source of adaptation step size
Specify the source of the adaptation step size as Property or Input port. If set to
Property, specify the step size in the Adaptation step size field. If set to Input
port, you must specify the step size through an input port. The default value is
Property.

Adaptation step size
Specify the step size of the adaptation algorithm as a real scalar. This parameter
is available only when Source of adaptation step size is set to Property. The
default value is 0.00001.

Coefficient adaptation input port
Select this check box to create an input port that permits a signal to control the
adaptation process. If the check box is selected and if the input signal is true,
the estimated compensation coefficients are updated. If the adaptation port is not
enabled or if the input signal is false, the compensation coefficients do not change.
By default, the check box is not selected.

Estimated coefficient output port
Select this check box to provide the estimated compensation coefficients to an output
port. By default, the check box is not selected.

Algorithms

This block implements the algorithm, inputs, and outputs described on the
comm.IQImbalanceCompensator reference page. The object properties correspond to
the block parameters.

Examples

Compensate for I/Q Imbalance

This example shows how to use the I/Q Imbalance Compensator block to remove the
effects of an amplitude and phase imbalance on a modulated signal.

Open the model, doc_iqimbcomp, from the MATLAB command prompt.

2 Blocks — Alphabetical List

2-482

doc_iqimbcomp

The model includes these blocks:

• Random Integer Generator
• M-PSK Modulator Baseband
• I/Q Imbalance
• I/Q Imbalance Compensator
• Constellation Diagram

Double-click the I/Q Imbalance block. You can see that the I/Q amplitude imbalance
(dB) parameter is set to 5 and the I/Q phase imbalance (deg) parameter is also set to
5.

 I/Q Imbalance Compensator

2-483

Run the model. In the Signal with I/Q Imbalance constellation diagram, observe the
effects of the amplitude imbalance and phase imbalance on the 8-PSK signal.

2 Blocks — Alphabetical List

2-484

Look at the Compensated Signal constellation diagram. Observe that the signal is not
well aligned with the reference constellation (shown in red).

 I/Q Imbalance Compensator

2-485

Increase the simulation time from 20 seconds to 100 seconds and run the model again.
You can see that the constellation is now well aligned with the reference constellation.
This is because the compensation algorithm is adaptive; consequently, it requires time to
accurately estimate the I/Q imbalance.

2 Blocks — Alphabetical List

2-486

Try changing other simulation parameters such as the step size in the I/Q Imbalance
Compensator block, the amplitude and phase imbalance in the I/Q Imbalance block,
the modulation type etc. Observe the effects on the Compensated Signal constellation
diagram.

Supported Data Types

Port Supported Data Types

Signal Input • Double-precision floating point
• Single-precision floating point

Signal Output • Double-precision floating point
• Single-precision floating point

 I/Q Imbalance Compensator

2-487

Port Supported Data Types

Step Size • Double-precision floating point
• Single-precision floating point

Adaptation • Logical
Input Coefficients • Double-precision floating point

• Single-precision floating point
Output Coefficients • Double-precision floating point

• Single-precision floating point

See Also

I/Q Imbalance

comm.IQImbalanceCompensator

iqcoef2imbal

iqimbal2coef

Selected Bibliography

[1] Anttila, L., M. Valkama and M. Renfors. “Blind Compensation of Frequency-Selective
I/Q Imbalances in Quadrature Radio Receivers: Circularity-Based Approach”.
Proc. IEEE ICASSP. 2007, pp. III-245 -III-248.

[2] Kiayani, A., L. Anttila, Y. Zou, and M. Valkama, “Advanced Receiver Design for
Mitigating Multiple RF Impairments in OFDM Systems: Algorithms and RF
Measurements”. Journal of Electrical and Computer Engineering. Vol. 2012.

2 Blocks — Alphabetical List

2-488

I/Q Imbalance to Compensator Coefficient
Converts amplitude and phase imbalance into I/Q compensator coefficient

Library
RF Impairments Correction

Description
The I/Q Imbalance to Compensator Coefficient block returns a complex coefficient to
compensate for amplitude and phase imbalance.

This block has an amplitude imbalance input port and a phase imbalance input port,
where the amplitude imbalance is a real number expressed in dB and the phase
imbalance is a real number expressed in degrees. The imbalance inputs are vectors. The
complex coefficients are returned from a single output port.

Dialog Box

 I/Q Imbalance to Compensator Coefficient

2-489

The block has no parameters to set.

Algorithms

See iqimbal2coef for more information on the inputs, outputs, and algorithms.

Supported Data Types

Port Supported Data Types

Compensator Coefficient • Double-precision, complex floating point
• Single-precision, complex floating point

Amplitude Imbalance (dB) • Double-precision floating point
• Single-precision floating point

Phase Imbalance (deg) • Double-precision floating point
• Single-precision floating point

See Also

I/Q Imbalance Compensator

iqimbal2coef

2 Blocks — Alphabetical List

2-490

Kasami Sequence Generator
Generate Kasami sequence from set of Kasami sequences

Library

Sequence Generators sublibrary of Comm Sources

Description

The Kasami Sequence Generator block generates a sequence from the set of Kasami
sequences. The Kasami sequences are a set of sequences that have good cross-correlation
properties.

This block can output sequences that vary in length during simulation. For more
information about variable-size signals, see “Variable-Size Signal Basics” in the Simulink
documentation.

Kasami Sequences

There are two sets of Kasami sequences: the small set and the large set. The large set
contains all the sequences in the small set. Only the small set is optimal in the sense of
matching Welch's lower bound for correlation functions.

Kasami sequences have period N = 2n - 1, where n is a nonnegative, even integer. Let u
be a binary sequence of length N, and let w be the sequence obtained by decimating u by
2n/2 +1. The small set of Kasami sequences is defined by the following formulas, in which
T denotes the left shift operator, m is the shift parameter for w, and ≈ denotes addition
modulo 2.

K u n m
u m

u T w m
s m n
(, ,)

,..., /
=

= -

≈ = -

Ï
Ì
Ô

ÓÔ

1

0 2 22

Small Set of Kasami Sequences for n Even

 Kasami Sequence Generator

2-491

Note that the small set contains 2n/2 sequences.

For mod(n, 4) = 2, the large set of Kasami sequences is defined as follows. Let v be the
sequence formed by decimating the sequence u by 2n/2 + 1+ 1. The large set is defined by
the following table, in which k and m are the shift parameters for the sequences v and w,
respectively.

K u n k m

u k m

v k m

u T v k m

u
L

k n

(, , ,)

;

;

,..., ;
=

= - = -

= - = -

≈ = - = -

2 1

1 1

0 2 2 1

≈≈ = - = -

≈ = - = -

≈ ≈

T w k m

v T w k m

u T v T

m n

m n

k m

2 0 2 2

1 0 2 2

2

2

; ,...,

; ,...,

/

/

ww k m
n n= - = -

Ï

Ì

Ô
Ô
Ô
Ô

Ó

Ô
Ô
Ô
Ô 0 2 2 0 2 22,..., ; , ..., /

Large Set of Kasami Sequences for mod(n, 4) = 2

The sequences described in the first three rows of the preceding figure correspond to the
Gold sequences for mod(n, 4) = 2. See the reference page for the Gold Sequence Generator
block for a description of Gold sequences. However, the Kasami sequences form a larger
set than the Gold sequences.

The correlation functions for the sequences takes on the values
{-t(n), -s(n), -1, s(n) -2 , t(n) - 2}

where

t n n

s n t n

n()

() ()

()/
= +

= +()

+1 2

1

2
1

2 2, even

Block Parameters

The Generator polynomial parameter specifies the generator polynomial, which
determines the connections in the shift register that generates the sequence u. You can
specify the Generator polynomial parameter using either of these formats:

2 Blocks — Alphabetical List

2-492

• A vector that lists the coefficients of the polynomial in descending order of powers.
The first and last entries must be 1. Note that the length of this vector is one more
than the degree of the generator polynomial.

• A vector containing the exponents of z for the nonzero terms of the polynomial in
descending order of powers. The last entry must be 0.

For example, [1 0 0 0 0 0 1 0 1] and [8 2 0] represent the same polynomial, p(z)
= z8+z2+1.

The Initial states parameter specifies the initial states of the shift register that
generates the sequence u. Initial States is a binary scalar or row vector of length
equal to the degree of the Generator polynomial. If you choose a binary scalar, the
block expands the scalar to a row vector of length equal to the degree of the Generator
polynomial, all of whose entries equal the scalar.

The Sequence index parameter specifies the shifts of the sequences v and w used to
generate the output sequence. You can specify the parameter in either of two ways:

• To generate sequences from the small set, for n is even, you can specify the Sequence
index as an integer m. The range of m is [-1, ..., 2n/2 - 2]. The following table describes
the output sequences corresponding to Sequence index m:

Sequence Index Range of Indices Output Sequence

-1 m = -1 u
m m = 0, ... , 2n/2 - 2 u T w

m
≈

• To generate sequences from the large set, for mod (n, 4) = 2, where n is the degree of
the Generator polynomial, you can specify Sequence index as an integer vector
[k m]. In this case, the output sequence is from the large set. The range for k is [-2, ...,
2n - 2], and the range for m is [-1, ..., 2n/2 - 2]. The following table describes the output
sequences corresponding to Sequence index [k m]:

Sequence Index [k m] Range of Indices Output Sequence

[-2 -1] k = -2, m = -1 u
[-1 -1] k = -1, m = -1 v
[k -1] k = 0, 1, ... , 2n - 2

m = -1

u T v
k

≈

 Kasami Sequence Generator

2-493

Sequence Index [k m] Range of Indices Output Sequence

[-2 m] k = -2

m = 0, 1, ..., 2n/2 - 2

u T w
m

≈

[-1 m] k = -1

m = 0, ... , 2n/2 - 2

v T w
m

≈

[k m] k = 0, ... , 2n - 2

m = 0, ... , 2n/2 - 2

u T v T w
k m

≈ ≈

You can shift the starting point of the Kasami sequence with the Shift parameter, which
is an integer representing the length of the shift.

You can use an external signal to reset the values of the internal shift register to the
initial state by selecting Reset on nonzero input. This creates an input port for the
external signal in the Kasami Sequence Generator block. The way the block resets the
internal shift register depends on whether its output signal and the reset signal are
sample-based or frame-based. See “Example: Resetting a Signal” on page 2-763 for an
example.

Polynomials for Generating Kasami Sequences

The following table lists some of the polynomials that you can use to generate the Kasami
set of sequences.

n N Polynomial Set

4 15 [4 1 0] Small
6 63 [6 1 0] Large
8 255 [8 4 3 2 0] Small
10 1023 [10 3 0] Large
12 4095 [12 6 4 1 0] Small

2 Blocks — Alphabetical List

2-494

Dialog Box

Generator polynomial
Binary vector specifying the generator polynomial for the sequence u.

Initial states
Binary scalar or row vector of length equal to the degree of the Generator
polynomial, which specifies the initial states of the shift register that generates the
sequence u.

 Kasami Sequence Generator

2-495

Sequence index
Integer or vector specifying the shifts of the sequences v and w used to generate the
output sequence.

Shift
Integer scalar that determines the offset of the Kasami sequence from the initial
time.

Output variable-size signals
Select this if you want the output sequences to vary in length during simulation. The
default selection outputs fixed-length signals.

Maximum output size source
Specify how the block defines maximum output size for a signal.

• When you select Dialog parameter, the value you enter in the Maximum
output size parameter specifies the maximum size of the output. When you make
this selection, the oSiz input port specifies the current size of the output signal
and the block output inherits sample time from the input signal. The input value
must be less than or equal to the Maximum output size parameter.

• When you select Inherit from reference port, the block output inherits
sample time, maximum size, and current size from the variable-sized signal at the
Ref input port.

This parameter only appears when you select Output variable-size signals. The
default selection is Dialog parameter.

Maximum output size
Specify a two-element row vector denoting the maximum output size for the block.
The second element of the vector must be 1. For example, [10 1] gives a 10-by-1
maximum sized output signal. This parameter only appears when you select Output
variable-size signals.

Sample time
Period of each element of the output signal.

Frame-based outputs
Determines whether the output is frame-based or sample-based.

Samples per frame
The number of samples in a frame-based output signal. This field is active only if you
select Frame-based outputs.

2 Blocks — Alphabetical List

2-496

Reset on nonzero input
When selected, you can specify an input signal that resets the internal shift registers
to the original values of the Initial states.

Output data type
The output type of the block can be specified as a boolean or double. By default,
the block sets this to double.

Example

Kasami Spreading with Two Users and Multipath

This model considers Kasami spreading for a combined two-user transmission in a
multipath environment.

Open the model here: kasami_sequence_block_example

modelname = 'kasami_sequence_block_example';

open_system(modelname);

sim(modelname);

 Kasami Sequence Generator

2-497

You can see very good user separation over multiple paths with the gains of combining.
This can be attributed to the "good" correlation properties of Kasami sequences, which
provide a balance between the ideal cross-correlation properties of orthogonal codes and
the ideal auto-correlation properties of PN sequences. See the relevant examples on the
Hadamard Code Generator and PN Sequence Generator reference pages.

To experiment with this model further, try selecting other path delays to see how the
performance varies for the same code. Also try different codes with the same delays.

2 Blocks — Alphabetical List

2-498

close_system(modelname, 0);

See Also

Gold Sequence Generator, PN Sequence Generator, Hadamard Code Generator

Reference

[1] Peterson and Weldon, Error Correcting Codes, 2nd Ed., MIT Press, Cambridge, MA,
1972.

[2] Proakis, John G., Digital Communications, Third edition, New York, McGraw Hill,
1995.

[3] Sarwate, D. V. and Pursley, M.B., "Crosscorrelation Properties of Pseudorandom and
Related Sequences," Proc. IEEE, Vol. 68, No. 5, May 1980, pp. 583-619.

 LDPC Decoder

2-499

LDPC Decoder
Decode binary low-density parity-check code specified by parity-check matrix

Library

Block sublibrary of Error Detection and Correction

Description

This block implements the message-passing algorithm for decoding low-density parity-
check (LDPC) codes, which are linear error control codes with sparse parity-check
matrices and long block lengths that can attain performance near the Shannon limit.

The LDPC Decoder block is designed to:

• Decode generic binary LDPC codes where no patterns in the parity-check matrix are
assumed.

• Execute a number of iterations you specify or run until all parity-checks are satisfied.
• Output hard decisions or soft decisions (log-likelihood ratios) for decoded bits.

(n – k) and n are the number of rows and columns, respectively, in the parity-check
matrix.

This block accepts a real-valued, n¥1 column vector input signal of type double. Each
element is the log-likelihood ratio for a received bit (more likely to be 0 if the log-
likelihood ratio is positive). The first k elements correspond to the information part of a
codeword.

Both the input and the output are discrete-time signals. The ratio of the output sample
time to the input sample time is n k/ if only the information part is decoded, and 1 if the
entire codeword is decoded.

Decoding Algorithm

2 Blocks — Alphabetical List

2-500

message LDPC

Encoder

LDPC

Decoder
Modulator Channel Demodulator

0 1 1(, , ,)
n

c c c
-

=c ... LLR ()
i

L c=

The input to the LDPC decoder is the log-likelihood ratio (LLR), L c
i

() , which is defined
by the following equation

L c
c c

c
i

i i

i

() log
Pr(|)

Pr(|
=

=
=

0

1

channel output for

channel outpput for c
i
)

Ê

Ë
Á

ˆ

¯
˜

where c
i is the ith bit of the transmitted codeword, c. There are three key variables in

the algorithm: L r ji() , L qij() , and L Qi() . L qij() is initialized as L q L cij i() ()= . For each

iteration, update L r ji() , L qij() , and L Qi() using the following equations

L r L qji i j

i V ij

() tanh ()

\

= Ê
ËÁ

ˆ
¯̃

Ê

Ë

Á
Á

ˆ

¯

˜
˜¢

¢Œ
’2

1

2
atanh

L q L c L rij i j i

j C ji

() () ()

\

= + ¢

¢Œ

Â

L Q L c L ri i j i

j Ci

() () ()= + ¢

¢Œ

Â

where the index sets, C ji \ and V ij \ , are chosen as shown in the following example.

Suppose you have the following parity-check matrix H:

H =

Ê

Ë

Á
Á
Á
Á

1 1 1 1 0 0 0 0 0 0

1 0 0 0 1 1 1 0 0 0

0 1 0 0 1 0 0 1 1 0

0 0 1 0 0 1 0 1 0 1

0 0 0 1 0 0 1 0 1 1

ÁÁ
Á

ˆ

¯

˜
˜
˜
˜
˜
˜

 LDPC Decoder

2-501

For i = 5 and j = 3 , the index sets would be

1 1 1 1 0 0 0 0 0 0

1 0 0 0 1 1 1 0 0 0

0 1 0 0 1 0 0 1 1 0

0 0 1 0 0 1 0 1 0 1

0 0 0 1 0 0 1 0 1 1

Ê ˆ
Á ˜
Á ˜
Á ˜=
Á ˜
Á ˜
Á ˜
Ë ¯

H

0 1 0 0 1 0 0 1 1 0

2nd

0

1

1

0

0

2nd

3rd

5th 8th 9th

{2,5,8,9}

\ {2,8,9}

j

j

V

V i

=

=

{2,3}

\ {2}

i

i

C

C j

=
=

3

5

j

i

=

=

At the end of each iteration, L Qi() provides an updated estimate of the a posteriori log-
likelihood ratio for the transmitted bit c

i .

The soft-decision output for c
i is L Qi() . The hard-decision output for c

i is 1 if L Qi() < 0 ,
and 0 otherwise.

If the property DoParityCheck is set to 'no', the algorithm iterates as many times as
specified by the Number of iterations parameter.

If the property DoParityCheck is set to 'yes', then at the end of each iteration the
algorithm verifies the parity check equation (Hc

T
= 0) and stops if it is satisfied.

In this algorithm, atanh(1) and atanh(-1) are set to be 19.07 and -19.07 respectively to
avoid infinite numbers from being used in the algorithm's equations. These numbers
were chosen because MATLAB returns 1 for tanh(19.07) and -1 for tanh(-19.07), due to
finite precision.

2 Blocks — Alphabetical List

2-502

Dialog Box

Parity-check matrix
This parameter accepts a sparse matrix with dimension n -k by n (where n >k > 0) of
real numbers. All nonzero elements must be equal to 1. The upper bound limit for the
value of n is 231-1

Output format
The output is a real-valued column vector signal. The options are Information
part and Whole codeword.

 LDPC Decoder

2-503

• When you this parameter to Information part, the output contains k elements.
• When you set this parameter to whole codeword, the output contains n

elements

Decision type
The options are Hard decision and Soft decision.

• When you set this parameter to Hard decision, the output is decoded bits (of
type double or boolean).

• When you set this parameter to Soft decision, the output is log-likelihood
ratios (of type double).

Output data type
This parameter appears only when Decision type is set to Hard decision.

The options are boolean and double.
Number of iterations

This can be any positive integer.
Stop iterating when all parity checks are satisfied

If checked, the block will determine whether the parity checks are satisfied after each
iteration and stop if all are satisfied.

Output number of iterations executed
Creates an output port on the block when selected.

Output final parity checks
Creates an output port on the block when selected.

Supported Data Type

Port Supported Data Types

In • Double-precision floating point
Out • Double-precision floating point

• Boolean when Decision type is Hard
decision

2 Blocks — Alphabetical List

2-504

Examples

Enter commdvbs2 at the command line to see an example that uses this block.

References

[1] Gallager, Robert G., Low-Density Parity-Check Codes, Cambridge, MA, MIT Press,
1963.

See Also
LDPC Encoder | comm.LDPCDecoder | dvbs2ldpc

 LDPC Encoder

2-505

LDPC Encoder

Encode binary low-density parity-check code specified by parity-check matrix

Library

Block sublibrary of Error Detection and Correction

Description

This block supports encoding of low-density parity-check (LDPC) codes, which are linear
error control codes with sparse parity-check matrices and long block lengths that can
attain performance near the Shannon limit.

Both the input and the output are discrete-time signals. The ratio of the output sample
time to the input sample time is k n/ . The input must be a real k ¥1 column vector
signal.

The output signal inherits the data type from the input signal, and the input must be
binary-valued (0 or 1). For information about the data types each block port supports, see
the “Supported Data Type” on page 2-506 table on this page.

Note: Model initialization or update may take a long time, because a large matrix may
need to be inverted (when the last (n – k) columns of the parity-check matrix is not
triangular).

2 Blocks — Alphabetical List

2-506

Dialog Box

Parity-check matrix
This block can accept a sparse matrix with dimension n -k by n (where n >k > 0) of
real numbers. All nonzero elements must be equal to 1. The upper bound limit for the
value of n is 231-1

The default value is the parity-check matrix of the half-rate LDPC code from the
DVB-S.2 standard.

Supported Data Type

Port Supported Data Types

In • Double-precision floating point
• Single-precision floating point
• Boolean

 LDPC Encoder

2-507

Port Supported Data Types

• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Out • Double-precision floating point
• Single-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Examples

Enter commdvbs2 at the command line to see an example that uses this block.

See Also
LDPC Decoder | comm.LDPCEncoder | dvbs2ldpc

2 Blocks — Alphabetical List

2-508

Linearized Baseband PLL
Implement linearized version of baseband phase-locked loop

Library

Components sublibrary of Synchronization

Description

The Linearized Baseband PLL block is a feedback control system that automatically
adjusts the phase of a locally generated signal to match the phase of an input signal.
Unlike the Phase-Locked Loop block, this block uses a baseband model method. Unlike
the Baseband PLL block, which uses a nonlinear model, this block simplifies the
computations by using x to approximate sin(x). The baseband PLL model depends on the
amplitude of the incoming signal but does not depend on a carrier frequency.

This PLL has these three components:

• An integrator used as a phase detector.
• A filter. You specify the filter's transfer function using the Lowpass filter

numerator and Lowpass filter denominator parameters. Each is a vector that
gives the respective polynomial's coefficients in order of descending powers of s.

To design a filter, you can use functions such as butter, cheby1, and cheby2 in
Signal Processing Toolbox software. The default filter is a Chebyshev type II filter
whose transfer function arises from the command below.

[num, den] = cheby2(3,40,100,'s')

• A voltage-controlled oscillator (VCO). You specify the sensitivity of the VCO signal
to its input using the VCO input sensitivity parameter. This parameter, measured
in Hertz per volt, is a scale factor that determines how much the VCO shifts from its
quiescent frequency.

This block accepts a sample-based scalar input signal. The input signal represents the
received signal. The three output ports produce:

 Linearized Baseband PLL

2-509

• The output of the filter
• The output of the phase detector
• The output of the VCO

Dialog Box

Lowpass filter numerator
The numerator of the lowpass filter transfer function, represented as a vector that
lists the coefficients in order of descending powers of s.

Lowpass filter denominator
The denominator of the lowpass filter transfer function, represented as a vector that
lists the coefficients in order of descending powers of s.

VCO input sensitivity (Hz/V)
This value scales the input to the VCO and, consequently, the shift from the VCO's
quiescent frequency.

2 Blocks — Alphabetical List

2-510

See Also

Baseband PLL, Phase-Locked Loop

References

For more information about phase-locked loops, see the works listed in “Selected
Bibliography for Synchronization” in Communications System Toolbox User's Guide.

 LMS Decision Feedback Equalizer

2-511

LMS Decision Feedback Equalizer
Equalize using decision feedback equalizer that updates weights with LMS algorithm

Library

Equalizers

Description

The LMS Decision Feedback Equalizer block uses a decision feedback equalizer and the
LMS algorithm to equalize a linearly modulated baseband signal through a dispersive
channel. During the simulation, the block uses the LMS algorithm to update the weights,
once per symbol. If the Number of samples per symbol parameter is 1, then the block
implements a symbol-spaced equalizer; otherwise, the block implements a fractionally
spaced equalizer.

Input and Output Signals

The Input port accepts a column vector input signal. The Desired port receives a
training sequence with a length that is less than or equal to the number of symbols
in the Input signal. Valid training symbols are those symbols listed in the Signal
constellation vector.

Set the Reference tap parameter so it is greater than zero and less than the value for
the Number of forward taps parameter.

The port labeled Equalized outputs the result of the equalization process.

You can configure the block to have one or more of these extra ports:

• Mode input, as described in “Reference Signal and Operation Modes” in
Communications System Toolbox User's Guide.

2 Blocks — Alphabetical List

2-512

• Err output for the error signal, which is the difference between the Equalized
output and the reference signal. The reference signal consists of training symbols in
training mode, and detected symbols otherwise.

• Weights output, as described in “Adaptive Algorithms” in Communications System
Toolbox User's Guide.

Decision-Directed Mode and Training Mode

To learn the conditions under which the equalizer operates in training or decision-
directed mode, see “Using Adaptive Equalizers” in Communications System Toolbox
User's Guide.

Equalizer Delay

For proper equalization, you should set the Reference tap parameter so that it
exceeds the delay, in symbols, between the transmitter's modulator output and the
equalizer input. When this condition is satisfied, the total delay, in symbols, between the
modulator output and the equalizer output is equal to
1+(Reference tap-1)/(Number of samples per symbol)

Because the channel delay is typically unknown, a common practice is to set the
reference tap to the center tap of the forward filter.

 LMS Decision Feedback Equalizer

2-513

Dialog Box

Number of forward taps
The number of taps in the forward filter of the decision feedback equalizer.

2 Blocks — Alphabetical List

2-514

Number of feedback taps
The number of taps in the feedback filter of the decision feedback equalizer.

Number of samples per symbol
The number of input samples for each symbol.

Signal constellation
A vector of complex numbers that specifies the constellation for the modulation.

Reference tap
A positive integer less than or equal to the number of forward taps in the equalizer.

Step size
The step size of the LMS algorithm.

Leakage factor
The leakage factor of the LMS algorithm, a number between 0 and 1. A value of 1
corresponds to a conventional weight update algorithm, and a value of 0 corresponds
to a memoryless update algorithm.

Initial weights
A vector that concatenates the initial weights for the forward and feedback taps.

Mode input port
If you select this check box, the block has an input port that enables you to toggle
between training and decision-directed mode. For training, the mode input must be
1, and for decision directed, the mode must be 0. For every frame in which the mode
input is 1 or not present, the equalizer trains at the beginning of the frame for the
length of the desired signal.

Output error
If you select this check box, the block outputs the error signal, which is the difference
between the equalized signal and the reference signal.

Output weights
If you select this check box, the block outputs the current forward and feedback
weights, concatenated into one vector.

References

[1] Farhang-Boroujeny, B., Adaptive Filters: Theory and Applications, Chichester,
England, Wiley, 1998.

 LMS Decision Feedback Equalizer

2-515

[2] Haykin, Simon, Adaptive Filter Theory, Third Ed., Upper Saddle River, N.J., Prentice-
Hall, 1996.

[3] Kurzweil, Jack, An Introduction to Digital Communications, New York, Wiley, 2000.

[4] Proakis, John G., Digital Communications, Fourth Ed., New York, McGraw-Hill,
2001.

See Also

LMS Linear Equalizer, Normalized LMS Decision Feedback Equalizer, Sign LMS
Decision Feedback Equalizer, Variable Step LMS Decision Feedback Equalizer, RLS
Decision Feedback Equalizer, CMA Equalizer

2 Blocks — Alphabetical List

2-516

LMS Linear Equalizer

Equalize using linear equalizer that meditorsupdates weights with LMS algorithm

Library

Equalizers

Description

The LMS Linear Equalizer block uses a linear equalizer and the LMS algorithm to
equalize a linearly modulated baseband signal through a dispersive channel. During the
simulation, the block uses the LMS algorithm to update the weights, once per symbol.
When you set the Number of samples per symbol parameter to 1, then the block
implements a symbol-spaced (i.e. T-spaced) equalizer. When you set the Number of
samples per symbol parameter to a value greater than one, the block updates the
weights once every Nth sample for a T/N-spaced equalizer.

Input and Output Signals

The Input port accepts a column vector input signal. The Desired port receives a
training sequence with a length that is less than or equal to the number of symbols
in the Input signal. Valid training symbols are those symbols listed in the Signal
constellation vector.

Set the Reference tap parameter so it is greater than zero and less than the value for
the Number of taps parameter.

The Equalized port outputs the result of the equalization process.

You can configure the block to have one or more of these extra ports:

 LMS Linear Equalizer

2-517

• Mode input, as described in “Reference Signal and Operation Modes” in
Communications System Toolbox User's Guide.

• Err output for the error signal, which is the difference between the Equalized
output and the reference signal. The reference signal consists of training symbols in
training mode, and detected symbols otherwise.

• Weights output, as described in “Adaptive Algorithms” in Communications System
Toolbox User's Guide.

Decision-Directed Mode and Training Mode

To learn the conditions under which the equalizer operates in training or decision-
directed mode, see “Using Adaptive Equalizers” in Communications System Toolbox
User's Guide.

Equalizer Delay

For proper equalization, you should set the Reference tap parameter so that it
exceeds the delay, in symbols, between the transmitter's modulator output and the
equalizer input. When this condition is satisfied, the total delay, in symbols, between the
modulator output and the equalizer output is equal to
1+(Reference tap-1)/(Number of samples per symbol)

Because the channel delay is typically unknown, a common practice is to set the
reference tap to the center tap.

2 Blocks — Alphabetical List

2-518

Dialog Box

Number of taps
The number of taps in the filter of the linear equalizer.

Number of samples per symbol
The number of input samples for each symbol.

Signal constellation

 LMS Linear Equalizer

2-519

A vector of complex numbers that specifies the constellation for the modulated signal,
as determined by the modulator in your model

Reference tap
A positive integer less than or equal to the number of taps in the equalizer.

Step size
The step size of the LMS algorithm.

Leakage factor
The leakage factor of the LMS algorithm, a number between 0 and 1. A value of 1
corresponds to a conventional weight update algorithm, and a value of 0 corresponds
to a memoryless update algorithm.

Initial weights
A vector that lists the initial weights for the taps.

Mode input port
If you select this check box, the block has an input port that allows you to toggle
between training and decision-directed mode. For training, the mode input must be
1, and for decision directed, the mode must be 0. For every frame in which the mode
input is 1 or not present, the equalizer trains at the beginning of the frame for the
length of the desired signal.

Output error
If you select this check box, the block outputs the error signal, which is the difference
between the equalized signal and the reference signal.

Output weights
If you select this check box, the block outputs the current weights.

Examples

See “Implement LMS Linear Equalizer Using Simulink” for an example that uses this
block.

References

[1] Farhang-Boroujeny, B., Adaptive Filters: Theory and Applications, Chichester,
England, Wiley, 1998.

2 Blocks — Alphabetical List

2-520

[2] Haykin, Simon, Adaptive Filter Theory, Third Ed., Upper Saddle River, N.J., Prentice-
Hall, 1996.

[3] Kurzweil, Jack, An Introduction to Digital Communications, New York, Wiley, 2000.

[4] Proakis, John G., Digital Communications, Fourth Ed., New York, McGraw-Hill,
2001.

See Also

LMS Decision Feedback Equalizer, Normalized LMS Linear Equalizer, Sign LMS Linear
Equalizer, Variable Step LMS Linear Equalizer, RLS Linear Equalizer, CMA Equalizer

 Matrix Deinterleaver

2-521

Matrix Deinterleaver

Permute input symbols by filling matrix by columns and emptying it by rows

Library

Block sublibrary of Interleaving

Description

The Matrix Deinterleaver block performs block deinterleaving by filling a matrix with
the input symbols column by column and then sending the matrix contents to the output
port row by row. The Number of rows and Number of columns parameters are the
dimensions of the matrix that the block uses internally for its computations.

This block accepts a column vector input signal. The length of the input vector must be
Number of rows times Number of columns.

The block accepts the following data types: int8, uint8, int16, uint16, int32,
uint32, boolean, single, double, and fixed-point. The output signal inherits its data
type from the input signal.

2 Blocks — Alphabetical List

2-522

Dialog Box

Number of rows
The number of rows in the matrix that the block uses for its computations.

Number of columns
The number of columns in the matrix that the block uses for its computations.

Examples

If the Number of rows and Number of columns parameters are 2 and 3,
respectively, then the deinterleaver uses a 2-by-3 matrix for its internal computations.
Given an input signal of [1; 2; 3; 4; 5; 6], the block produces an output of
[1; 3; 5; 2; 4; 6].

Pair Block

Matrix Interleaver

 Matrix Deinterleaver

2-523

See Also

General Block Deinterleaver

2 Blocks — Alphabetical List

2-524

Matrix Helical Scan Deinterleaver

Restore ordering of input symbols by filling matrix along diagonals

Library

Block sublibrary of Interleaving

Description

The Matrix Helical Scan Deinterleaver block performs block deinterleaving by filling
a matrix with the input symbols in a helical fashion and then sending the matrix
contents to the output port row by row. The Number of rows and Number of columns
parameters are the dimensions of the matrix that the block uses internally for its
computations.

Helical fashion means that the block places input symbols along diagonals of the matrix.
The number of elements in each diagonal matches the Number of columns parameter,
after the block wraps past the edges of the matrix when necessary. The block traverses
diagonals so that the row index and column index both increase. Each diagonal after the
first one begins one row below the first element of the previous diagonal.

The Array step size parameter is the slope of each diagonal, that is, the amount by
which the row index increases as the column index increases by one. This parameter
must be an integer between zero and the Number of rows parameter. If the Array step
size parameter is zero, then the block does not deinterleave and the output is the same
as the input.

This block accepts a column vector input signal. The number of elements of the input
vector must be the product of Number of rows and Number of columns.

The block accepts the following data types: int8, uint8, int16, uint16, int32,
uint32, boolean, single, double, and fixed-point. The output signal inherits its data
type from the input signal.

 Matrix Helical Scan Deinterleaver

2-525

Dialog Box

Number of rows
The number of rows in the matrix that the block uses for its computations.

Number of columns
The number of columns in the matrix that the block uses for its computations.

Array step size
The slope of the diagonals that the block writes.

2 Blocks — Alphabetical List

2-526

Pair Block

Matrix Helical Scan Interleaver

See Also

General Block Deinterleaver

 Matrix Helical Scan Interleaver

2-527

Matrix Helical Scan Interleaver

Permute input symbols by selecting matrix elements along diagonals

Library

Block sublibrary of Interleaving

Description

The Matrix Helical Scan Interleaver block performs block interleaving by filling a matrix
with the input symbols row by row and then sending the matrix contents to the output
port in a helical fashion. The Number of rows and Number of columns parameters
are the dimensions of the matrix that the block uses internally for its computations.

Helical fashion means that the block selects output symbols by selecting elements
along diagonals of the matrix. The number of elements in each diagonal matches the
Number of columns parameter, after the block wraps past the edges of the matrix
when necessary. The block traverses diagonals so that the row index and column index
both increase. Each diagonal after the first one begins one row below the first element of
the previous diagonal.

The Array step size parameter is the slope of each diagonal, that is, the amount by
which the row index increases as the column index increases by one. This parameter
must be an integer between zero and the Number of rows parameter. If the Array step
size parameter is zero, then the block does not interleave and the output is the same as
the input.

This block accepts a column vector input signal. The number of elements of the input
vector must be the product of Number of rows and Number of columns.

The block accepts the following data types: int8, uint8, int16, uint16, int32,
uint32, boolean, single, double, and fixed-point. The output signal inherits its data
type from the input signal.

2 Blocks — Alphabetical List

2-528

Dialog Box

Number of rows
The number of rows in the matrix that the block uses for its computations.

Number of columns
The number of columns in the matrix that the block uses for its computations.

Array step size
The slope of the diagonals that the block reads.

 Matrix Helical Scan Interleaver

2-529

Examples

If the Number of rows and Number of columns parameters are 6 and 4, respectively,
then the interleaver uses a 6-by-4 matrix for its internal computations. If the Array step
size parameter is 1, then the diagonals are as shown in the figure below. Positions with
the same color form part of the same diagonal, and diagonals with darker colors precede
those with lighter colors in the output signal.

Given an input signal of [1:24]', the block produces an output of

1

5

9

13

17

21

6

10

14

18

22

11

15

19

23

16

20

24

2

Block's Internal Array

3

7

4

8

12
[1 : 24] '

[1, 6, 11, 16, . . .

5, 10, 15, 20, . . .

9, 14, 19, 24,

13, 18, 23, 4, . . .

17, 22, 3, 8, . . .

21, 2, 7, 12, . . .

[1; 6; 11; 16; 5; 10; 15; 20; 9; 14; 19; 24; 13; 18; 23;...

4; 17; 22; 3; 8; 21; 2; 7; 12]

Pair Block

Matrix Helical Scan Deinterleaver

See Also

General Block Interleaver

2 Blocks — Alphabetical List

2-530

Matrix Interleaver

Permute input symbols by filling matrix by rows and emptying it by columns

Library

Block sublibrary of Interleaving

Description

The Matrix Interleaver block performs block interleaving by filling a matrix with the
input symbols row by row and then sending the matrix contents to the output port
column by column.

The Number of rows and Number of columns parameters are the dimensions of the
matrix that the block uses internally for its computations.

This block accepts a column vector input signal. The number of elements of the input
vector must be the product of Number of rows and Number of columns.

The block accepts the following data types: int8, uint8, int16, uint16, int32,
uint32, boolean, single, double, and fixed-point. The output signal inherits its data
type from the input signal.

 Matrix Interleaver

2-531

Dialog Box

Number of rows
The number of rows in the matrix that the block uses for its computations.

Number of columns
The number of columns in the matrix that the block uses for its computations.

Examples

If the Number of rows and Number of columns parameters are 2 and 3,
respectively, then the interleaver uses a 2-by-3 matrix for its internal computations.
Given an input signal of [1; 2; 3; 4; 5; 6], the block produces an output of
[1; 4; 2; 5; 3; 6].

Pair Block

Matrix Deinterleaver

2 Blocks — Alphabetical List

2-532

See Also

General Block Interleaver

 M-DPSK Demodulator Baseband

2-533

M-DPSK Demodulator Baseband
Demodulate DPSK-modulated data

Library

PM, in Digital Baseband sublibrary of Modulation

Description

The M-DPSK Demodulator Baseband block demodulates a signal that was modulated
using the M-ary differential phase shift keying method. The input is a baseband
representation of the modulated signal. The input and output for this block are discrete-
time signals. This block accepts a scalar-valued or column vector input signal. For
information about the data types each block port supports, see the “Supported Data
Types” on page 2-535 table on this page.

The M-ary number parameter, M, is the number of possible output symbols that can
immediately follow a given output symbol. The block compares the current symbol to
the previous symbol. The block's first output is the initial condition of zero (or a group of
zeros, if the Output type parameter is set to Bit) because there is no previous symbol.

Integer-Valued Signals and Binary-Valued Signals

If you set the Output type parameter to Integer, then the block demodulates a phase
difference of
θ + 2πk/M

to k, where θ represents the Phase rotation parameter and k represents an integer
between 0 and M-1.

When you set the Output type parameter to Bit, the block outputs binary-valued
signals that represent integers. The block represents each integer using a group of K =
log2(M) bits, where K represents the number of bits per symbol. The output vector length
must be an integer multiple of K.

2 Blocks — Alphabetical List

2-534

In binary output mode, the symbols can be either binary-demapped or Gray-demapped.
The Constellation ordering parameter indicates how the block maps an integer to a
corresponding group of K output bits. See the reference pages for the M-DPSK Modulator
Baseband and M-PSK Modulator Baseband blocks for details.

Dialog Box

M-ary number
The number of possible modulated symbols that can immediately follow a given
symbol.

Output type
Determines whether the output consists of integers or groups of bits.

 M-DPSK Demodulator Baseband

2-535

Constellation ordering
Determines how the block maps each integer to a group of output bits.

Phase rotation (rad)
This phase difference between the current and previous modulated symbols that
results in an output of zero.

Output data type
When the parameter is set to 'Inherit via internal rule' (default setting),
the block will inherit the output data type from the input port. The output data type
will be the same as the input data type if the input is of type single or double.

For integer outputs, this block can output the data types int8, uint8, int16,
uint16, int32, uint32, single, and double. For bit outputs, output can be int8,
uint8, int16, uint16, int32, uint32, boolean, single, or double.

Supported Data Types

Port Supported Data Types

Input • Double-precision floating point
• Single-precision floating point

Output • Double-precision floating point
• Single-precision floating point
• Boolean when Output type set to Bit
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Pair Block

M-DPSK Modulator Baseband

See Also

DBPSK Demodulator Baseband, DQPSK Demodulator Baseband, M-PSK Demodulator
Baseband

2 Blocks — Alphabetical List

2-536

References

[1] Pawula, R. F., "On M-ary DPSK Transmission Over Terrestrial and Satellite
Channels," IEEE Transactions on Communications, Vol. COM-32, July 1984,
752-761.

 M-DPSK Modulator Baseband

2-537

M-DPSK Modulator Baseband
Modulate using M-ary differential phase shift keying method

Library

PM, in Digital Baseband sublibrary of Modulation

Description

The M-DPSK Modulator Baseband block modulates using the M-ary differential phase
shift keying method. The output is a baseband representation of the modulated signal.
The M-ary number parameter, M, is the number of possible output symbols that can
immediately follow a given output symbol.

The input must be a discrete-time signal. For integer inputs, the block can accept the
data types int8, uint8, int16, uint16, int32, uint32, single, and double. For bit
inputs, the block can accept int8, uint8, int16, uint16, int32, uint32, boolean,
single, and double.

The input can be either bits or integers, which are binary-mapped or Gray-mapped into
symbols.

This block accepts column vector input signals. For a bit input, the input width must be
an integer multiple of the number of bits per symbol.

Integer-Valued Signals and Binary-Valued Signals

If you set the Input type parameter to Integer, then valid input values are integers
between 0 and M-1. In this case, the input can be either a scalar or a frame-based column
vector. If the first input is k1, then the modulated symbol is

exp j j
k

m
q p+Ê

ËÁ
ˆ
¯̃

2 1

2 Blocks — Alphabetical List

2-538

where θ represents the Phase rotation parameter. If a successive input is k, then the
modulated symbol is

exp ()j j
k

m
q p+Ê

ËÁ
ˆ
¯̃
◊2 previous modulated symbol

When you set the Input type parameter to Bit, the block accepts binary-valued inputs
that represent integers. The block collects binary-valued signals into groups of K =
log2(M) bits

where

K represents the number of bits per symbol.

The input vector length must be an integer multiple of K. In this configuration, the block
accepts a group of K bits and maps that group onto a symbol at the block output. The
block outputs one modulated symbol for each group of K bits.

The input can be a column vector with a length that is an integer multiple of K.

In binary input mode, the Constellation ordering parameter indicates how the
block maps a group of K input bits to a corresponding phase difference. The Binary
option uses a natural binary-to-integer mapping, while the Gray option uses a Gray-
coded assignment of phase differences. For example, the following table indicates the
assignment of phase difference to three-bit inputs, for both the Binary and Gray options.
θ is the Phase rotation parameter. The phase difference is between the previous symbol
and the current symbol.

Current Input Binary-Coded Phase
Difference

Gray-Coded Phase Difference

[0 0 0] jθ jθ
[0 0 1] jθ + jπ/4 jθ + jπ/4
[0 1 0] jθ + jπ2/4 jθ + jπ3/4
[0 1 1] jθ + jπ3/4 jθ + jπ2/4
[1 0 0] jθ + jπ4/4 jθ + jπ7/4
[1 0 1] jθ + jπ5/4 jθ + jπ6/4
[1 1 0] jθ + jπ6/4 jθ + jπ4/4
[1 1 1] jθ + jπ7/4 jθ + jπ5/4

 M-DPSK Modulator Baseband

2-539

For more details about the Binary and Gray options, see the reference page for the M-
PSK Modulator Baseband block. The signal constellation for that block corresponds to
the arrangement of phase differences for this block.

Dialog Box

M-ary number
The number of possible output symbols that can immediately follow a given output
symbol.

Input type

2 Blocks — Alphabetical List

2-540

Indicates whether the input consists of integers or groups of bits. If this parameter is
set to Bit, then the M-ary number parameter must be 2K for some positive integer
K.

Constellation ordering
Determines how the block maps each group of input bits to a corresponding integer.

Phase rotation (rad)
The phase difference between the previous and current modulated symbols when the
input is zero.

Output data type
The output data type can be either single or double. By default, the block sets this
to double.

Supported Data Types

Port Supported Data Types

Input • Double-precision floating point
• Single-precision floating point
• Boolean (binary input mode only)
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Output • Double-precision floating point
• Single-precision floating point

Pair Block

M-DPSK Demodulator Baseband

See Also

DBPSK Modulator Baseband, DQPSK Modulator Baseband, M-PSK Modulator
Baseband

 M-DPSK Modulator Baseband

2-541

References

[1] Pawula, R. F., "On M-ary DPSK Transmission Over Terrestrial and Satellite
Channels," IEEE Transactions on Communications, Vol. COM-32, July 1984,
752-761.

2 Blocks — Alphabetical List

2-542

Memoryless Nonlinearity

Apply memoryless nonlinearity to complex baseband signal

Library

RF Impairments

Description

The Memoryless Nonlinearity block applies a memoryless nonlinearity to a complex,
baseband signal. You can use the block to model radio frequency (RF) impairments to a
signal at the receiver.

This block accepts a column vector input signal.

Note: All values of power assume a nominal impedance of 1 ohm.

The Memoryless Nonlinearity block provides five different methods for modeling the
nonlinearity, which you specify by the Method parameter. The options for the Method
parameter are

• Cubic polynomial

• Hyperbolic tangent

• Saleh model

• Ghorbani model

• Rapp model

The block implements these five methods using subsystems underneath the block
mask. For each of the first four methods, the nonlinearity subsystem has the same basic
structure, as shown in the following figure.

 Memoryless Nonlinearity

2-543

Nonlinearity Subsystem

For the first four methods, each subsystem applies a nonlinearity to the input signal as
follows:

1 Multiply the signal by a gain factor.
2 Split the complex signal into its magnitude and angle components.
3 Apply an AM/AM conversion to the magnitude of the signal, according to the selected

Method, to produce the magnitude of the output signal.
4 Apply an AM/PM conversion to the phase of the signal, according to the selected

Method, and adds the result to the angle of the signal to produce the angle of the
output signal.

5 Combine the new magnitude and angle components into a complex signal and
multiply the result by a gain factor, which is controlled by the Linear gain
parameter.

Each subsystem implements the AM/AM and AM/PM conversions differently, according
to the Method you specify. The Rapp model does not apply a phase change to the input
signal. The nonlinearity subsystem for Rapp model has following structure:

2 Blocks — Alphabetical List

2-544

Nonlinearity Subsystem for Rapp Model

The Rapp Subsystem applies nonlinearity as follows:

1 Multiply the signal by a gain factor.
2 Split the complex signal into its magnitude and angle components.
3 Apply an AM/AM conversion to the magnitude of the signal, according to the selected

Method, to produce the magnitude of the output signal.
4 Combine the new magnitude and angle components into a complex signal and

multiply the result by a gain factor, which is controlled by the Linear gain
parameter.

If you want to see exactly how the Memoryless Nonlinearity block implements the
conversions for a specific method, you can view the AM/AM and AM/PM subsystems that
implement these conversions as follows:

1 Right-click on the Memoryless Nonlinearity block and select Mask > Look under
mask. This displays the block's configuration underneath the mask. The block
contains five subsystems corresponding to the five nonlinearity methods.

2 Double-click the subsystem for the method you are interested in. This displays the
subsystem shown in the preceding figure, Nonlinearity Subsystem.

3 Double-click on one of the subsystems labeled AM/AM or AM/PM to view how the
block implements the conversions.

 Memoryless Nonlinearity

2-545

AM/PM Characteristics of the Cubic Polynomial and Hyperbolic Tangent
Methods

The following illustration shows the AM/PM behavior for the Cubic polynomial and
Hyperbolic tangent methods:

Max
shift

Lower limit Upper limit

Ph
as

e
sh

ift
 (

de
g)

Input power level (dBm)

0

The AM/PM conversion scales linearly with input power value between the lower
and upper limits of the input power level (specified by Lower input power limit
for AM/PM conversion (dBm) and Upper input power limit for AM/PM
conversion (dBm)). Beyond these values, AM/PM conversion is constant at the
values corresponding to the lower and upper input power limits, which are zero and
() (AM/PM conversion upper input power limit lower input po◊ - wwer limit) , respectively.

AM/AM and AM/PM Characteristics of the Saleh Method

The following figure shows, for the Saleh method, plots of

• Output voltage against input voltage for the AM/AM conversion
• Output phase against input voltage for the AM/PM conversion

2 Blocks — Alphabetical List

2-546

Example with 16-ary QAM

You can see the effect of the Memoryless Nonlinearity block on a signal modulated by
16-ary quadrature amplitude modulation (QAM) in a scatter plot. The constellation for
16-ary QAM without the effect of the Memoryless Nonlinearity block is shown in the
following figure:

 Memoryless Nonlinearity

2-547

You can generate a scatter plot of the same signal after it passes through the Memoryless
Nonlinearity block, with the Method parameter set to Saleh Model, as shown in the
following figure.

2 Blocks — Alphabetical List

2-548

This plot is generated by the model described in “Illustrate RF Impairments That Distort
a Signal” with the following parameter settings for the Rectangular QAM Modulator
Baseband block:

• Normalization method set to Average Power
• Average power (watts) set to 1e-2

The following sections discuss parameters specific to the Saleh, Ghorbani, and Rapp
models.

Parameters for the Saleh Model

The Input scaling (dB) parameter scales the input signal before the nonlinearity is
applied. The block multiplies the input signal by the parameter value, converted from
decibels to linear units. If you set the parameter to be the inverse of the input signal
amplitude, the scaled signal has amplitude normalized to 1.

The AM/AM parameters, alpha and beta, are used to compute the amplitude gain for an
input signal using the following function:

 Memoryless Nonlinearity

2-549

F u
u

u
AM AM/ ()

*

*
=

+

alpha

beta1 2

where u is the magnitude of the scaled signal.

The AM/PM parameters, alpha and beta, are used to compute the phase change for an
input signal using the following function:

F u
u

u
AM PM/ ()

*

*
=

+

alpha

beta

2

21

where u is the magnitude of the scaled signal. Note that the AM/AM and AM/PM
parameters, although similarly named alpha and beta, are distinct.

The Output scaling (dB) parameter scales the output signal similarly.

Parameters for the Ghorbani Model

The Input scaling (dB) parameter scales the input signal before the nonlinearity is
applied. The block multiplies the input signal by the parameter value, converted from
decibels to linear units. If you set the parameter to be the inverse of the input signal
amplitude, the scaled signal has amplitude normalized to 1.

The AM/AM parameters, [x1 x2 x3 x4], are used to compute the amplitude gain for an
input signal using the following function:

F u
x u

x u

x uAM AM

x

x/ () =

+

+
1

3

4

2

21

where u is the magnitude of the scaled signal.

The AM/PM parameters, [y1 y2 y3 y4], are used to compute the phase change for an input
signal using the following function:

F u
y u

y u
y uAM PM

y

y/ () =

+

+
1

3

4

2

21

2 Blocks — Alphabetical List

2-550

where u is the magnitude of the scaled signal.

The Output scaling (dB) parameter scales the output signal similarly.

Parameters for the Rapp Model

The Linear gain (dB) parameter scales the input signal before the nonlinearity is
applied. The block multiplies the input signal by the parameter value, converted from
decibels to linear units. If you set the parameter to be the inverse of the input signal
amplitude, the scaled signal has amplitude normalized to 1.

The Smoothness factor and Output saturation level parameters are used to compute
the amplitude gain for the input signal:

F u
u

u

O

AM AM

sat

S
S/ /

() =

+
Ê

Ë
Á

ˆ

¯
˜

Ê

Ë

Á
Á

ˆ

¯

˜
˜

1

2
1 2

where u is the magnitude of the scaled signal, S is the Smoothness factor, and Osat is
the Output saturation level.

The Rapp model does not apply a phase change to the input signal.

The Output saturation level parameter limits the output signal level.

 Memoryless Nonlinearity

2-551

Dialog Box

Method
The nonlinearity method.

The following describes specific parameters for each method.

2 Blocks — Alphabetical List

2-552

Linear gain (db)
Scalar specifying the linear gain for the output function.

IIP3 (dBm)
Scalar specifying the third order intercept.

AM/PM conversion (degrees per dB)
Scaler specifying the AM/PM conversion in degrees per decibel.

Lower input power limit (dBm)
Scalar specifying the minimum input power for which AM/PM conversion scales
linearly with input power value. Below this value, the phase shift resulting from AM/
PM conversion is zero.

Upper input power limit (dBm)
Scalar specifying the maximum input power for which AM/PM conversion scales
linearly with input power value. Above this value, the phase shift resulting from AM/
PM conversion is constant. The value of this maximum shift is given by:

() (AM/PM conversion upper input power limit lower input po◊ - wwer limit)

 Memoryless Nonlinearity

2-553

Linear gain (db)
Scalar specifying the linear gain for the output function.

IIP3 (dBm)
Scalar specifying the third order intercept.

AM/PM conversion (degrees per dB)
Scalar specifying the AM/PM conversion in degrees per decibel.

Lower input power limit (dBm)
Scalar specifying the minimum input power for which AM/PM conversion scales
linearly with input power value. Below this value, the phase shift resulting from AM/
PM conversion is zero.

Upper input power limit (dBm)
Scalar specifying the maximum input power for which AM/PM conversion scales
linearly with input power value. Above this value, the phase shift resulting from AM/
PM conversion is constant. The value of this maximum shift is given by:

() (AM/PM conversion upper input power limit lower input po◊ - wwer limit)

2 Blocks — Alphabetical List

2-554

Input scaling (dB)
Number that scales the input signal level.

AM/AM parameters [alpha beta]
Vector specifying the AM/AM parameters.

AM/PM parameters [alpha beta]
Vector specifying the AM/PM parameters.

Output scaling (dB)
Number that scales the output signal level.

Input scaling (dB)
Number that scales the input signal level.

AM/AM parameters [x1 x2 x3 x4]
Vector specifying the AM/AM parameters.

AM/PM parameters [y1 y2 y3 y4]
Vector specifying the AM/PM parameters.

 Memoryless Nonlinearity

2-555

Output scaling (dB)
Number that scales the output signal level.

Linear gain (db)
Scalar specifying the linear gain for the output function.

Smoothness factor
Scalar specifying the smoothness factor

Output saturation level
Scalar specifying the the output saturation level.

See Also

I/Q Imbalance

Reference

[1] Saleh, A.A.M., "Frequency-independent and frequency-dependent nonlinear models
of TWT amplifiers," IEEE Trans. Communications, vol. COM-29, pp.1715-1720,
November 1981.

[2] A. Ghorbani, and M. Sheikhan, "The effect of Solid State Power Amplifiers (SSPAs)
Nonlinearities on MPSK and M-QAM Signal Transmission", Sixth Int'l
Conference on Digital Processing of Signals in Comm., 1991, pp. 193-197.

[3] C. Rapp, "Effects of HPA-Nonlinearity on a 4-DPSK/OFDM-Signal for a Digitial
Sound Broadcasting System", in Proceedings of the Second European Conference
on Satellite Communications, Liege, Belgium, Oct. 22-24, 1991, pp. 179-184.

2 Blocks — Alphabetical List

2-556

M-FSK Demodulator Baseband
Demodulate FSK-modulated data

Library

FM, in Digital Baseband sublibrary of Modulation

Description

The M-FSK Demodulator Baseband block demodulates a signal that was modulated
using the M-ary frequency shift keying method. The input is a baseband representation
of the modulated signal. The input and output for this block are discrete-time signals.
This block accepts a scalar value or column vector input signal of type single or
double. For information about the data types each block port supports, see “Supported
Data Types” on page 2-561.

The M-ary number parameter, M, is the number of frequencies in the modulated signal.
The Frequency separation parameter is the distance, in Hz, between successive
frequencies of the modulated signal.

The M-FSK Demodulator Baseband block implements a non-coherent energy detector. To
obtain the same BER performance as that of coherent FSK demodulation, use the CPFSK
Demodulator Baseband block.

Integer-Valued Signals and Binary-Valued Signals

When you set the Output type parameter to Integer, the block outputs integer values
between 0 and M-1. M represents the M-ary number block parameter.

When you set the Output type parameter to Bit, the block outputs binary-valued
signals that represent integers. The block represents each integer using a group of K =
log2(M) bits, where K represents the number of bits per symbol. The output vector length
must be an integer multiple of K.

 M-FSK Demodulator Baseband

2-557

The Symbol set ordering parameter indicates how the block maps a symbol to a group
of K output bits. When you set the parameter to Binary, the block maps the integer, I, to
[u(1) u(2) ... u(K)] bits, where the individual u(i) are given by

I u i
K i

i

K

=
-

=

Â ()2
1

u(1) is the most significant bit.

For example, if M = 8, you set Symbol set ordering to Binary, and the demodulated
integer symbol value is 6, then the binary output word is [1 1 0].

When you set Symbol set ordering to Gray, the block assigns binary outputs from
points of a predefined Gray-coded signal constellation. The predefined M-ary Gray-coded
signal constellation assigns the binary representation

M = 8; P = [0:M-1]';

de2bi(bitxor(P,floor(P/2)), log2(M),'left-msb')

to the Pth integer.

The typical Binary to Gray mapping for M = 8 is shown in the following tables.

Binary to Gray Mapping for Bits

Binary Code Gray Code

000 000
001 001
010 011
011 010
100 110
101 111
110 101
111 100

Binary to Gray Mapping for Integers

2 Blocks — Alphabetical List

2-558

Binary Code Gray Code

0 0
1 1
2 3
3 2
4 6
5 7
6 5
7 4

Whether the output is an integer or a binary representation of an integer, the block maps
the highest frequency to the integer 0 and maps the lowest frequency to the integer M-1.
In baseband simulation, the lowest frequency is the negative frequency with the largest
absolute value.

Single-Rate Processing

In single-rate processing mode, the input and output signals have the same port sample
time. The block implicitly implements the rate change by making a size change at the
output when compared to the input. The input width must be an integer multiple of the
Samples per symbol parameter value, and the input can be a column vector.

• When you set Output type to Bit, the output width is K times the number of input
symbols.

• When you set Output type to Integer, the output width is the number of input
symbols.

Multirate Processing

In multirate processing mode, the input and output signals have different port sample
times. The input must be a scalar. The output symbol time is the product of the input
sample time and the Samples per symbol parameter value.

• When you set Output type to Bit, the output width equals the number of bits per
symbol.

• When you set Output type to Integer, the output is a scalar.

 M-FSK Demodulator Baseband

2-559

To run the M-FSK Demodulator block in multirate mode, set Tasking mode for
periodic sample times (in Simulation > Configuration Parameters > Solver) to
SingleTasking.

Dialog Box

M-ary number
The number of frequencies in the modulated signal.

Output type

2 Blocks — Alphabetical List

2-560

Determines whether the output consists of integers or groups of bits. If this
parameter is set to Bit, then the M-ary number parameter must be 2K for some
positive integer K.

Symbol set ordering
Determines how the block maps each integer to a group of output bits.

Frequency separation (Hz)
The distance between successive frequencies in the modulated signal.

Samples per symbol
The number of input samples that represent each modulated symbol.

Rate options
Select the rate processing method for the block.

• Enforce single-rate processing — When you select this option, the input
and output signals have the same port sample times. The block implements the
rate change by making a size change at the output when compared to the input.
The output width is the number of symbols (which is given by dividing the input
length by the Samples per symbol parameter value when the Output type
parameter is set to Integer).

• Allow multirate processing — When you select this option, the input and
output signals have different port sample times. The output period is the same as
the symbol period and equals the product of the input period and the Samples
per symbol parameter value.

Note: The option Inherit from input (this choice will be removed
- see release notes) will be removed in a future release. See “Frame-
Based Processing” in the Communications System Toolbox Release Notes for more
information.

For more information, see Single-Rate Processing and Multirate Processing in the
Description section of this page.

Output data type
The output type of the block can be specified here as boolean, int8, uint8, int16,
uint16, int32, uint32, or double. By default, the block sets this to double.

 M-FSK Demodulator Baseband

2-561

Supported Data Types

Port Supported Data Types

Input • Double-precision floating point
• Single-precision floating point

Output • Double-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Pair Block

M-FSK Modulator Baseband

See Also

CPFSK Demodulator Baseband

2 Blocks — Alphabetical List

2-562

M-FSK Modulator Baseband
Modulate using M-ary frequency shift keying method

Library

FM, in Digital Baseband sublibrary of Modulation

Description

The M-FSK Modulator Baseband block modulates using the M-ary frequency shift
keying method. The output is a baseband representation of the modulated signal. For
information about the data types each block port supports, see “Supported Data Types”
on page 2-567.

To prevent aliasing from occurring in the output signal, set the sampling frequency
greater than the product of M and the Frequency separation parameter. Sampling
frequency is Samples per symbol divided by the input symbol period (in seconds).

Integer-Valued Signals and Binary-Valued Signals

The input and output signals for this block are discrete-time signals.

When you set the Input type parameter to Integer, the block accepts integer values
between 0 and M-1. M represents the M-ary number block parameter.

When you set the Input type parameter to Bit, the block accepts binary-valued inputs
that represent integers. The block collects binary-valued signals into groups of K =
log2(M) bits

where

K represents the number of bits per symbol.

The input vector length must be an integer multiple of K. In this configuration, the
block accepts a group of K bits and maps that group onto a symbol at the block output.

 M-FSK Modulator Baseband

2-563

The block outputs one modulated symbol, oversampled by the Samples per symbol
parameter value, for each group of K bits.

The Symbol set ordering parameter indicates how the block maps a group of K input
bits to a corresponding symbol. When you set the parameter to Binary, the block maps
[u(1) u(2) ... u(K)] to the integer

u i
K i

i

K

()2
1

-

=

Â

and assumes that this integer is the input value. u(1) is the most significant bit.

If you set M = 8, Symbol set ordering to Binary, and the binary input word is [1 1 0],
the block converts [1 1 0] to the integer 6. The block produces the same output when the
input is 6 and the Input type parameter is Integer.

When you set Symbol set ordering to Gray, the block uses a Gray-coded arrangement
and assigns binary inputs to points of a predefined Gray-coded signal constellation. The
predefined M-ary Gray-coded signal constellation assigns the binary representation

M = 8; P = [0:M-1]';

de2bi(bitxor(P,floor(P/2)), log2(M),'left-msb')

to the Pth integer.

The following tables show the typical Binary to Gray mapping for M = 8.

Binary to Gray Mapping for Bits

Binary Code Gray Code

000 000
001 001
010 011
011 010
100 110
101 111
110 101
111 100

2 Blocks — Alphabetical List

2-564

Binary to Gray Mapping for Integers

Binary Code Gray Code

0 0
1 1
2 3
3 2
4 6
5 7
6 5
7 4

Single-Rate Processing

In single-rate processing mode, the input and output signals have the same port sample
time. The block implicitly implements the rate change by making a size change at the
output when compared to the input. In this mode, the input to the block can be multiple
symbols.

• When you set Input type to Integer, the input can be a column vector, the length of
which is the number of input symbols.

• When you set Input type to Bit, the input width must be an integer multiple of K,
the number of bits per symbol.

The output width equals the product of the number of input symbols and the Samples
per symbol parameter value.

Multirate Processing

In multirate processing mode, the input and output signals have different port sample
times. In this mode, the input to the block must be one symbol.

• When you set Input type to Integer, the input must be a scalar.
• When you set Input type to Bit, the input width must equal the number of bits per

symbol.

The output sample time equals the symbol period divided by the Samples per symbol
parameter value.

 M-FSK Modulator Baseband

2-565

To run the M-FSK Modulator block in multirate mode, set Tasking mode for
periodic sample times (in Simulation > Configuration Parameters > Solver) to
SingleTasking.

Dialog Box

M-ary number
The number of frequencies in the modulated signal.

2 Blocks — Alphabetical List

2-566

Input type
Indicates whether the input consists of integers or groups of bits. If you set this
parameter to Bit, then the M-ary number parameter must be 2K for some positive
integer K.

Symbol set ordering
Determines how the block maps each group of input bits to a corresponding integer.

Frequency separation (Hz)
The distance between successive frequencies in the modulated signal.

Phase continuity
Determines whether the modulated signal changes phases in a continuous or
discontinuous way.

If you set the Phase continuity parameter to Continuous, then the modulated
signal maintains its phase even when it changes its frequency. If you set the Phase
continuity parameter to Discontinuous, then the modulated signal comprises
portions of M sinusoids of different frequencies. Thus, a change in the input value
sometimes causes a change in the phase of the modulated signal.

Samples per symbol
The number of output samples that the block produces for each integer or binary
word in the input.

Rate options
Select the rate processing option for the block.

• Enforce single-rate processing — When you select this option, the input
and output signals have the same port sample time. The block implements the
rate change by making a size change at the output when compared to the input.
The output width equals the product of the number of symbols and the Samples
per symbol parameter value.

• Allow multirate processing — When you select this option, the input and
output signals have different port sample times. The output sample time equals
the symbol period divided by the Samples per symbol parameter value.

Note: The option Inherit from input (this choice will be removed
- see release notes) will be removed in a future release. See “Frame-
Based Processing” in the Communications System Toolbox Release Notes for more
information.

 M-FSK Modulator Baseband

2-567

Output data type
You can specify the output type of the block as either a double or a single. By
default, the block sets this value to double.

Supported Data Types

Port Supported Data Types

Input • Double-precision floating point
• Boolean (bit input mode only)
• 8-, 16-, and 32-bit signed integers (integer input mode only)
• 8-, 16-, and 32-bit unsigned integers (integer input mode only)

Output • Double-precision floating point
• Single-precision floating point

Pair Block

M-FSK Demodulator Baseband

See Also

CPFSK Modulator Baseband

2 Blocks — Alphabetical List

2-568

MIMO Channel
Filter input signal through MIMO multipath fading channel

Library
Channels

Description
The MIMO Channel block filters an input signal using a multiple-input multiple-output
(MIMO) multipath fading channel.

This block accepts up to four input ports. When you set the Antenna selection
parameter to Tx, there is one additional input port. When you set the Antenna
selection parameter to Rx, there is one additional input port. When you set the
Antenna selection parameter to Tx and Rx, there are two additional input ports.
Independent of the input ports resulting from the antenna selection parameters,
when you set the Technique for generating fading samples parameter to Sum of
sinusoids and the Initial time source parameter to Input port, an additional input
port is created. When you check the Output channel path gains check box, there is an
additional output port for the channel path gains of the underlying fading process.

The fading processing per link is described in “Methodology for Simulating Multipath
Fading Channels” section and assumes the same parameters for all links of the MIMO
channel.

Signal Dimensions

Antenna
Selection
Parameter

Signal Input Transmit
Selection Input

Receive
Selection
Input

Signal Output Optional
Channel Gain
Output

Off Ns-by-Nt N/A N/A Ns-by-Nr Ns-by-Np-by-
Nt-by-Nr

 MIMO Channel

2-569

Antenna
Selection
Parameter

Signal Input Transmit
Selection Input

Receive
Selection
Input

Signal Output Optional
Channel Gain
Output

Tx Ns-by-Nst 1-by-Nt N/A Ns-by-Nr Ns-by-Np-by-
Nt-by-Nr

Rx Ns-by-Nt N/A 1-by-Nr Ns-by-Nsr Ns-by-Np-by-
Nt-by-Nr

Tx and Rx Ns-by-Nst 1-by-Nt 1-by-Nr Ns-by-Nsr Ns-by-Np-by-
Nt-by-Nr

where

• Ns represents the number of samples
• Nt represents the number of transmit antennas determined by the Transmit spatial

correlation or Number of transmit antennas
• Nr represents the number of receive antennas determined by the Receive spatial

correlation or Number of receive antennas
• Np represents the number of paths determined by the Discrete path delays or

Average path gains
• Nst represents the number of selected transmit antennas determined by the number of

ones in the Transmit Selection Input
• Nrt represents the number of selected receive antennas determined by the number of

ones in the Receive Selection Input

2 Blocks — Alphabetical List

2-570

Dialog Box

 MIMO Channel

2-571

2 Blocks — Alphabetical List

2-572

Sample rate
Specify the sample rate of the input signal in hertz as a double-precision, real,
positive scalar. The default value of this parameter is 1 Hz. To match the model
settings, set the value of this parameter so it equals number of rows of the signal
input divided by the model sample time.

 MIMO Channel

2-573

Discrete path delays
Specify the delays of the discrete paths in seconds as a double-precision, real, scalar
or row vector. The default value of this parameter is 0. When you set Discrete path
delays to a scalar, the MIMO channel is frequency flat. When you set Discrete path
delays to a vector, the MIMO channel is frequency selective.

Average path gains
Specify the average gains of the discrete paths in decibels as a double-precision, real,
scalar or row vector. The default value of this parameter is 0. Average path gains
must have the same size as Discrete path delays.

Normalize average path gains to 0 dB
Select this check box to normalize the fading processes so that the total power of the
path gains, averaged over time, is 0 dB.

Fading distribution
Specify the fading distribution of the channel as Rayleigh or Rician. The default
selection is Rayleigh.

K-factors
Specify the K factor of a Rician fading channel. This parameter accepts a double-
precision, real, positive scalar or nonnegative, non-zero row vector with the same
length as Discrete path delays. The default value of this parameter is 3. This
parameter applies when you set Fading distribution to Rician.

If you set K-factors to a scalar, the first discrete path is a Rician fading process
with a Rician K-factor of K-factors. Any remaining discrete paths are independent
Rayleigh fading processes.

If you set K-factors to a row vector, the discrete path corresponding to a positive
element of the K-factors vector is a Rician fading process with a Rician K-factor
specified by that element. The discrete path corresponding to a zero-valued element
of the K-factors vector is a Rayleigh fading process.

LOS path Doppler shifts
Specify the Doppler shift(s) for the line-of-sight component(s) of the Rician fading
channel in hertz. This parameter accepts a double-precision, real scalar or row vector.
This parameter appears when you set Fading distribution to Rician. The default
value of this parameter is 0. This parameter must have the same size as K-factors.

If you set LOS path Doppler shift to a scalar, it represents the line-of-sight
component Doppler shift of the first discrete path that is a Rician fading process.

2 Blocks — Alphabetical List

2-574

If you set LOS path Doppler shift to a row vector, the discrete path that is a Rician
fading process indicated by a positive element of the K-factors vector has its line-of-
sight component Doppler shift specified by the corresponding element of LOS path
Doppler shift.

LOS path initial phases
Specify the initial phase(s) of the line-of-sight component(s) of a Rician fading
channel in radians. This parameter accepts a double-precision, real scalar or row
vector. This parameter appears when you set Fading distribution to Rician. The
default value of this parameter is 0.

LOS path initial phase must have the same size as K-factors.

If you set LOS path initial phase to a scalar, it is the line-of-sight component initial
phase of the first discrete path that is a Rician fading process.

If you set LOS path initial phase to a row vector, the discrete path that is a Rician
fading process indicated by a positive element of the K-factors vector has its line-of-
sight component initial phase specified by the corresponding element of LOS path
initial phase.

Maximum Doppler shift
Specify the maximum Doppler shift for all channel paths in hertz as a double-
precision, real, nonnegative scalar. The default value of this parameter is 0.001 Hz.

The Doppler shift applies to all the paths of the channel. When you set this
parameter to 0, the channel remains static for the entire input.

For a Doppler spectrum type other than Gaussian and bi-Gaussian, the value of fc
is 1. For these two Doppler spectrum types, fc is dependent on the Doppler spectrum
structure fields. See the algorithm section for comm.MIMOChannel for more details
on how the cutoff frequency is defined.

Doppler spectrum
Specify the Doppler spectrum shape for all channel paths as a single Doppler
spectrum structure returned from the doppler function, or a 1-by-N cell array of
such structures. The default value of this parameter is Jakes Doppler spectrum. This
parameter applies when Maximum Doppler shift is greater than zero.

If you assign a single Doppler spectrum structure, all paths have the same specified
Doppler spectrum. If the Technique for generating fading samples parameter
is set to Sum of sinusoids, Doppler spectrum must be doppler('Jakes');
otherwise, select from the following:

 MIMO Channel

2-575

• doppler('Jakes')

• doppler('Flat')

• doppler('Rounded', ...)

• doppler('Bell', ...)

• doppler('Asymmetric Jakes', ...)

• doppler('Restricted Jakes', ...)

• doppler('Gaussian', ...)

• doppler('BiGaussian', ...)

You can assign a 1-by-N cell array of Doppler spectrum structures, chosen from
any items in the previous list. Each path has the Doppler spectrum specified by the
corresponding Doppler spectrum structure in the array. In this case, the length of the
cell array must be equal to the length of Discrete path delays.

If you run a model that contains this block in any mode except normal mode or you
set Simulate using of this block to Code generation, you must specify Doppler
spectrum to a single Doppler spectrum structure across different paths.

Spatially correlated antennas
Select this check box to specify the transmit and receive spatial correlation matrices
from which the number of transmit and receive antennas can be derived.

Clear this check box to specify the number of transmit and receive antennas using
block parameters. In this case, the transmit and receive spatial correlation matrices
are both identity matrices.

Number of transmit antennas
Specify the number of transmit antennas. You can specify up to eight antennas. This
parameter appears when you clear the Spatially correlated antennas check box.

Number of receive antennas
Specify the number of receive antennas. You can specify up to eight antennas. This
parameter appears when you clear the Spatially correlated antennas check box.

Transmit spatial correlation
Specify the spatial correlation of the transmitter as a double-precision, real or
complex, 2D matrix or 3D array. This parameter only appears when you select the
Spatially correlated antennas check box. The default value of this parameter is
[1 0;0 1].

2 Blocks — Alphabetical List

2-576

The first dimension determines the number of transmit antennas, Nt, that must
be between 1 and 8, inclusive. If the channel is frequency-flat, i.e., Discrete path
delays is a scalar, Transmit spatial correlation is a 2D Hermitian matrix of
size Nt–by–Nt. The main diagonal elements must be all ones, while the off-diagonal
elements must be real or complex numbers with a magnitude smaller than or
equal to one. If the channel is frequency-selective, i.e., Discrete path delays is a
row vector of length Np. You can specify Transmit spatial correlation as a 2D
matrix, in which case each path has the same transmit spatial correlation matrix.
Alternatively, it can be specified as a 3D array of size Nt–by–Nt–by–Np, in which case
each path can have its own different transmit spatial correlation matrix.

Receive spatial correlation
Specify the spatial correlation of the receiver as a double-precision, real or complex,
2D matrix or 3D array. This parameter only appears when you select the Spatially
correlated antennas check box. The default value of this parameter is [1 0;0 1].

The first dimension determines the number of receive antennas, Nr, that must be
between 1 and 8, inclusive. If the channel is frequency-flat, i.e., Discrete path
delays is a scalar, Receive spatial correlation is a 2D Hermitian matrix of size
Nr–by–Nr. The main diagonal elements must be all ones, while the off-diagonal
elements must be real or complex numbers with a magnitude smaller than or equal
to one. If the channel is frequency-selective, i.e., Discrete path delays is a row
vector of length Np, you can specify Receive spatial correlation as a 2D matrix, in
which case each path has the same receive spatial correlation matrix. Alternatively,
you can specify Receive spatial correlation as a 3-D array of size Nr–by–Nr–
by–Np, in which case each path can have its own different receive spatial correlation
matrix.

Antenna selection
Define the antenna selection mode as one of Off, Tx, Rx, or Tx and Rx. The default
selection is Off.

Antenna Selected Input Ports Added

Off None
Tx Tx Sel
Rx Rx Sel
Tx and Rx Tx Sel, Rx Sel

Normalize outputs by number of receive antennas

 MIMO Channel

2-577

Select this check box to normalize the channel outputs by the number of receive
antennas.

Technique for generating fading samples
Specify the channel modeling technique as either Filtered Gaussian noise or
Sum of sinusoids . The default selection is Filtered Gaussian noise.

Number of sinusoids
Specify the number of oscillators used in modeling the fading process as a positive
integer. This parameter is available when Technique for generating fading
samples is set to Sum of sinusoids. The default value is 48.

Initial time source
Specify the source of the fading model’s initial time offset as either Property or
Input port. This parameter is available when Technique for generating fading
samples is set to Sum of sinusoids. The default selection is Property.

Initial Time (s)
Specify the time at which the fading process begins as a real, non-negative scalar
measured in seconds. This parameter is available when Technique for generating
fading samples is set to Sum of sinusoids and Initial time source is set to
Property. The default value is 0.

Initial seed
Specify the initial seed of the random number generator for this block as a double-
precision, real, nonnegative integer scalar. The default setting for this parameter is
73.

Output channel path gains
Select this check box to output the channel path gains of the underlying fading
process using a secondary block output port.

Simulation using
Select either Code generation or Interpreted execution. The default selection
is Interpreted execution.

If you run a model that contains this block in any mode except normal mode or you
set Simulate using to Code generation, you must specify Doppler spectrum to
a single Doppler spectrum structure across different paths.

Channel visualization
Select among Off | Impulse response | Frequency response | Doppler
spectrum | Impulse and frequency responses to set the channel visualization

2 Blocks — Alphabetical List

2-578

option. Visualization is available only when the Technique for generating fading
samples parameter is set to Filtered Gaussian noise. The default selection is
Off.

Antenna pair to display
Select the transmit-receive antenna pair to display. This parameter is available when
Channel visualization is not Off. The default value is [1, 1].

Percentage of samples to display
Select the percentage of samples to display from among 10% | 25% | 50% | 100%.
Increasing the percentage improves display accuracy at the expense of simulation
speed. This selection is available when Channel visualization is set to Impulse
response, Frequency response, or Impulse and frequency responses. The
default value is 25%.

Path for Doppler spectrum display
Select the path for which the Doppler spectrum is displayed. The path number is a
positive integer scalar with maximum value equal to the number of discrete paths.
The default value is 1.

Supported Data Type

Port Supported Data Types

Signal input • Double
Optional transmit selection input • Binary integer
Optional receive selection input • Binary integer
Signal output • Double
Optional path gain output • Double

See Also

• AWGN Channel
• Multipath Rayleigh Fading Channel
• Multipath Rician Fading Channel
• doppler

 MIMO Channel

2-579

• comm.MIMOChannel

Selected Bibliography

[1] Oestges, C., and B. Clerckx. MIMO Wireless Communications: From Real-World
Propagation to Space-Time Code Design, Academic Press, 2007.

[2] Correira, L. M. Mobile Broadband Multimedia Networks: Techniques, Models and
Tools for 4G, Academic Press, 2006.

[3] Kermoal, J. P., L. Schumacher, K. I. Pedersen, P. E. Mogensen, and F. Frederiksen.
“A stochastic MIMO radio channel model with experimental validation." IEEE
Journal on Selected Areas of Communications. Vol. 20, Number 6, 2002, pp.
1211–1226.

[4] Jeruchim, M., P. Balaban, and K. S. Shanmugan. Simulation of Communication
Systems, Second Edition, New York, Kluwer Academic/Plenum, 2000.

[5] Pätzold, Matthias, Cheng-Xiang Wang, and Bjorn Olav Hogstand. “Two New Sum-of-
Sinusoids-Based Methods for the Efficient Generation of Multiple Uncorrelated
Rayleigh Fading Waveforms.” IEEE Transactions on Wireless Communications.
Vol. 8, Number 6, 2009, pp. 3122–3131.

2 Blocks — Alphabetical List

2-580

MLSE Equalizer
Equalize using Viterbi algorithm

Library
Equalizer Block

Description
The MLSE Equalizer block uses the Viterbi algorithm to equalize a linearly modulated
signal through a dispersive channel. The block processes input frames and outputs the
maximum likelihood sequence estimate (MLSE) of the signal, using an estimate of the
channel modeled as a finite input response (FIR) filter.

This block supports single and double data types.

Channel Estimates

The channel estimate takes the form of a column vector containing the coefficients of an
FIR filter in descending order of powers. The length of this vector is the channel memory,
which must be a multiple of the block's Samples per input symbol parameter.

To specify the channel estimate vector, use one of these methods:

• Set Specify channel via to Dialog and enter the vector in the Channel
coefficients field.

• Set Specify channel via to Input port and the block displays an additional input
port, labeled Ch, which accepts a column vector input signal.

Signal Constellation

The Signal constellation parameter specifies the constellation for the modulated
signal, as determined by the modulator in your model. Signal constellation is a vector

 MLSE Equalizer

2-581

of complex numbers, where the kth complex number in the vector is the constellation
point to which the modulator maps the integer k-1.

Note The sequence of constellation points must be consistent between the modulator in
your model and the Signal constellation parameter in this block.

For example, to specify the constellation given by the mapping

0 1

1 1

2 1

3 1

Æ + +

Æ - +

Æ - -

Æ + -

i

i

i

i

set Constellation points to [1+i, -1+i, -1-i, 1-i]. Note that the sequence
of numbers in the vector indicates how the modulator maps integers to the set of
constellation points. The labeled constellation is shown below.

1 0

2 3

2 Blocks — Alphabetical List

2-582

Preamble and Postamble

If your data is accompanied by a preamble (prefix) or postamble (suffix), then configure
the block accordingly:

• If you select Input contains preamble, then the Expected preamble parameter
specifies the preamble that you expect to precede the data in the input signal.

• If you check the Input contains postamble, then the Expected postamble
parameter specifies the postamble that you expect to follow the data in the input
signal.

The Expected preamble or Expected postamble parameter must be a vector of
integers between 0 and M-1, where M is the number of constellation points. An integer
value of k-1 in the vector corresponds to the kth entry in the Constellation points
vector and, consequently, to a modulator input of k-1.

The preamble or postamble must already be included at the beginning or end,
respectively, of the input signal to this block. If necessary, you can concatenate vectors in
Simulink software using the Matrix Concatenation block.

To learn how the block uses the preamble and postamble, see “"Reset Every Frame"
Operation Mode” on page 2-582 below.

"Reset Every Frame" Operation Mode

One way that the Viterbi algorithm can transition between successive frames is called
Reset every frame mode. You can choose this mode using the Operation mode
parameter.

In Reset every frame mode, the block decodes each frame of data independently,
resetting the state metric at the end of each frame. The traceback decoding always starts
at the state with the minimum state metric.

The initialization of state metrics depends on whether you specify a preamble and/or
postamble:

• If you do not specify a preamble, the decoder initializes the metrics of all states to 0 at
the beginning of each frame of data.

• If you specify a preamble, the block uses it to initialize the state metrics at the
beginning of each frame of data. More specifically, the block decodes the preamble and

 MLSE Equalizer

2-583

assigns a metric of 0 to the decoded state. If the preamble does not decode to a unique
state -- that is, if the length of the preamble is less than the channel memory -- the
decoder assigns a metric of 0 to all states that can be represented by the preamble.
Whenever you specify a preamble, the traceback path ends at one of the states
represented by the preamble.

• If you do not specify a postamble, the traceback path starts at the state with the
smallest metric.

• If you specify a postamble, the traceback path begins at the state represented by the
postamble. If the postamble does not decode to a unique state, the decoder identifies
the smallest of all possible decoded states that are represented by the postamble and
begins traceback decoding at that state.

Note In Reset every frame mode, the input to the MLSE Equalizer block must
contain at least T symbols, not including an optional preamble, where T is the
Traceback depth parameter.

Continuous Operation Mode

An alternative way that the Viterbi algorithm can transition between successive frames
is called Continuous with reset option mode. You can choose this mode using the
Operation mode parameter.

In Continuous with reset option mode, the block initializes the metrics of all
states to 0 at the beginning of the simulation. At the end of each frame, the block saves
the internal state metric for use in computing the traceback paths in the next frame.

If you select Enable the reset input port, the block displays another input port,
labeled Rst. In this case, the block resets the state metrics whenever the scalar value at
the Rst port is nonzero.

Decoding Delay

The MLSE Equalizer block introduces an output delay equal to the Traceback depth in
the Continuous with reset option mode, and no delay in the Reset every frame
mode.

2 Blocks — Alphabetical List

2-584

Dialog Box

Specify channel via
The method for specifying the channel estimate. If you select Input port, the block
displays a second input port that receives the channel estimate. If you select Dialog,
you can specify the channel estimate as a vector of coefficients for an FIR filter in the
Channel coefficients field.

Channel coefficients
Vector containing the coefficients of the FIR filter that the block uses for the channel
estimate. This field is visible only if you set Specify channel via to Dialog.

 MLSE Equalizer

2-585

Signal constellation
Vector of complex numbers that specifies the constellation for the modulation.

Traceback depth
The number of trellis branches (equivalently, the number of symbols) the block uses
in the Viterbi algorithm to construct each traceback path.

Operation mode
The operation mode of the Viterbi decoder. Choices are Continuous with reset
option and Reset every frame.

Input contains preamble
When checked, you can set the preamble in the Expected preamble field. This
option appears only if you set Operation mode to Reset every frame.

Expected preamble
Vector of integers between 0 and M-1 representing the preamble, where M is the size
of the constellation. This field is visible and active only if you set Operation mode
to Reset every frame and then select Input contains preamble.

Input contains postamble
When checked, you can set the postamble in the Expected postamble field. This
option appears only if you set Operation mode to Reset every frame.

Expected postamble
Vector of integers between 0 and M-1 representing the postamble, where M is the
size of the constellation. This field is visible and active only if you set Operation
mode to Reset every frame and then select Input contains postamble.

Samples per input symbol
The number of input samples for each constellation point.

Enable the reset input port
When you check this box, the block has a second input port labeled Rst. Providing
a nonzero input value to this port causes the block to set its internal memory to the
initial state before processing the input data. This option appears only if you set
Operation mode to Continuous with reset option.

2 Blocks — Alphabetical List

2-586

Example

MLSE Equalization with dynamically changing channel

This example shows how to equalize the effects of a Multipath Rayleigh Fading Channel
block. Maximum Likelihood Sequence Estimation (MLSE) estimates the data the model
transmits through a time varying dispersive channel with the least possible number of
errors. This model inputs the dynamically evolving channel coefficients of a two-path
channel to the MLSE Equalizer block. The model shows the MLSE block being used in
a typical multipath wireless Rayleigh channel. It applies the same channel estimate to
50 samples in the frame that is processed by the MLSE Equalizer. This is similar to a
practical system, where the training sequence is transmitted in regular intervals and a
channel estimate is used until the next training symbol is transmitted.

To open the example, type doc_mlse_dynamic_coeffs at the MATLAB command line.

Block Parameters in the model

• The sample time of the Bernoulli Binary Generator block is set to 5e-6, which
corresponds to a bit rate of 200 kbps, and a QPSK symbol rate of 100 ksym/sec.

• The Multipath Rayleigh Fading Channel block has a Maximum Doppler shift of 30
Hz, which is a realistic physical value. The Delay vector of the MRFC block is [0 1e-5],
which corresponds to two consecutive sample times of the input QPSK symbol data.
This reflects the simplest delay vector for a two-path channel. The Average path
gain vector is set arbitrarily to [0 -10]. The gain vector is normalized to 0 dB, so that
the average power input to the AWGN block is 1 W.

• The MLSE Equalizer block has the Traceback depth set to 10 and may be varied to
study its effect on Bit Error rate (BER).

• The QPSK Demodulator accepts an N-by-1 input frame and generates a 2N-by-1
output frame. This, along with the traceback depth of 10 results in a delay of 20 bits.
The model performs frame-based processing with 100 samples per frame. Thus, there
is a delay of 100 bits inherent in the model. The combined receive delay of 120 is set
in the Receive delay parameter of the Error Rate Calculation block, aligning the
samples.

Block Parameters in the model

The sample time of the Bernoulli Binary Generator block is set to 5e-6, which
corresponds to a bit rate of 200 kbps, and a QPSK symbol rate of 100 ksym/sec.

 MLSE Equalizer

2-587

Multipath Rayleigh Fading Channel (MRFC) block: The MRFC block has a max Doppler
shift of 30 Hz, which is a realistic physical value. The Delay vector of the MRFC block is
[0 1e-5], which corresponds to two consecutive sample times of the input QPSK symbol
data. This reflects the simplest delay vector for a two-path channel. The Gain vector of
the MRFC block is set arbitrarily to [0 -10]. The gain vector is normalized to 0 dB, so that
the average power input to the AWGN block is 1 W.

See Also

LMS Linear Equalizer, LMS Decision Feedback Equalizer, RLS Linear Equalizer, RLS
Decision Feedback Equalizer, CMA Equalizer

References

[1] Proakis, John G., Digital Communications, Fourth edition, New York, McGraw-Hill,
2001.

[2] Steele, Raymond, Ed., Mobile Radio Communications, Chichester, England, Wiley,
1996.

2 Blocks — Alphabetical List

2-588

MER Measurement
Measure signal-to-noise ratio (SNR) in digital modulation applications

Library

Utility Blocks

Description

The Modulation Error Ratio (MER) is a measure of the signal-to-noise ratio (SNR) in
digital modulation applications. You can use these types of measurements to determine
system performance in communications applications. For example, determining if an
EDGE system conforms to 3GPP radio transmission standards requires accurate MER,
Minimum MER, and 95th percentile for the MER measurements. The block measures all
outputs in decibels (dB).

The MER block receives an ideal input signal (at reference port, Ref) and an AWGN
corrupted signal (at input port, In). The MER block then outputs a measure of the
modulation accuracy by comparing these inputs. The Modulation Error Ratio is the ratio
of the average reference signal power to the mean square error. This ratio corresponds to
the SNR of the AWGN channel.

The block output defaults to MER in decibels (dB), with an option of Output minimum
MER or Output X-percentile MER values. The minimum MER represents the best-
case MER value per burst. For the X-percentile option, you can select to output the
number of symbols processed in the percentile computations.

The following table shows the output type, the activation (what selects the output
computation), computation units, and the corresponding computation duration.

Output Activation Units Computation Duration

MER Default Decibels Per burst

 MER Measurement

2-589

Output Activation Units Computation Duration

Min MER Parameter setting Decibels Per burst
Percentile MER Parameter setting Decibels Continuous
Number of symbols Parameter setting if

you select Output X-
percentile MER

None Continuous

Dimension

The block computes measurements for bursts of data. The data must be of length N
symbols, where N is the size of the burst. The block computes a unique output for each
incoming burst; therefore, the computation duration is per burst.

Input Signals

The input signals must be 1-D or 2-D sample-based column vectors or 2-D frame-based
column vectors. The input and reference signals must have identical dimensions.

Output Signals

The output is always a scalar value.

Data Type

The block accepts double, single, and fixed-point data types. The output of the block is
always double type.

Algorithms

MER is a measure of the SNR in a modulated signal calculated in dB. MER over N
symbols is

MER

I Q

e

dB

k k

n

N

k

n

N
=

+()

()

Ê

Ë

Á
Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜
˜

=

=

Â

Â
10 10

2 2

1

1

*log

2 Blocks — Alphabetical List

2-590

The MER for the kth symbol is

MER
N

I Q

e
dbk

k k

n

N

k

=

+()Ê

Ë

Á
Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜
˜

=
Â

10

1

10

2 2

1*log

The minimum MER represents the minimum MER value in a burst or

MER MER
k N

kmin
[,...,]
min= { }

Œ 1

where

ek = () ()
~ ~

I I Q Qk k k k- + -
2 2

Ik = In-phase measurement of the kth symbol in the burst

Qk = Quadrature phase measurement of the kth symbol in the burst

Ik and Qk represent ideal (reference) values. Ik

~

 and Qk

~

 represent measured (received)
symbols.

The block computes X-percentile MER by creating a histogram of all the incoming MERk
values. The output provides the MER value above which X% of the MER values lay.

 MER Measurement

2-591

Dialog Box

Output Minimum MER
Outputs the minimum MER of an input vector or frame.

Output X-percentile MER
Enables an output X-percentile MER measurement. When you select this option,
specify X-percentile value (%).

X-Percentile value (%)
This parameter only appears when you select Output X-percentile MER. The Xth
percentile is the MER value above which X% of all the computed MER values lie.
The parameter defaults to the 95th percentile. Therefore, 95% of all MER values are
above this output.

Output the number of symbols processed
Outputs the number of symbols that the block uses to compute the Output X-
percentile MER. This parameter only appears when you select Output X-
percentile MER.

2 Blocks — Alphabetical List

2-592

See Also

EVM Measurement

References

[1] Digital Video Broadcasting (DVB): Measurement guidelines for DVB systems, DVB
(ETSI) Standard ETR290, May 1997.

 M-PAM Demodulator Baseband

2-593

M-PAM Demodulator Baseband
Demodulate PAM-modulated data

Library

AM, in Digital Baseband sublibrary of Modulation

Description

The M-PAM Demodulator Baseband block demodulates a signal that was modulated
using M-ary pulse amplitude modulation. The input is a baseband representation of the
modulated signal.

The signal constellation has M points, where M is the M-ary number parameter. M
must be an even integer. The block scales the signal constellation based on how you set
the Normalization method parameter. For details on the constellation and its scaling,
see the reference page for the M-PAM Modulator Baseband block.

This block accepts a scalar or column vector input signal. For information about the data
types each block port supports, see “Supported Data Types” on page 2-600.

Note: All values of power assume a nominal impedance of 1 ohm.

Integer-Valued Signals and Binary-Valued Signals

When you set the Output type parameter to Integer, the block outputs integer values
between 0 and M-1. M represents the M-ary number block parameter.

When you set the Output type parameter to Bit, the block outputs binary-valued
signals that represent integers. The block represents each integer using a group of K =
log2(M) bits, where K represents the number of bits per symbol. The output vector length
must be an integer multiple of K.

2 Blocks — Alphabetical List

2-594

The Constellation ordering parameter indicates how the block assigns binary words to
points of the signal constellation. More details are on the reference page for the M-PAM
Modulator Baseband block.

Algorithm

The demodulator algorithm maps received input signal constellation values to M-ary
integer symbol indices between 0 and M-1 and then maps these demodulated symbol
indices to formatted output values.

The integer symbol index computation is performed by first scaling the real part of the
input signal constellation (possibly with noise) by a denormalization factor derived from
the Normalization method and related parameters. This denormalized value is added
to M-1 to translate it into an approximate range between 0 and 2 x (M-1) plus noise.
The resulting value is then rescaled via a divide-by-two (or, equivalently, a right-shift
by one bit for fixed-point operation) to obtain a range approximately between 0 and M-1
(plus noise). The noisy index value is rounded to the nearest integer and clipped, via
saturation, to the exact range of [0 M-1]. Finally, based on other block parameters, the
integer index is mapped to a symbol value that is formatted and cast to the selected
Output data type.

The following figures contains signal flow diagrams for floating-point and fixed-point
algorithm operation. The floating-point diagrams apply when the input signal data
type is double or single. The fixed-point diagrams apply when the input signal is a
signed fixed-point data type. Note that the diagram is simplified when using normalized
constellations (i.e., denormalization factor is 1).

 M-PAM Demodulator Baseband

2-595

Floating Point Fixed Point

Demodulator input

(complex)

Demodulator output

inDT

Re

Sum DT

Sum DT
Fixed-point addM-1 +

Sum DT

Divide-by-2 with round to nearest
Cast to integer

Clip range to [0 M-1]

Cast before sum

int32 Range: [0 M-1]

outDT (a built-in or

ufix data type)

Format output

Demodulator input

(complex)

inDT

Re

inDT
M-1 +

inDT

Demodulator output

Divide-by-2 with round to nearest
Cast to integer

Clip range to [0 M-1]

int32 Range: [0 M-1]

outDT (a built-in or

ufix data type)

Format output

Floating-pt add

Signal-Flow Diagrams with Denormalization Factor Equal to 1

2 Blocks — Alphabetical List

2-596

Demodulator input

(complex)

inDTinDT

Re

inDT

inDT

Denormalization
factor

Floating Point Fixed Point

M-1

+

+
inDT

Demodulator input

(complex)

Demodulator output

inDTDenormalization

factor DT

Re

Product output DT

Sum DT

Sum DT

Denormalization
factor

Fixed-point multiply

Fixed-point addM-1

+

+
Sum DT

Divide-by-2 with round to nearest
Cast to integer

Clip range to [0 M-1]

Cast before sum

int32 Range: [0 M-1]

outDT (a built-in or

ufix data type)

Format output

Demodulator output

Divide-by-2 with round to nearest
Cast to integer

Clip range to [0 M-1]

int32 Range: [0 M-1]

outDT (a built-in or

ufix data type)

Format output

Floating-pt add

Floating-pt
multiply

Signal-Flow Diagrams with Nonunity Denormalization Factor

 M-PAM Demodulator Baseband

2-597

Dialog Box

M-ary number
The number of points in the signal constellation. It must be an even integer.

Output type
Determines whether the output consists of integers or groups of bits. If this
parameter is set to Bit, then the M-ary number parameter must be 2K for some
positive integer K.

Constellation ordering
Determines how the block maps each integer to a group of output bits.

Normalization method

2 Blocks — Alphabetical List

2-598

Determines how the block scales the signal constellation. Choices are
Min. distance between symbols, Average Power, and Peak Power.

Minimum distance
The distance between two nearest constellation points. This field appears only when
Normalization method is set to Min. distance between symbols.

Average power, referenced to 1 ohm (watts)
The average power of the symbols in the constellation, referenced to 1 ohm. This field
appears only when Normalization method is set to Average Power.

Peak power, referenced to 1 ohm (watts)
The maximum power of the symbols in the constellation, referenced to 1 ohm. This
field appears only when Normalization method is set to Peak Power.

 M-PAM Demodulator Baseband

2-599

Output
When the parameter is set to 'Inherit via internal rule' (default setting),
the block will inherit the output data type from the input port. The output data type
will be the same as the input data type if the input is of type single or double.
Otherwise, the output data type will be as if this parameter is set to 'Smallest
unsigned integer'.

When the parameter is set to 'Smallest unsigned integer', the output data
type is selected based on the settings used in the Hardware Implementation pane
of the Configuration Parameters dialog box of the model. If ASIC/FPGA is selected in
the Hardware Implementation pane, the output data type is the ideal minimum
size, i.e., ufix(1) for bit outputs, and ufix(ceil(log2(M))) for integer outputs.
For all other selections, it is an unsigned integer with the smallest available word
length large enough to fit the ideal minimum size, usually corresponding to the size
of a char (e.g., uint8).

For integer outputs, this parameter can be set to Smallest unsigned integer,
int8, uint8, int16, uint16, int32, uint32, single, and double. For bit outputs,
the options are Smallest unsigned integer, int8, uint8, int16, uint16,
int32, uint32, boolean, single, or double.

Denormalization factor
This parameter applies when a fixed-point input is not normalized. It can be set to
Same word length as input or Specify word length, in which case a field is
enabled for user input. A best-precision fraction length is always used.

Product output
This parameter only applies when the input is a fixed-point signal and there is
a nonunity (not equal to 1) denormalized factor. It can be set to Inherit via
internal rule or Specify word length, which enables a field for user input.

Setting to Inherit via internal rule computes the full-precision product word
length and fraction length. “Internal Rule for Product Data Types” in DSP System
Toolbox User's Guide describes the full-precision Product output internal rule.

Setting to Specify word length allows you to define the word length. The block
computes a best-precision fraction length based on the word length specified and the
pre-computed worst-case (min/max) real world value Product output result. The
worst-case Product output result is precomputed by multiplying the denormalized
factor with the worst-case (min/max) input signal range, purely based on the input
signal data type.

2 Blocks — Alphabetical List

2-600

The block uses the Rounding method when the result of a fixed-point calculation
does not map exactly to a number representable by the data type and scaling
storing the result. For more information, see “Rounding Modes” in the DSP System
Toolbox documentation or “Rounding Mode: Simplest” in the Fixed-Point Designer
documentation.

Sum
This parameter only applies when the input is a fixed-point signal. It can be set to
Inherit via internal rule, Same as product output, or Specify word
length, in which case a field is enabled for user input

Setting Inherit via internal rule computes the full-precision sum word length
and fraction length, based on the two inputs to the Sum in the fixed-point “Hard
Decision Algorithm” signal flow diagram. The rule is the same as the fixed-point
inherit rule of the internal Accumulator data type parameter in the Simulink
“Sum” block.

Setting Specify word length allows you to define the word length. A best
precision fraction length is computed based on the word length specified in the pre-
computed maximum range necessary for the demodulated algorithm to produce
accurate results. The signed fixed-point data type that has the best precision fully
contains the values in the range 2 * (M-1) for the specified word length.

Setting to Same as product output allows the Sum data type to be the same as
the Product output data type (when Product output is used). If the Product
output is not used, then this setting will be ignored and the Inherit via
internal rule Sum setting will be used.

Supported Data Types

Port Supported Data Types

Input • Double-precision floating point
• Single-precision floating point
• Signed fixed-point

Output • Double-precision floating point
• Single-precision floating point
• Boolean when Output type is Bit

 M-PAM Demodulator Baseband

2-601

Port Supported Data Types

• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers
• ufix(1) in ASIC/FPGA when Output type is Bit
•

ufix Mlog2ÈÍ ˘̇() in ASIC/FPGA when Output type is Integer

Pair Block

M-PAM Modulator Baseband

See Also

General QAM Demodulator Baseband

2 Blocks — Alphabetical List

2-602

M-PAM Modulator Baseband

Modulate using M-ary pulse amplitude modulation

Library

AM, in Digital Baseband sublibrary of Modulation

Description

The M-PAM Modulator Baseband block modulates using M-ary pulse amplitude
modulation. The output is a baseband representation of the modulated signal. The M-ary
number parameter, M, is the number of points in the signal constellation. It must be an
even integer.

Note: All values of power assume a nominal impedance of 1 ohm.

Constellation Size and Scaling

Baseband M-ary pulse amplitude modulation using the block's default signal
constellation maps an integer m between 0 and M-1 to the complex value
2m - M + 1

Note This value is actually a real number. The block's output signal is a complex data-
type signal whose imaginary part is zero.

The block scales the default signal constellation based on how you set the
Normalization method parameter. The following table lists the possible scaling
conditions.

 M-PAM Modulator Baseband

2-603

Value of Normalization Method Parameter Scaling Condition

Min. distance between symbols The nearest pair of points in the
constellation is separated by the value of
the Minimum distance parameter

Average Power The average power of the symbols in
the constellation is the Average power
parameter

Peak Power The maximum power of the symbols in
the constellation is the Peak power
parameter

Integer-Valued Signals and Binary-Valued Signals

This block accepts a scalar or column vector input signal.

When you set the Input type parameter to Integer, the block accepts integer values
between 0 and M-1. M represents the M-ary number block parameter.

When you set the Input type parameter to Bit, the block accepts binary-valued inputs
that represent integers. The block collects binary-valued signals into groups of K =
log2(M) bits

where

K represents the number of bits per symbol.

The input vector length must be an integer multiple of K. In this configuration, the block
accepts a group of K bits and maps that group onto a symbol at the block output. The
block outputs one modulated symbol for each group of K bits.

The Constellation ordering parameter indicates how the block assigns binary words to
points of the signal constellation.

• If Constellation ordering is set to Binary, then the block uses a natural binary-
coded constellation.

• If Constellation ordering is set to Gray, then the block uses a Gray-coded
constellation.

For details about the Gray coding, see the reference page for the M-PSK Modulator
Baseband block.

2 Blocks — Alphabetical List

2-604

Constellation Visualization

The M-PAM Modulator Baseband block provides the capability to visualize a signal
constellation from the block mask. This Constellation Visualization feature allows you to
visualize a signal constellation for specific block parameters. For more information, see
the “Constellation Visualization” section of the Communications System Toolbox User's
Guide.

Dialog Box

M-ary number
The number of points in the signal constellation. It must be an even integer.

Input type

 M-PAM Modulator Baseband

2-605

Indicates whether the input consists of integers or groups of bits. If this parameter is
set to Bit, then the M-ary number parameter must be 2K for some positive integer
K.

Constellation ordering
Determines how the block maps each group of input bits to a corresponding integer.

Normalization method
Determines how the block scales the signal constellation. Choices are
Min. distance between symbols, Average Power, and Peak Power.

Minimum distance
The distance between two nearest constellation points. This field appears only when
Normalization method is set to Min. distance between symbols.

Average power, referenced to 1 ohm (watts)
The average power of the symbols in the constellation, referenced to 1 ohm. This field
appears only when Normalization method is set to Average Power.

Peak power, referenced to 1 ohm (watts)
The maximum power of the symbols in the constellation, referenced to 1 ohm. This
field appears only when Normalization method is set to Peak Power.

Output data type
The output data type can be set to double, single, Fixed-point, User-defined,
or Inherit via back propagation.

Setting this parameter to Fixed-point or User-defined enables fields in which
you can further specify details. Setting this parameter to Inherit via back
propagation, sets the output data type and scaling to match the following block.

Output word length
Specify the word length, in bits, of the fixed-point output data type. This parameter is
only visible when you select Fixed-point for the Output data type parameter.

User-defined data type
Specify any signed built-in or signed fixed-point data type. You can specify fixed-
point data types using the sfix, sint, sfrac, and fixdt functions from Fixed-Point
Designer software. This parameter is only visible when you select User-defined for
the Output data type parameter.

Set output fraction length to

2 Blocks — Alphabetical List

2-606

Specify the scaling of the fixed-point output by either of the following methods:

• Choose Best precision to have the output scaling automatically set such that
the output signal has the best possible precision.

• Choose User-defined to specify the output scaling in the Output fraction
length parameter.

This parameter is only visible when you select Fixed-point for the Output data
type parameter or when you select User-defined and the specified output data
type is a fixed-point data type.

Output fraction length
For fixed-point output data types, specify the number of fractional bits, or bits to
the right of the binary point. This parameter is only visible when you select Fixed-
point or User-defined for the Output data type parameter and User-defined
for the Set output fraction length to parameter.

Supported Data Types

Port Supported Data Types

Input • Double-precision floating point
• Single-precision floating point
• Boolean when Input type is Bit
• 8-, 16-, 32-bit signed integers
• 8-, 16-, 32-bit unsigned integers
•

ufix Mlog2ÈÍ ˘̇() when Input type is Integer

Output • Double-precision floating point
• Single-precision floating point
• Signed fixed-point

Pair Block

M-PAM Demodulator Baseband

 M-PAM Modulator Baseband

2-607

See Also

General QAM Modulator Baseband

2 Blocks — Alphabetical List

2-608

M-PSK Demodulator Baseband
Demodulate PSK-modulated data

Library
PM, in Digital Baseband sublibrary of Modulation

Description
The M-PSK Demodulator Baseband block demodulates a signal that was modulated
using the M-ary phase shift keying method. The input is a baseband representation of
the modulated signal. The input and output for this block are discrete-time signals. This
block accepts a scalar-valued or column vector input signal. For information about the
data types each block port supports, see “Supported Data Types” on page 2-619.

The M-ary number parameter, M, is the number of points in the signal constellation.

Integer-Valued Signals and Binary-Valued Signals

When you set the Output type parameter to Integer, the block outputs integer values
between 0 and M-1. M represents the M-ary number block parameter.

When you set the Output type parameter to Bit, the block outputs binary-valued
signals that represent integers. The block represents each integer using a group of K =
log2(M) bits, where K represents the number of bits per symbol. The output vector length
must be an integer multiple of K.

Depending on the demodulation scheme, the Constellation ordering or Symbol
set ordering parameter indicates how the block maps a symbol to a group of K
output bits. When you set the parameter to Binary, the block maps the integer, I, to
[u(1) u(2) ... u(K)] bits, where the individual u(1) are given by

u i
K i

i

K

()2
1

-

=

Â

 M-PSK Demodulator Baseband

2-609

u(1) is the most significant bit.

For example, if M = 8, Constellation ordering (or Symbol set ordering) is set to
Binary, and the integer symbol value is 6, then the binary input word is [1 1 0].

When you set Constellation ordering (or Symbol set ordering) to Gray, the block
assigns binary outputs from points of a predefined Gray-coded signal constellation. The
predefined M-ary Gray-coded signal constellation assigns the binary representation

de2bi(bitxor(M,floor(M/2)), log2(M),'left-msb')

to the Mth phase. The zeroth phase in the constellation is the Phase offset parameter,
and successive phases are counted in a counterclockwise direction.

Note This transformation might seem counterintuitive because it constitutes a Gray-to-
binary mapping. However, the block must use it to impose a Gray ordering on the signal
constellation, which has a natural binary ordering.

In other words, if the block input is the natural binary representation, u, of the integer
U, the block output has phase
jθ + j2πm/M

where θ is the Phase offset parameter and m is an integer between 0 and M-1 that
satisfies

m m U XOR / 2ÍÎ ˙̊ =

For example, if M = 8, the binary representations that correspond to the zeroth through
seventh phases are as follows.

M = 8; m = [0:M-1]';

de2bi(bitxor(m,floor(m/2)), log2(M),'left-msb')

ans =

 0 0 0

 0 0 1

 0 1 1

 0 1 0

2 Blocks — Alphabetical List

2-610

 1 1 0

 1 1 1

 1 0 1

 1 0 0

The following diagram shows the 8-ary Gray-coded constellation that the block uses if the

Phase offset parameter is P

8
.

011

010

001

111 101

000

110 100

.

Algorithm

For M=2, refer to the BPSK Demodulator Baseband block reference page.

For M=4, refer to the QPSK Demodulator Baseband block reference page.

For M=8 and greater, see the following signal diagrams.

 M-PSK Demodulator Baseband

2-611

output

formatting

(and data

type casting)

Output DT

symbol

index

(integer)

Re
derotate to

Phase offset

constellation

mapping to

symbol index

(simple sign

comparisons)

u I

Input DT

input DT

Input DT

complex multiply

complex multiply

Q

I

Q
Im

π 8

3 8π

derotate to

Phase offset

Input DT

input DT

Input DT
(constant

derotate

factors)

(constant

derotate

factors)

I

Q

{ , , , }0 1 2 7 …

sin()

cos

Phase offset − 3 8π

(()Phase offset − 3 8π

sin()

cos()

Phase Offset

Phase Offset

−

−

π

π

8

8

Hard-Decision 8-PSK Demodulator Floating-Point Signal Diagram

2 Blocks — Alphabetical List

2-612

output

formatting

(and data

type casting)

Output DT

symbol

index

(integer)

Re
derotate to

Phase offset

constellation

mapping to

symbol index

(simple sign

comparisons)

u I

Derotate

factor DT

input DT

Derotate

factor DT

complex fixed-point

multiply (with saturate on)

complex fixed-point

multiply (with saturate on)

Q

I

Q
Im

π 8

3 8π

derotate to

Phase offset

Derotate

factor DT

input DT

Derotate

factor DT

(constant

derotate

factors)

(constant

derotate

factors)

I

Q

{ , , , }0 1 2 7 …

sin()

cos

Phase offset − 3 8π

(()Phase offset − 3 8π

sin()

cos()

Phase Offset

Phase Offset

−

−

π

π

8

8

Hard-Decision 8-PSK Demodulator Fixed-Point Signal Diagram

 M-PSK Demodulator Baseband

2-613

Output

formatting

(and data

type casting)

Constellation mapping to

symbol index

Compute phase of constell-

ation point using

Scale floating-point result

by

Round result to nearest integer

Clip out of range values to

0 or

input

DT

Output DT

symbol

index

(integer)

I

input

DT

Q

Derotate input to

 Phase offset

u

+

+

-

+

+

+

I

input

DT

input

DT

input

DT

input

DT

Q

input DT

input DT

(constant derotate factors)

Re

Im

sin()

cos()

Phase offset

Phase offset

{ , , , ..., }

tan ()

0 1 2 1

0

2

1

1

 M

Q I

M

M

−

−

−

π

Hard-Decision M-PSK Demodulator (M > 8) Floating-Point Signal Diagram for Nontrivial Phase
Offset

2 Blocks — Alphabetical List

2-614

For M > 8, in order to improve speed and implementation costs, no derotation arithmetic
is performed when Phase offset is 0, p 2 , p , or 3 2p (i.e., when it is trivial).

Also, for M > 8, this block will only support inputs of type double and single.

The exact LLR and approximate LLR cases (soft-decision) are described in “Exact LLR
Algorithm” and “Approximate LLR Algorithm” in the Communications System Toolbox
User's Guide.

Dialog Box

M-ary number
The number of points in the signal constellation.

 M-PSK Demodulator Baseband

2-615

Phase offset
The phase of the zeroth point of the signal constellation.

Constellation ordering
Determines how the block maps a symbol to the corresponding K output bits or
integer. See the reference page for the M-PSK Modulator Baseband block for details.
Selecting User-defined displays the field Constellation mapping, allowing for
user-specified mapping.

Constellation mapping
This field appears when User-defined is selected in the drop-down list
Constellation ordering.

This parameter is a row or column vector of size M and must have unique integer
values in the range [0, M-1]. The values must be of data type double.

The first element of this vector corresponds to the constellation point at 0 + Phase
offset angle, with subsequent elements running counterclockwise. The last element
corresponds to the -2π/M + Phase offset constellation point.

Output type
Determines whether the output consists of integers or groups of bits. If this
parameter is set to Bit, the M-ary number parameter must be 2K for some positive
integer K.

Decision type
Specifies the output to be bitwise hard decision, LLR, or approximate LLR. This
parameter appears when you select Bit from the Output type drop-down list. The
output values for Log-likelihood ratio and Approximate log-likelihood ratio decision
types are of the same data type as the input values

See “Exact LLR Algorithm” and “Approximate LLR Algorithm” in the
Communications System Toolbox User's Guide for algorithm details.

Noise variance source
This field appears when Approximate log-likelihood ratio or Log-
likelihood ratio is selected for Decision type.

When set to Dialog, the noise variance can be specified in the Noise variance field.
When set to Port, a port appears on the block through which the noise variance can
be input.

2 Blocks — Alphabetical List

2-616

Noise variance
This parameter appears when the Noise variance source is set to Dialog and
specifies the noise variance in the input signal. This parameter is tunable in normal
mode, Accelerator mode and Rapid Accelerator mode.

If you use theSimulink Coder rapid simulation (RSIM) target to build an RSIM
executable, then you can tune the parameter without recompiling the model. This is
useful for Monte Carlo simulations in which you run the simulation multiple times
(perhaps on multiple computers) with different amounts of noise.

The LLR algorithm involves computing exponentials of very large or very small
numbers using finite precision arithmetic and would yield:

• Inf to -Inf if Noise variance is very high
• NaN if Noise variance and signal power are both very small

In such cases, use approximate LLR, as its algorithm does not involve computing
exponentials.

 M-PSK Demodulator Baseband

2-617

Data Types Pane for Hard-Decision

Output
For bit outputs, when Decision type is set to Hard decision, the output data type
can be set to 'Inherit via internal rule', 'Smallest unsigned integer',
double, single, int8, uint8, int16, uint16, int32, uint32, or boolean.

For integer outputs, the output data type can be set to 'Inherit via internal
rule', 'Smallest unsigned integer', double, single, int8, uint8, int16,
uint16, int32, or uint32.

When this parameter is set to 'Inherit via internal rule' (default setting),
the block will inherit the output data type from the input port. The output data
type will be the same as the input data type if the input is a floating-point type
(single or double). If the input data type is fixed-point (supported only when M-

2 Blocks — Alphabetical List

2-618

ary number is 2, 4, or 8), the output data type will work as if this parameter is set
to 'Smallest unsigned integer'.

When this parameter is set to 'Smallest unsigned integer', the output data
type is selected based on the settings used in the Hardware Implementation pane
of the Configuration Parameters dialog box of the model.

If ASIC/FPGA is selected in the Hardware Implementation pane, and Output
type is Bit, the output data type is the ideal minimum one-bit size, i.e., ufix(1).
For all other selections, it is an unsigned integer with the smallest available word
length large enough to fit one bit, usually corresponding to the size of a char (e.g.,
uint8).

If ASIC/FPGA is selected in the Hardware Implementation pane, and Output
type is Integer, the output data type is the ideal minimum integer size, i.e.,
ufix(ceil(log2(M))). For all other selections, it is an unsigned integer with the
smallest available word length large enough to fit the ideal minimum size, usually
corresponding to the size of a char (e.g., uint8).

Derotate factor
This parameter only applies when M-ary number is 2, 4, or 8, the input is fixed-
point, and Phase offset is nontrivial. The phase offset is trivial when:

•
You set M-ary number to 2 and Phase offset to a multiple of

p

2

•
You set M-ary number to 4 and Phase offset to an even multiple of p

4

When you set M-ary number to 8 there are no trivial phase offsets.

 M-PSK Demodulator Baseband

2-619

Data Types Pane for Soft-Decision

For bit outputs, when Decision type is set to Log-likelihood ratio or
Approximate log-likelihood ratio, the output data type is inherited from the
input (e.g., if the input is of data type double, the output is also of data type double).

Supported Data Types

Port Supported Data Types

Input • Double-precision floating point
• Single-precision floating point
• Signed fixed point only when M £ 8 and:

2 Blocks — Alphabetical List

2-620

Port Supported Data Types

• Output type is Integer
• Output type is Bit and Decision type is Hard-decision

Var • Double-precision floating point
• Single-precision floating point

Output • Double-precision floating point
• Single-precision floating point
• Boolean when Output type is Bit and Decision type is Hard-

decision

• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers
• ufix(1) when Output type is Bit
• ufix Mlog2() when Output type is Integer

HDL Code Generation

This block supports HDL code generation using HDL Coder. HDL Coder provides
additional configuration options that affect HDL implementation and synthesized logic.
For more information on implementations, properties, and restrictions for HDL code
generation, see M-PSK Demodulator Baseband in the HDL Coder documentation.

Pair Block

M-PSK Modulator Baseband

See Also

BPSK Demodulator Baseband, QPSK Demodulator Baseband, M-DPSK Demodulator
Baseband

 M-PSK Modulator Baseband

2-621

M-PSK Modulator Baseband
Modulate using M-ary phase shift keying method

Library

PM, in Digital Baseband sublibrary of Modulation

Description

The M-PSK Modulator Baseband block modulates using the M-ary phase shift keying
method. The output is a baseband representation of the modulated signal. The M-ary
number parameter, M, is the number of points in the signal constellation.

The block accepts scalar or column vector input signals. For information about the data
types each block port supports, see “Supported Data Types” on page 2-627.

Alternative configurations of the block determine how the block interprets its input and
arranges its output, as explained in the following sections.

Integer-Valued Signals and Binary-Valued Signals

When you set the Input type parameter to Integer, the block accepts integer values
between 0 and M-1. M represents the M-ary number block parameter.

When you set the Input type parameter to Bit, the block accepts binary-valued inputs
that represent integers. The block collects binary-valued signals into groups of K =
log2(M) bits

where

K represents the number of bits per symbol.

The input vector length must be an integer multiple of K. In this configuration, the block
accepts a group of K bits and maps that group onto a symbol at the block output. The
block outputs one modulated symbol for each group of K bits.

2 Blocks — Alphabetical List

2-622

For example, the following schematics illustrate how the block processes two 8-ary
integers or binary words in one time step. The block processes all input signals as frames.
In both cases, the Phase offset parameter is 0.

6

2

- j

j
M-PSK Input type parameter is Integer

and Constellation ordering
parameter is Binary.

1

0

1

1

0

0

- j

j
M-PSK

Input type parameter is Bit
and Constellation ordering
parameter is Binary.

The Constellation ordering parameter indicates how the block maps a group of K
input bits to a corresponding symbol. When you set the parameter to Binary, the block
maps [u(1) u(2) ... u(K)] to the integer

u i
K i

i

K

()2
1

-

=

Â

and behaves as if this integer were the input value. u(1) is the most significant bit.

For example, if you set M = 8, Constellation ordering to Binary, and the binary input
word is [1 1 0], the block converts [1 1 0] to the integer 6. The block produces the same
output when the input is 6 and the Input type parameter is Integer.

When you set Constellation ordering to Gray, the block uses a Gray-coded
arrangement and assigns binary inputs to points of a predefined Gray-coded signal
constellation. The predefined M-ary Gray-coded signal constellation assigns the binary
representation

 M-PSK Modulator Baseband

2-623

de2bi(bitxor(M,floor(M/2)), log2(M),'left-msb')

to the Mth phase. The zeroth phase in the constellation is the Phase offset parameter.
Successive phases are in the counterclockwise direction.

Note This transformation seems counterintuitive because it constitutes a Gray-to-
binary mapping. However, the block must use it to impose a Gray ordering on the signal
constellation, which has a natural binary ordering.

In other words, if the block input is the natural binary representation, u, of the integer
U, the block output has phase
jθ + j2πm/M

where θ is the Phase offset parameter and m is an integer between 0 and M-1 that
satisfies

m m U XOR / 2ÍÎ ˙̊ =

For example, if M = 8, the binary representations that correspond to the zeroth through
seventh phases are as follows.

M = 8; m = [0:M-1]';

de2bi(bitxor(m,floor(m/2)), log2(M),'left-msb')

ans =

 0 0 0

 0 0 1

 0 1 1

 0 1 0

 1 1 0

 1 1 1

 1 0 1

 1 0 0

The following diagram shows the 8-ary Gray-coded constellation that the block uses if the

Phase offset parameter is P

8
.

2 Blocks — Alphabetical List

2-624

011

010

001

111 101

000

110 100

Constellation Visualization

The M-PSK Modulator Baseband block provides the capability to visualize a signal
constellation from the block mask. This Constellation Visualization feature allows you to
visualize a signal constellation for specific block parameters. For more information, see
the “Constellation Visualization” section of the Communications System Toolbox User's
Guide.

 M-PSK Modulator Baseband

2-625

Dialog Box

M-ary number
The number of points in the signal constellation.

Phase offset
The phase of the zeroth point of the signal constellation.

Constellation ordering
Determines how the block maps an integer or group of K input bits to the
corresponding symbol.

If set to Binary, baseband M-ary phase shift keying modulation with a phase offset
of θ maps an integer m between 0 and M-1 to the complex value
exp(jθ + j2πm/M)

2 Blocks — Alphabetical List

2-626

If set to Gray, the block uses a Gray-coded signal constellation. As a result, binary
representations that differ in more than one bit cannot map to consecutive integers
modulo M.

Selecting User-defined displays the Constellation mapping parameter, which
allows you to specify the mapping technique for the block.

Constellation mapping
This field appears when you select User-defined from the Constellation
ordering drop-down list.

This parameter is a row or column vector of size M and must have unique integer
values in the range [0, M-1]. The values must be of data type double.

The first element of this vector corresponds to the constellation point at 0 + Phase
offset angle, with subsequent elements running counterclockwise. The last element
corresponds to the -2π/M + Phase offset constellation point.

Input type
Indicates whether the input consists of integers or groups of bits.

To use integer values between 0 and M-1 as inputs, set this parameter to Integer.

If this parameter is set to Bit, the M-ary number parameter must be 2K for some
positive integer K. K consecutive elements in the input represent a symbol, where K =
log2(M).

Output data type
This block supports the following output data types: double, single, Fixed-point,
User-defined, or Inherit via back propagation.

Set this property to Fixed-point or User-defined to enable parameters in
which you specify additional details. Set this property to Inherit via back
propagation to match the output data type and scaling to the following block in the
model.

Output word length
Specify the word length, in bits, of the fixed-point output data type. This parameter
appears when you select Fixed-point for the Output data type parameter.

User-defined data type
Specify any signed built-in or signed fixed-point data type. You can specify fixed-
point data types using the sfix, sint, sfrac, and fixdt functions from Fixed-Point

 M-PSK Modulator Baseband

2-627

Designer software. This parameter appears when you select User-defined for the
Output data type parameter.

Output fraction length
Specify the scaling of the fixed-point output by either of the following methods:

• Select Best precision to automatically scale the output signal so that it has
the best possible precision.

• Select User-defined to specify the output scaling in the Output fraction
length parameter.

This parameter appears when you select Fixed-point for the Output data type
parameter or when you select User-defined and the specified output data type is a
fixed-point data type.

Output fraction length
For fixed-point output data types, specify the number of fractional bits, or bits to the
right of the binary point. This parameter appears when you select Fixed-point or
User-defined for the Output data type parameter and User-defined for the
Set output fraction length to parameter.

Supported Data Types

Port Supported Data Types

Input • Double-precision floating point
• Single-precision floating point
• Boolean when Input type is Bit
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers
• ufix(1) when Input type is Bit
• ufix Mlog2() when Input type is Integer

Output • Double-precision floating point
• Single-precision floating point
• Signed Fixed point

2 Blocks — Alphabetical List

2-628

HDL Code Generation

This block supports HDL code generation using HDL Coder. HDL Coder provides
additional configuration options that affect HDL implementation and synthesized logic.
For more information on implementations, properties, and restrictions for HDL code
generation, see M-PSK Modulator Baseband in the HDL Coder documentation.

Pair Block

M-PSK Demodulator Baseband

See Also

BPSK Modulator Baseband, QPSK Modulator Baseband, M-DPSK Modulator Baseband

 M-PSK Phase Recovery

2-629

M-PSK Phase Recovery

Recover carrier phase using M-Power method

Library

Carrier Phase Recovery sublibrary of Synchronization

Description

The M-PSK Phase Recovery block recovers the carrier phase of the input signal using
the M-Power method. This feedforward, non-data-aided, clock-aided method is suitable
for systems that use baseband phase shift keying (PSK) modulation. It is also suitable
for systems that use baseband quadrature amplitude modulation (QAM), although the
results are less accurate than those for comparable PSK systems. The alphabet size for
the modulation must be an even integer.

For PSK signals, the M-ary number parameter represents the alphabet size. For QAM
signals, the M-ary number should be 4 regardless of the alphabet size because the 4-
power method is the most appropriate for QAM signals.

The M-Power method assumes that the carrier phase is constant over a series of
consecutive symbols, and returns an estimate of the carrier phase for the series. The
Observation interval parameter is the number of symbols for which the carrier phase
is assumed constant. This number must be an integer multiple of the input signal's
vector length.

Input and Output Signals

This block accepts a scalar or column vector input signal of type double or single. The
input signal represents a baseband signal at the symbol rate, so it must be complex-
valued and must contain one sample per symbol.

The outputs are as follows:

2 Blocks — Alphabetical List

2-630

• The output port labeled Sig gives the result of rotating the input signal
counterclockwise, where the amount of rotation equals the carrier phase estimate.
The Sig output is thus a corrected version of the input signal, and has the same
sample time and vector size as the input signal.

• The output port labeled Ph outputs the carrier phase estimate, in degrees, for all
symbols in the observation interval. The Ph output is a scalar signal.

Note Because the block internally computes the argument of a complex number,
the carrier phase estimate has an inherent ambiguity. The carrier phase estimate is
between -180/M and 180/M degrees and might differ from the actual carrier phase by
an integer multiple of 360/M degrees.

Delays and Latency

The block's algorithm requires it to collect symbols during a period of length
Observation interval before computing a single estimate of the carrier phase.
Therefore, each estimate is delayed by Observation interval symbols and the corrected
signal has a latency of Observation interval symbols, relative to the input signal.

 M-PSK Phase Recovery

2-631

Dialog Box

M-ary number
The number of points in the signal constellation of the transmitted PSK signal. This
value as an even integer.

Observation interval
The number of symbols for which the carrier phase is assumed constant. The
observation interval parameter must be an integer multiple of the input signal vector
length.

When this parameter is exactly equal to the vector length of the input signal,
then the block always works. When the integer multiple is not equal to 1, select
Simulation > Configuration Parameters > Solver

and set Tasking mode for periodic sample times to SingleTasking.

2 Blocks — Alphabetical List

2-632

Examples

See “Carrier Phase Recovery Example” in Communications System Toolbox User's Guide.

Algorithm

If the symbols occurring during the observation interval are x(1), x(2), x(3),..., x(L), then
the resulting carrier phase estimate is

1

1
M

x k
M

k

L

arg (())

=
Â

Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂

where the arg function returns values between -180 degrees and 180 degrees.

References

[1] Mengali, Umberto, and Aldo N. D'Andrea, Synchronization Techniques for Digital
Receivers, New York, Plenum Press, 1997.

[2] Moeneclaey, Marc, and Geert de Jonghe, "ML-Oriented NDA Carrier Synchronization
for General Rotationally Symmetric Signal Constellations," IEEE Transactions
on Communications, Vol. 42, No. 8, Aug. 1994, pp. 2531-2533.

See Also

CPM Phase Recovery, M-PSK Modulator Baseband

 M-PSK TCM Decoder

2-633

M-PSK TCM Decoder

Decode trellis-coded modulation data, modulated using PSK method

Library

TCM, in Digital Baseband sublibrary of Modulation

Description

The M-PSK TCM Decoder block uses the Viterbi algorithm to decode a trellis-
coded modulation (TCM) signal that was previously modulated using a PSK signal
constellation.

The M-ary number parameter represents the number of points in the signal
constellation, which also equals the number of possible output symbols from the
convolutional encoder. (That is, log2(M-ary number) is the number of output bit streams
from the convolutional encoder.)

The Trellis structure and M-ary number parameters in this block should match those
in the M-PSK TCM Encoder block, to ensure proper decoding.

Input and Output Signals

This block accepts a column vector input signal containing complex numbers. The input
signal must be double or single. The reset port signal must be double or Boolean.
For information about the data types each block port supports, see “Supported Data
Types” on page 2-636.

If the convolutional encoder described by the trellis structure represents a rate k/n code,
then the M-PSK TCM Decoder block's output is a binary column vector whose length is k
times the vector length of the input signal.

2 Blocks — Alphabetical List

2-634

Operation Modes

The block has three possible methods for transitioning between successive frames. The
Operation mode parameter controls which method the block uses. This parameter also
affects the range of possible values for the Traceback depth parameter, D.

• In Continuous mode, the block initializes all state metrics to zero at the beginning
of the simulation, waits until it accumulates D symbols, and then uses a sequence of
D symbols to compute each of the traceback paths. D can be any positive integer. At
the end of each frame, the block saves its internal state metric for use with the next
frame.

If you select Enable the reset input, the block displays another input port, labeled
Rst. This port receives an integer scalar signal. Whenever the value at the Rst port
is nonzero, the block resets all state metrics to zero and sets the traceback memory to
zero.

• In Truncated mode, the block treats each frame independently. The traceback path
starts at the state with the lowest metric. D must be less than or equal to the vector
length of the input.

• In Terminated mode, the block treats each frame independently. The traceback path
always starts at the all-zeros state. D must be less than or equal to the vector length
of the input. If you know that each frame of data typically ends at the all-zeros state,
then this mode is an appropriate choice.

Decoding Delay

If you set Operation mode to Continuous, then this block introduces a decoding delay
equal to Traceback depth*k bits, for a rate k/n convolutional code. The decoding delay
is the number of zeros that precede the first decoded bit in the output.

The block incurs no delay for other values of Operation mode.

 M-PSK TCM Decoder

2-635

Dialog Box

Trellis structure
MATLAB structure that contains the trellis description of the convolutional encoder.

M-ary number
The number of points in the signal constellation.

Traceback depth
The number of trellis branches (equivalently, the number of symbols) the block uses
in the Viterbi algorithm to construct each traceback path.

Operation mode
The operation mode of the Viterbi decoder. Choices are Continuous, Truncated,
and Terminated.

2 Blocks — Alphabetical List

2-636

Enable the reset input port
When you check this box, the block has a second input port labeled Rst. Providing
a nonzero input value to this port causes the block to set its internal memory to the
initial state before processing the input data. This option appears only if you set
Operation mode to Continuous.

Output data type
The output type of the block can be specified as a boolean or double. By default,
the block sets this to double.

Supported Data Types

Port Supported Data Types

Input • Double-precision floating point
• Single-precision floating point

Reset • Double-precision floating point
• Boolean

Output • Double-precision floating point
• Boolean

Pair Block

M-PSK TCM Encoder

See Also

General TCM Decoder, poly2trellis

References

[1] Biglieri, E., D. Divsalar, P. J. McLane and M. K. Simon, Introduction to Trellis-Coded
Modulation with Applications, New York, Macmillan, 1991.

 M-PSK TCM Decoder

2-637

[2] Proakis, John G., Digital Communications, Fourth edition, New York, McGraw-Hill,
2001.

2 Blocks — Alphabetical List

2-638

M-PSK TCM Encoder
Convolutionally encode binary data and modulate using PSK method

Library

TCM, in Digital Baseband sublibrary of Modulation

Description

The M-PSK TCM Encoder block implements trellis-coded modulation (TCM) by
convolutionally encoding the binary input signal and mapping the result to a PSK signal
constellation.

The M-ary number parameter is the number of points in the signal constellation, which
also equals the number of possible output symbols from the convolutional encoder. (That
is, log2(M-ary number) is equal to n for a rate k/n convolutional code.)

Input Signals and Output Signals

If the convolutional encoder described by the trellis structure represents a rate k/n code,
then the block input signal must be a binary column vector with a length of L*k for some
positive integer L.

This block accepts a binary-valued input signal. The output signal is a complex column
vector of length L.

Specifying the Encoder

To define the convolutional encoder, use the Trellis structure parameter. This
parameter is a MATLAB structure whose format is described in “Trellis Description of a
Convolutional Code” in the Communications System Toolbox documentation. You can use
this parameter field in two ways:

 M-PSK TCM Encoder

2-639

• If you want to specify the encoder using its constraint length, generator polynomials,
and possibly feedback connection polynomials, then use a poly2trellis command
within the Trellis structure field. For example, to use an encoder with a constraint
length of 7, code generator polynomials of 171 and 133 (in octal numbers), and a
feedback connection of 171 (in octal), set the Trellis structure parameter to

poly2trellis(7,[171 133],171)

• If you have a variable in the MATLAB workspace that contains the trellis structure,
then enter its name as the Trellis structure parameter. This way is faster because it
causes Simulink software to spend less time updating the diagram at the beginning of
each simulation, compared to the usage in the previous bulleted item.

The encoder registers begin in the all-zeros state. You can configure the encoder so that
it resets its registers to the all-zeros state during the course of the simulation. To do this,
set the Operation mode to Reset on nonzero input via port. The block then opens
a second input port, labeled Rst. The signal at the Rst port is a scalar signal. When it is
nonzero, the encoder resets before processing the data at the first input port.

Signal Constellations

The trellis-coded modulation technique partitions the constellation into subsets called
cosets, so as to maximize the minimum distance between pairs of points in each coset.
This block internally forms a valid partition based on the value you choose for the M-ary
number parameter.

The figure below shows the labeled set-partitioned signal constellation that the block
uses when M-ary number is 8. For constellations of other sizes, see [1].

2 Blocks — Alphabetical List

2-640

Coding Gains

Coding gains of 3 to 6 decibels, relative to the uncoded case can be achieved in the
presence of AWGN with multiphase trellis codes [3].

 M-PSK TCM Encoder

2-641

Dialog Box

Trellis structure
MATLAB structure that contains the trellis description of the convolutional encoder.

Operation mode
In Continuous mode (default setting), the block retains the encoder states at the
end of each frame, for use with the next frame.

In Truncated (reset every frame) mode, the block treats each frame
independently. I.e., the encoder states are reset to all-zeros state at the start of each
frame.

In Terminate trellis by appending bits mode, the block treats each frame
independently. For each input frame, extra bits are used to set the encoder states to
all-zeros state at the end of the frame. The output length is given by y n x s k= ◊ +() / ,
where x is the number of input bits, and s = -constraint length 1 (or, in the case
of multiple constraint lengths, s =sum(ConstraintLength(i)-1)). The block
supports this mode for column vector input signals.

2 Blocks — Alphabetical List

2-642

In Reset on nonzero input via port mode, the block has an additional input
port, labeled Rst. When the Rst input is nonzero, the encoder resets to the all-zeros
state.

M-ary number
The number of points in the signal constellation.

Output data type
The output type of the block can be specified as a single or double. By default, the
block sets this to double.

Pair Block

M-PSK TCM Decoder

See Also

General TCM Encoder, poly2trellis

References

[1] Biglieri, E., D. Divsalar, P. J. McLane and M. K. Simon, Introduction to Trellis-Coded
Modulation with Applications, New York, Macmillan, 1991.

[2] Proakis, John G., Digital Communications, Fourth edition, New York, McGraw-Hill,
2001

[3] Ungerboeck, G., “Channel Coding with Multilevel/Phase Signals”, IEEE Trans. on
Information Theory, Vol IT28, Jan. 1982, pp. 55–67.

 MSK Demodulator Baseband

2-643

MSK Demodulator Baseband
Demodulate MSK-modulated data

Library

CPM, in Digital Baseband sublibrary of Modulation

Description

The MSK Demodulator Baseband block demodulates a signal that was modulated using
the minimum shift keying method. The input signal is a baseband representation of
the modulated signal. The Phase offset parameter represents the initial phase of the
modulated waveform.

Integer-Valued Signals and Binary-Valued Signals

This block accepts a scalar-valued or column vector input signal with a data type of
single or double. If you set the Output type parameter to Integer, then the block
produces values of 1 and -1. If you set the Output type parameter to Bit, then the block
produces values of 0 and 1.

Single-Rate Processing

In single-rate processing mode, the input and output signals have the same port sample
time. The block implicitly implements the rate change by making a size change at the
output when compared to the input. The input width must be an integer multiple of the
Samples per symbol parameter value, and the input can be a column vector.

• When you set Output type to Bit, the output width is K times the number of input
symbols.

• When you set Output type to Integer, the output width is the number of input
symbols.

2 Blocks — Alphabetical List

2-644

Multirate Processing

In multirate processing mode, the input and output signals have different port sample
times. The input must be a scalar. The output symbol time is the product of the input
sample time and the Samples per symbol parameter value.

• When you set Output type to Bit, the output width equals the number of bits per
symbol.

• When you set Output type to Integer, the output is a scalar.

Traceback Depth and Output Delays

Internally, this block creates a trellis description of the modulation scheme and uses the
Viterbi algorithm. The Traceback depth parameter, D, in this block is the number of
trellis branches used to construct each traceback path. D influences the output delay,
which is the number of zero symbols that precede the first meaningful demodulated
value in the output.

• When you set the Rate options parameter to Allow multirate processing, and
the model uses a variable-step solver or a fixed-step solver with the Tasking Mode
parameter set to SingleTasking, then the delay consists of D+1 zero symbols.

• When you set the Rate options parameter to Enforce single-rate processing,
then the delay consists of D zero symbols.

The optimal Traceback depth parameter value is dependent on minimum squared
Euclidean distance calculations. Alternatively, a typical value, dependent on the
number of states, can be chosen using the “five-times-the-constraint-length” rule,
which corresponds to 5 2◊ log ()numStates . The number of states is determined by the
following equation:

numStates
p for evenm

p for odd m

L

L
=

◊

◊

Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂

-

-

2

2 2

1

1

()

()

,

,

where:

• h = m/p is the modulation index proper rational form

• m = numerator of modulation index

 MSK Demodulator Baseband

2-645

• p = denominator of modulation index
• L is the Pulse length

Dialog Box

Output type
Determines whether the output consists of bipolar or binary values.

Phase offset (rad)
The initial phase of the modulated waveform.

Samples per symbol
The number of input samples that represent each modulated symbol, which must be
a positive integer. For more information, see “Upsample Signals and Rate Changes”
in Communications System Toolbox User's Guide.

Rate options

2 Blocks — Alphabetical List

2-646

Select the rate processing method for the block.

• Enforce single-rate processing — When you select this option, the input
and output signals have the same port sample time. The block implements the
rate change by making a size change at the output when compared to the input.
The output width is the number of symbols (which is given by dividing the input
length by the Samples per symbol parameter value when the Output type
parameter is set to Integer).

• Allow multirate processing — When you select this option, the input and
output signals have different port sample times. The output period is the same as
the symbol period and equals the product of the input period and the Samples
per symbol parameter value.

Note: The option Inherit from input (this choice will be removed
- see release notes) will be removed in a future release. See “Frame-
Based Processing” in the Communications System Toolbox Release Notes for more
information.

For more information, see Single-Rate Processing and Multirate Processing in the
Description section of this page.

Traceback depth
The number of trellis branches that the MSK Demodulator Baseband block uses to
construct each traceback path.

Output data type
The output data type can be boolean, int8, int16, int32, or double.

Supported Data Types

Port Supported Data Types

Input • Double-precision floating point
• Single-precision floating point

Output • Double-precision floating point
• Boolean (When Output type set to Bit)
• 8-, 16-, and 32-bit signed integers (When Output type set to Integer)

 MSK Demodulator Baseband

2-647

Pair Block

MSK Modulator Baseband

See Also

CPM Demodulator Baseband, Viterbi Decoder

References

[1] Anderson, John B., Tor Aulin, and Carl-Erik Sundberg, Digital Phase Modulation,
New York, Plenum Press, 1986.

2 Blocks — Alphabetical List

2-648

MSK Modulator Baseband
Modulate using minimum shift keying method

Library
CPM, in Digital Baseband sublibrary of Modulation

Description
The MSK Modulator Baseband block modulates using the minimum shift keying method.
The output is a baseband representation of the modulated signal.

This block accepts a scalar-valued or column vector input signal. For a column vector
input signal, the width of the output equals the product of the number of symbols and the
value for the Samples per symbol parameter.

Integer-Valued Signals and Binary-Valued Signals

When you set the Input type parameter to Integer, then the block accepts values of 1
and -1.

When you set the Input type parameter to Bit, then the block accepts values of 0 and 1.

For information about the data types each block port supports, see the “Supported Data
Types” on page 2-650 table on this page.

Single-Rate Processing

In single-rate processing mode, the input and output signals have the same port sample
time. The block implicitly implements the rate change by making a size change at the
output when compared to the input. In this mode, the input to the block can be multiple
symbols.

• When you set Input type to Integer, the input can be a column vector, the length of
which is the number of input symbols.

 MSK Modulator Baseband

2-649

• When you set Input type to Bit, the input width must be an integer multiple of K,
the number of bits per symbol.

The output width equals the product of the number of input symbols and the Samples
per symbol parameter value.

Multirate Processing

In multirate processing mode, the input and output signals have different port sample
times. In this mode, the input to the block must be one symbol.

• When you set Input type to Integer, the input must be a scalar.
• When you set Input type to Bit, the input width must equal the number of bits per

symbol.

The output sample time equals the symbol period divided by the Samples per symbol
parameter value.

Dialog Box

Input type

2 Blocks — Alphabetical List

2-650

Indicates whether the input consists of bipolar or binary values.
Phase offset (rad)

The initial phase of the output waveform, measured in radians.
Samples per symbol

The number of output samples that the block produces for each integer or binary
word in the input, which must be a positive integer. For all non-binary schemes, as
defined by the pulse shapes, this value must be greater than 1.

For more information, see “Upsample Signals and Rate Changes” in Communications
System ToolboxUser's Guide.

Rate options
Select the rate processing option for the block.

• Enforce single-rate processing — When you select this option, the input
and output signals have the same port sample time. The block implements the
rate change by making a size change at the output when compared to the input.
The output width equals the product of the number of symbols and the Samples
per symbol parameter value.

• Allow multirate processing — When you select this option, the input and
output signals have different port sample times. The output sample time equals
the symbol period divided by the Samples per symbol parameter value.

Note: The option Inherit from input (this choice will be removed
- see release notes) will be removed in a future release. See “Frame-
Based Processing” in the Communications System Toolbox Release Notes for more
information.

Output data type
Specify the block output data type as double and single. By default, the block sets
this to double.

Supported Data Types

Port Supported Data Types

Input • Double-precision floating point

 MSK Modulator Baseband

2-651

Port Supported Data Types

• Boolean (when Input type set to Bit)
• 8-, 16-, and 32-bit signed integers (when Input type set to Integer)

Output • Double-precision floating point
• Single-precision floating point

Pair Block

MSK Demodulator Baseband

See Also

CPM Modulator Baseband

References

[1] Anderson, John B., Tor Aulin, and Carl-Erik Sundberg, Digital Phase Modulation,
New York, Plenum Press, 1986.

2 Blocks — Alphabetical List

2-652

MSK-Type Signal Timing Recovery

Recover symbol timing phase using fourth-order nonlinearity method

Library

Timing Phase Recovery sublibrary of Synchronization

Description

The MSK-Type Signal Timing Recovery block recovers the symbol timing phase of
the input signal using a fourth-order nonlinearity method. This block implements a
general non-data-aided feedback method that is independent of carrier phase recovery
but requires prior compensation for the carrier frequency offset. This block is suitable
for systems that use baseband minimum shift keying (MSK) modulation or Gaussian
minimum shift keying (GMSK) modulation.

Inputs

By default, the block has one input port. The input signal could be (but is not required to
be) the output of a receive filter that is matched to the transmitting pulse shape, or the
output of a lowpass filter that limits the amount of noise entering this block.

This block accepts a scalar-valued or column vector input signal. The input uses N
samples to represent each symbol, where N > 1 is the Samples per symbol parameter.

• For a column vector input signal, the block operates in single-rate processing mode. In
this mode, the output signal inherits its sample rate from the input signal. The input
length must be a multiple of N.

• For a scalar input signal, the block operates in multirate processing mode. In this
mode, the input and output signals have different sample rates. The output sample
rate equals N multiplied by the input sample rate.

• This block accepts input signals of type Double or Single

 MSK-Type Signal Timing Recovery

2-653

If you set the Reset parameter to On nonzero input via port, then the block has
a second input port, labeled Rst. The Rst input determines when the timing estimation
process restarts, and must be a scalar.

• If the input signal is a scalar value, the sample time of the Rst input equals the
symbol period

• If the input signal is a column vector, the sample time of the Rst input equals the
input port sample time

• This block accepts reset signals of type Double or Boolean

Outputs

The block has two output ports, labeled Sym and Ph:

• The Sym output is the result of applying the estimated phase correction to the input
signal. This output is the signal value for each symbol, which can be used for decision
purposes. The values in the Sym output occur at the symbol rate:

• For a column vector input signal of length N*R, the Sym output is a column vector
of length R having the same sample rate as the input signal.

• For a scalar input signal, the sample rate of the Sym output equals N multiplied by
the input sample rate.

• The Ph output gives the phase estimate for each symbol in the input.

The Ph output contains nonnegative real numbers less than N. Noninteger values
for the phase estimate correspond to interpolated values that lie between two values
of the input signal. The sample time of the Ph output is the same as that of the Sym
output.

Note If the Ph output is very close to either zero or Samples per symbol, or if the
actual timing phase offset in your input signal is very close to zero, then the block's
accuracy might be compromised by small amounts of noise or jitter. The block works
well when the timing phase offset is significant rather than very close to zero.

• The output signal inherits its data type from the input signal.

2 Blocks — Alphabetical List

2-654

Delays

When the input signal is a vector, this block incurs a delay of two symbols. When the
input signal is a scalar, this block incurs a delay of three symbols.

Dialog Box

Modulation type
The type of modulation in the system. Choices are MSK and GMSK.

Samples per symbol
The number of samples, N, that represent each symbol in the input signal. This must
be greater than 1.

 MSK-Type Signal Timing Recovery

2-655

Error update gain
A positive real number representing the step size that the block uses for updating
successive phase estimates. Typically, this number is less than 1/N, which
corresponds to a slowly varying phase.

This parameter is tunable in normal mode, Accelerator mode and Rapid Accelerator
mode. If you use the Simulink Coder rapid simulation (RSIM) target to build an
RSIM executable, then you can tune the parameter without recompiling the model.
For more information, see “Tunable Parameters” in the Simulink documentation.

Reset
Determines whether and under what circumstances the block restarts the phase
estimation process. Choices are None, Every frame, and On nonzero input via
port. The last option causes the block to have a second input port, labeled Rst.

Algorithm

This block's algorithm extracts timing information by passing the sampled baseband
signal through a fourth-order nonlinearity followed by a digital differentiator whose
output is smoothed to yield an error signal. The algorithm then uses the error signal to
make the sampling adjustments.

More specifically, this block uses a timing error detector whose result for the kth symbol
is e(k), given in [2] by

e k r kT T d r k T T d
D

s k s k

D

() () Re{ () (())}

() R

*
= - - + - - +

- -

+

- -

+

1 1

1

1 2
1

2
2

1
ee{ () (())}

*
r kT T d r k T T ds k s k

2
1

2
11+ + - + +

- -

e k r kT T d r k T T d
D

s k s k

D

() () Re{ () (())}

() R

*
= - - + - - +

- -

+

- -

+

1 1

1

1 2
1

2
2

1
ee{ () (())}

*
r kT T d r k T T ds k s k

2
1

2
11+ + - + +

- -

where

• r is the block's input signal
• T is the symbol period
• Ts is the sampling period

2 Blocks — Alphabetical List

2-656

• * means complex conjugate
• dk is the phase estimate for the kth symbol
• D is 1 for MSK and 2 for Gaussian MSK modulation

For more information about the role that e(k) plays in this block's algorithm, see
“Feedback Methods for Timing Phase Recovery” in Communications System Toolbox
User's Guide.

References

[1] D'Andrea, A. N., U. Mengali, and R. Reggiannini, "A Digital Approach to Clock
Recovery in Generalized Minimum Shift Keying," IEEE Transactions on
Vehicular Technology, Vol. 39, No. 3, August 1990, pp. 227-234.

[2] Mengali, Umberto and Aldo N. D'Andrea, Synchronization Techniques for Digital
Receivers, New York, Plenum Press, 1997.

See Also

Early-Late Gate Timing Recovery, Squaring Timing Recovery

 Mueller-Muller Timing Recovery

2-657

Mueller-Muller Timing Recovery

Recover symbol timing phase using Mueller-Muller method

Library

Timing Phase Recovery sublibrary of Synchronization

Description

The Mueller-Muller Timing Recovery block recovers the symbol timing phase of the input
signal using the Mueller-Muller method. This block implements a decision-directed, data-
aided feedback method that requires prior recovery of the carrier phase.

Inputs

By default, the block has one input port. Typically, the input signal is the output of a
receive filter that is matched to the transmitting pulse shape.

This block accepts a scalar-valued or column vector input signal. The input uses N
samples to represent each symbol, where N > 1 is the Samples per symbol parameter.

• For a column vector input signal, the block operates in single-rate processing mode. In
this mode, the output signal inherits its sample rate from the input signal. The input
length must be a multiple of N.

• For a scalar input signal, the block operates in multirate processing mode. In this
mode, the input and output signals have different sample rates. The output sample
rate equals N multiplied by the input sample rate.

• This block accepts input signals of type Double or Single

If you set the Reset parameter to On nonzero input via port, then the block has
a second input port, labeled Rst. The Rst input determines when the timing estimation
process restarts, and must be a scalar.

2 Blocks — Alphabetical List

2-658

• If the input signal is a scalar value, the sample time of the Rst input equals the
symbol period

• If the input signal is a column vector, the sample time of the Rst input equals the
input port sample time

• This block accepts reset signals of type Double or Boolean

Outputs

The block has two output ports, labeled Sym and Ph:

• The Sym output is the result of applying the estimated phase correction to the input
signal. This output is the signal value for each symbol, which can be used for decision
purposes. The values in the Sym output occur at the symbol rate:

• For a column vector input signal of length N*R, the Sym output is a column vector
of length R having the same sample rate as the input signal.

• For a scalar input signal, the sample rate of the Sym output equals N multiplied by
the input sample rate.

• The Ph output gives the phase estimate for each symbol in the input.

The Ph output contains nonnegative real numbers less than N. Noninteger values
for the phase estimate correspond to interpolated values that lie between two values
of the input signal. The sample time of the Ph output is the same as that of the Sym
output.

Note If the Ph output is very close to either zero or Samples per symbol, or if the
actual timing phase offset in your input signal is very close to zero, then the block's
accuracy might be compromised by small amounts of noise or jitter. The block works
well when the timing phase offset is significant rather than very close to zero.

• The output signal inherits its data type from the input signal.

Delays

When the input signal is a vector, this block incurs a delay of two symbols. When the
input signal is a scalar, this block incurs a delay of three symbols.

 Mueller-Muller Timing Recovery

2-659

Dialog Box

Samples per symbol
The number of samples, N, that represent each symbol in the input signal. This must
be greater than 1.

Error update gain
A positive real number representing the step size that the block uses for updating
successive phase estimates. Typically, this number is less than 1/N, which
corresponds to a slowly varying phase.

This parameter is tunable in normal mode, Accelerator mode and Rapid Accelerator
mode. If you use the Simulink Coder rapid simulation (RSIM) target to build an

2 Blocks — Alphabetical List

2-660

RSIM executable, then you can tune the parameter without recompiling the model.
For more information, see “Tunable Parameters” in the Simulink User's Guide.

Reset
Determines whether and under what circumstances the block restarts the phase
estimation process. Choices are None, Every , and On nonzero input via port.
The last option causes the block to have a second input port, labeled Rst.

Algorithm

This block uses a timing error detector whose result for the kth symbol is e(k), given by

e k c y kT d c y k T dk k k k() Re{ () (())}
* *

= + - - +
- -1 11

where

• y is the block's input signal
• ck is the decision based on the sample value y(kT+dk)
• T is the symbol period
• dk is the phase estimate for the kth symbol

For more information about the role that e(k) plays in this block's algorithm,
see “Feedback Methods for Timing Phase Recovery” in Communications System
ToolboxUser's Guide.

References

[1] Mengali, Umberto and Aldo N. D'Andrea, Synchronization Techniques for Digital
Receivers, New York, Plenum Press, 1997.

[2] Meyr, Heinrich, Marc Moeneclaey, and Stefan A. Fechtel, Digital Communication
Receivers, Vol 2, New York, Wiley, 1998.

[3] Mueller, K. H., and M. S. Muller, "Timing Recovery in Digital Synchronous Data
Receivers," IEEE Transactions on Communications, Vol. COM-24, May 1976, pp.
516-531.

 Mueller-Muller Timing Recovery

2-661

See Also

Early-Late Gate Timing Recovery, Squaring Timing Recovery

2 Blocks — Alphabetical List

2-662

Mu-Law Compressor

Implement µ-law compressor for source coding

Library

Source Coding

Description

The Mu-Law Compressor block implements a µ-law compressor for the input signal. The
formula for the µ-law compressor is

y
V x V

x=
+

+

log(/)

log()
sgn()

1

1

m

m

where µ is the µ-law parameter of the compressor, V is the peak magnitude of x, log is the
natural logarithm, and sgn is the signum function (sign in MATLAB).

The input can have any shape or frame status. This block processes each vector element
independently.

 Mu-Law Compressor

2-663

Dialog Box

mu value
The µ-law parameter of the compressor.

Peak signal magnitude
The peak value of the input signal. This is also the peak value of the output.

Supported Data Type

Port Supported Data Types

In • double
Out • double

Pair Block

Mu-Law Expander

2 Blocks — Alphabetical List

2-664

See Also

A-Law Compressor

References

[1] Sklar, Bernard. Digital Communications: Fundamentals and Applications. Englewood
Cliffs, N.J.: Prentice-Hall, 1988.

 Mu-Law Expander

2-665

Mu-Law Expander

Implement µ-law expander for source coding

Library

Source Coding

Description

The Mu-Law Expander block recovers data that the Mu-Law Compressor block
compressed. The formula for the µ-law expander, shown below, is the inverse of the
compressor function.

x
V

e y
y V

= -()+

m

mlog() /
sgn()

1
1

The input can have any shape or frame status. This block processes each vector element
independently.

2 Blocks — Alphabetical List

2-666

Dialog Box

mu value
The µ-law parameter of the compressor.

Peak signal magnitude
The peak value of the input signal. This is also the peak value of the output.

Supported Data Type

Port Supported Data Types

In • double
Out • double

Pair Block

Mu-Law Compressor

 Mu-Law Expander

2-667

See Also

A-Law Expander

References

[1] Sklar, Bernard. Digital Communications: Fundamentals and Applications. Englewood
Cliffs, N.J.: Prentice-Hall, 1988.

2 Blocks — Alphabetical List

2-668

Multipath Rayleigh Fading Channel
Simulate multipath Rayleigh fading propagation channel

Library

Channels

Description

The Multipath Rayleigh Fading Channel block implements a baseband simulation of a
multipath Rayleigh fading propagation channel. You can use this block to model mobile
wireless communication systems. For details about fading channels, see the references
listed below.

This block accepts a scalar value or column vector input signal. The block inherits sample
time from the input signal. The input signal must have a discrete sample time greater
than 0.

Relative motion between the transmitter and receiver causes Doppler shifts in the signal
frequency. You can specify the Doppler spectrum of the Rayleigh process using the
Doppler spectrum type parameter. For channels with multiple paths, you can assign
each path a different Doppler spectrum, by entering a vector of doppler objects in the
Doppler spectrum field.

Because a multipath channel reflects signals at multiple places, a transmitted signal
travels to the receiver along several paths, each of which may have differing lengths
and associated time delays. In the block's parameter dialog box, the Discrete path
delay vector specifies the time delay for each path. If you do not check Normalize gain
vector to 0 dB overall gain, then the Average path gain vector specifies the gain
for each path. When you check the box, the block uses a multiple of Average path gain
vector instead of the Average path gain vector itself, choosing the scaling factor so
that the channel's effective gain, considering all paths, is 0 dB.

 Multipath Rayleigh Fading Channel

2-669

The number of paths indicates the length of Discrete path delay vector or Average
path gain vector, whichever is larger. If both of these parameters are vectors, then
they must have the same length; if exactly one of these parameters contains a scalar
value, then the block expands it into a vector whose size matches that of the other vector
parameter.

The block multiplies the input signal by samples of a Rayleigh-distributed complex
random process. The scalar Initial seed parameter seeds the random number generator
and the block generates random numbers using the Ziggurat method.

Double-clicking this block during simulation with Inline parameters off or selecting
Open channel visualization at start of simulation plots the channel characteristics
using the channel visualization tool. See “Channel Visualization” in Communications
System Toolbox User's Guide for details.

2 Blocks — Alphabetical List

2-670

Dialog Box

Maximum Doppler shift (Hz)
A positive scalar value that indicates the maximum Doppler shift.

Doppler spectrum type
Specifies the Doppler spectrum of the Rayleigh process.

This parameter defaults to Jakes Doppler spectrum. Alternatively, you can also
choose any of the following types:

 Multipath Rayleigh Fading Channel

2-671

• “Flat”
• “Gaussian”
• “Rounded”
• “Restricted Jakes”
• “Asymmetrical Jakes”
• “Bi-Gaussian”
• “Bell”

For all Doppler spectrum types except Jakes and Flat, you can choose one or more
parameters to control the shape of the spectrum.

You can also select Specify as dialog parameter for the Doppler spectrum
type. Specify the Doppler spectrum by entering an object in the Doppler spectrum
field. See the doppler function reference in Communications System Toolbox User's
Guide for details on how to construct Doppler objects, and also for the meaning of the
parameters associated with the various Doppler spectrum types.

Discrete path delay vector (s)
A vector that specifies the propagation delay for each path.

Average path gain vector (dB)
A vector that specifies the gain for each path.

Normalize gain vector to 0 dB overall gain
Checking this box causes the block to scale the Gain vector parameter so that the
channel's effective gain (considering all paths) is 0 dB.

Initial seed
The scalar seed for the Gaussian noise generator.

Open channel visualization at start of simulation
Select this check box to open the channel visualization tool when a simulation begins.

Complex path gains port
Select this check box to create a port that outputs the values of the complex path
gains for each path. In this N-by-M multichannel output, N represents the number
of samples the input signal contains and M represents the number of discrete paths
(number of delays).

Channel filter delay port
Select this check box to create a port that outputs the value of the delay (in samples)
that results from the filtering operation of this block. This delay is zero if only one

2 Blocks — Alphabetical List

2-672

path is simulated, but can be greater than zero if more than one path is present.
See “Methodology for Simulating Multipath Fading Channels:” in Communications
System Toolbox User's Guide for a definition of this delay, where it is denoted as N

1 .

Algorithm
This implementation is based on the direct-form simulator described in Reference [1]. A
detailed explanation of the implementation, including a review of the different Doppler
spectra, can be found in [4].

Some wireless applications, such as standard GSM (Global System for Mobile
Communication) systems, prefer to specify Doppler shifts in terms of the speed of the
mobile. If the mobile moves at speed v making an angle of θ with the direction of wave
motion, then the Doppler shift is
fd = (vf/c)cos θ

where f is the transmission carrier frequency and c is the speed of light. The Doppler
frequency represents the maximum Doppler shift arising from motion of the mobile.

Example

Generating Ideal Theoretical BER Results for a Rayleigh Fading Channel

This example illustrates how to generate ideal theoretical BER results for a flat Rayleigh
fading channel. The model uses reproduces known theoretical results and shows the
correct BER performance for a flat Rayleigh fading channel. In this example, you will
run the model and compare the simulation results to the BERTool theoretical results for
verification purposes. Note that the EbNo value for the model's AWGN block is 5 dB. You
can change the noise power by double-clicking the AWGN block and entering another
numeric value in the EbNo parameter.

Opening the Model

You can open the model by clicking here in the MATLAB Help browser. Alternatively,
you can type doc_qpsk_rayleigh_derotated at the MATLAB command line.

Running the Model and Comparing Results

1 You can run the example by clicking Simulation > Run.

 Multipath Rayleigh Fading Channel

2-673

2 After the model collects more than 5000 errors, click the stop button.
3 Close the three scopes.
4 In the Simulink model window, double-click the Transmitter Output block. In the

mask window, click the Figure Properties tab, uncheck Open scope at start of
Simulation, then click OK.

5 In the Simulink model window, double-click the Rayleigh Channel Output block. In
the mask window, click the Figure Properties tab, uncheck Open scope at start
of Simulation, then click OK.

6 In the Simulink model window, double-click the Noisy Rayleigh Channel Output
block. In the mask window, click the Figure Properties tab, uncheck Open scope
at start of Simulation, then clock OK.

7 In the Simulink model window, double-click the Error Rate Calculation block, check
Stop simulation, enter 5000 for Target number of error, then click OK.

8 Click the play button to rerun the example.
9 Open BERTool by typing bertool at the MATLAB command line.

2 Blocks — Alphabetical List

2-674

10 In BERTool, click the Theoretical tab and make the following selections:

• For Eb/No range enter 0:10
• For Channel type, select Rayleigh
• For Diversity Order enter 1
• For Modulation Type, select PSK
• For Modulation order, select 4

11 Click Plot.
12 Since the Simulink model uses an EbNo value of 5 dB, verify the probability of error

on the BERTool curve at 5 dB. The two values should be approximately equal.

 Multipath Rayleigh Fading Channel

2-675

Click the Data Cursor button (second from right) and click on the BERTool curve
at 5dB.

See Also

Rayleigh Noise Generator, Multipath Rician Fading Channel, doppler

References

[1] Jeruchim, Michel C., Balaban, Philip, and Shanmugan, K. Sam, Simulation of
Communication Systems, Second edition, New York, Kluwer Academic/Plenum,
2000.

[2] Jakes, William C., ed. Microwave Mobile Communications, New York, IEEE Press,
1974.

2 Blocks — Alphabetical List

2-676

[3] Lee, William C. Y., Mobile Communications Design Fundamentals, 2nd Ed. New York,
Wiley, 1993.

[4] Iskander, Cyril-Daniel, A MATLAB-based Object-Oriented Approach to Multipath
Fading Channel Simulation, a MATLAB Central submission available from
www.mathworks.com.

http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=18869&objectType=file
http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=18869&objectType=file

 Multipath Rician Fading Channel

2-677

Multipath Rician Fading Channel
Simulate multipath Rician fading propagation channel

Library

Channels

Description

The Multipath Rician Fading Channel block implements a baseband simulation of a
multipath Rician fading propagation channel. You can use this block to model mobile
wireless communication systems when the transmitted signal can travel to the receiver
along a dominant line-of-sight or direct path. For more details, see “Fading Channels”.

This block accepts a scalar value or column vector input signal. The block inherits sample
time from the input signal. The input signal must have a discrete sample time greater
than 0.

Relative motion between the transmitter and receiver causes Doppler shifts in the
signal frequency. You can specify the Doppler spectrum of the Rician process using the
Doppler spectrum type pop-up menu. For channels with multiple paths, you can
assign each path a different Doppler spectrum, by entering a vector of doppler objects in
the Doppler spectrum field.

Because a multipath channel reflects signals at multiple places, a transmitted signal
travels to the receiver along several paths, each of which may have differing lengths and
associated time delays. In the block's parameter dialog box, the Discrete path delay
vector specifies the time delay for each path. If you do not check the Normalize gain
vector to 0 dB overall gain box, then the Average path gain vector specifies the
gain for each path. When you check the box, the block uses a multiple of Average path
gain vector instead of the Average path gain vector itself, choosing the scaling factor
so that the channel's effective gain considering all paths is 0 dB.

The number of paths indicates the length of Discrete path delay vector or Average
path gain vector, whichever is larger. If both of these parameters are vectors, they

2 Blocks — Alphabetical List

2-678

must have the same length; if exactly one of these parameters contains a scalar value,
the block expands it into a vector whose size matches that of the other vector parameter.

Fading causes the signal to become diffuse. The K-factor parameter, which is part of
the statistical description of the Rician distribution, represents the ratio between the
power in the line-of-sight component and the power in the diffuse component. The ratio
is expressed linearly, not in decibels. While the Average path gain vector parameter
controls the overall gain through the channel, the K-factor parameter controls the gain's
partition into line-of-sight and diffuse components.

You can specify the K-factor parameter as a scalar or a vector. If the K-factor
parameter is a scalar, then the first discrete path of the channel is a Rician fading
process (it contains a line-of-sight component) with the specified K-factor, while the
remaining discrete paths indicate independent Rayleigh fading processes (with no
line-of-sight component). If the K-factor parameter is a vector of the same size as
Discrete path delay vector, then each discrete path is a Rician fading process with a
K-factor given by the corresponding element of the vector. You can attribute the line-
of-sight component a Doppler shift, through the Doppler shift(s) of line-of-sight
component(s) parameter, and an initial phase, through the Initial phase(s) of line-of-
sight component(s). The Doppler shift(s) of line-of-sight component(s) and Initial
phase(s) of line-of-sight component(s) parameters must be of the same size as the K-
factor parameter.

The block multiplies the input signal by samples of a Rician-distributed complex random
process. The scalar Initial seed parameter seeds the random number generator and the
block generates random numbers using the Ziggurat method.

Double-clicking this block during simulation with Inline parameters off or selecting the
block dialog's check box labeled Open channel visualization at start of simulation
plots the channel characteristics using the channel visualization tool. See “Channel
Visualization” in Communications System Toolbox User's Guide for details.

 Multipath Rician Fading Channel

2-679

Dialog Box

2 Blocks — Alphabetical List

2-680

K-factor
The ratio of power in the line-of-sight component to the power in the diffuse
component. The ratio is expressed linearly, not in decibels. If K-factor is a scalar
value, then the first discrete path is a Rician fading process (it contains a line-of-
sight component) with the specified K-factor, while the remaining discrete paths are
independent Rayleigh fading processes (with no line-of-sight component). If K-factor
is a vector of the same size as Discrete path delay vector, then each discrete path
is a Rician fading process with a K-factor given by the corresponding element of the
vector.

Doppler shift(s) of line-of-sight components(s) (Hz)
The Doppler shift of the line-of-sight component. It must be a scalar (if K-factor is a
scalar) or a vector of the same size as K-factor. If this parameter contains a scalar
value, then the line-of-sight component of the first discrete path has the specified
Doppler shift, while the remaining discrete paths become independent Rayleigh
fading processes. If the parameter contains a vector, then the line-of-sight component
of each discrete path has a Doppler shift given by the corresponding element of the
vector.

Initial phase(s) of line-of-sight component(s) (rad)
The initial phase of the line-of-sight component. It must be either a scalar (if K-
factor is a scalar value) or a vector of the same size as K-factor.

Maximum diffuse Doppler shift (Hz)
A positive scalar value that indicates the maximum diffuse Doppler shift.

Doppler spectrum type
Specifies the Doppler spectrum of the Rician process.

This parameter defaults to Jakes Doppler spectrum. Alternately, you can choose any
of the following types:

• “Flat”
• “Gaussian”
• “Rounded”
• “Restricted Jakes”
• “Asymmetrical Jakes”
• “Bi-Gaussian”
• “Bell”

 Multipath Rician Fading Channel

2-681

For all Doppler spectrum types except Jakes and Flat, You can use one or more
parameters to control the shape of the spectrum.

You can also select Specify as dialog parameter for the Doppler spectrum
type. Specify the Doppler spectrum by entering an object in the Doppler spectrum
field. See the doppler function reference in Communications System Toolbox User's
Guide for details on how to construct doppler objects, and for the meaning of the
parameters associated with the various Doppler spectrum types.

Discrete delay vector(s)
A vector that specifies the propagation delay for each path.

Average path gain vector (dB)
A vector that specifies the gain for each path.

Initial seed
The scalar seed for the Gaussian noise generator.

Open channel visualization at start of simulation
Select this check box to open the channel visualization tool when a simulation begins.
This block supports channel visualization for a column vector input signal.

Complex path gains port
Select this check box to create a port that outputs the values of the complex path
gains for each path. In this N-by-M multichannel output, N represents the number of
samples the input contains and M represents the number of discrete paths (number
of delays).

Channel filter delay port
Select this check box to create a port that outputs the value of the delay (in samples)
that results from the filtering operation of this block. This delay is zero if only one
path is simulated, but can be greater than zero if more than one path is present.
See “Methodology for Simulating Multipath Fading Channels:” in Communications
System Toolbox User's Guide for a definition of this delay, where it is denoted as N

1 .

Algorithm

This implementation is based on the direct form simulator described in Reference [1]. A
detailed explanation of the implementation, including a review of the different Doppler
spectra, can be found in [4].

2 Blocks — Alphabetical List

2-682

Some wireless applications, such as standard GSM (Global System for Mobile
Communication) systems, prefer to specify Doppler shifts in terms of the speed of the
mobile. If the mobile moves at speed v making an angle of θ with the direction of wave
motion, the Doppler shift is
fd = (vf/c)cos θ

where f is the transmission carrier frequency and c is the speed of light. The Doppler
frequency is the maximum Doppler shift arising from the motion of the mobile.

See Also

Rician Noise Generator, Multipath Rayleigh Fading Channel, doppler

References

[1] Jeruchim, Michel C., Balaban, P., and Shanmugan, K. Sam, Simulation of
Communication Systems, Second edition, New York, Kluwer Academic/Plenum,
2000.

[2] Jakes, William C., ed., Microwave Mobile Communications, New York, IEEE Press,
1974.

[3] Lee, William C. Y., Mobile Communications Design Fundamentals, 2nd ed., New
York, John Wiley & Sons, Inc., 1993.

[4] Iskander, Cyril-Daniel, A MATLAB-based Object-Oriented Approach to Multipath
Fading Channel Simulation, a MATLAB Central submission available from
www.mathworks.com.

http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=18869&objectType=file
http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=18869&objectType=file

 Normalized LMS Decision Feedback Equalizer

2-683

Normalized LMS Decision Feedback Equalizer

Equalize using decision feedback equalizer that updates weights with normalized LMS
algorithm

Library

Equalizer Block

Description

The Normalized LMS Decision Feedback Equalizer block uses a decision feedback
equalizer and the normalized LMS algorithm to equalize a linearly modulated baseband
signal through a dispersive channel. During the simulation, the block uses the
normalized LMS algorithm to update the weights, once per symbol. When you set the
Number of samples per symbol parameter to 1, then the block implements a symbol-
spaced (i.e. T-spaced) equalizer. When you set the Number of samples per symbol
parameter to a value greater than 1, , the weights are updated once every Nth sample, for
a T/N-spaced equalizer.

Input and Output Signals

The Input port accepts a column vector input signal. The Desired port receives a
training sequence with a length that is less than or equal to the number of symbols
in the Input signal. Valid training symbols are those symbols listed in the Signal
constellation vector.

Set the Reference tap parameter so it is greater than zero and less than the value for
the Number of forward taps parameter.

The port labeled Equalized outputs the result of the equalization process.

2 Blocks — Alphabetical List

2-684

You can configure the block to have one or more of these extra ports:

• Mode input, as described in “Reference Signal and Operation Modes” in
Communications System Toolbox User's Guide.

• Err output for the error signal, which is the difference between the Equalized
output and the reference signal. The reference signal consists of training symbols in
training mode, and detected symbols otherwise.

• Weights output, as described in “Adaptive Algorithms” in Communications System
Toolbox User's Guide.

Decision-Directed Mode and Training Mode

To learn the conditions under which the equalizer operates in training or decision-
directed mode, see “Using Adaptive Equalizers” in Communications System Toolbox
User's Guide.

Equalizer Delay

For proper equalization, you should set the Reference tap parameter so that it
exceeds the delay, in symbols, between the transmitter's modulator output and the
equalizer input. When this condition is satisfied, the total delay, in symbols, between the
modulator output and the equalizer output is equal to
1+(Reference tap-1)/(Number of samples per symbol)

Because the channel delay is typically unknown, a common practice is to set the
reference tap to the center tap of the forward filter.

 Normalized LMS Decision Feedback Equalizer

2-685

Dialog Box

Number of forward taps

2 Blocks — Alphabetical List

2-686

The number of taps in the forward filter of the decision feedback equalizer.
Number of feedback taps

The number of taps in the feedback filter of the decision feedback equalizer.
Number of samples per symbol

The number of input samples for each symbol.
Signal constellation

A vector of complex numbers that specifies the constellation for the modulation.
Reference tap

A positive integer less than or equal to the number of forward taps in the equalizer.
Step size

The step size of the normalized LMS algorithm.
Leakage factor

The leakage factor of the normalized LMS algorithm, a number between 0 and 1. A
value of 1 corresponds to a conventional weight update algorithm, and a value of 0
corresponds to a memoryless update algorithm.

Bias
The bias parameter of the normalized LMS algorithm, a nonnegative real number.
This parameter is used to overcome difficulties when the algorithm's input signal is
small.

Initial weights
A vector that concatenates the initial weights for the forward and feedback taps.

Mode input port
If you select this check box, the block has an input port that enables you to toggle
between training and decision-directed mode. For training, the mode input must be
1, for decision directed, the mode should be 0. The equalizer will train for the length
of the Desired signal. If the mode input is not present, the equalizer will train at the
beginning of every frame for the length of the Desired signal.

Output error
If you select this check box, the block outputs the error signal, which is the difference
between the equalized signal and the reference signal.

Output weights
If you select this check box, the block outputs the current forward and feedback
weights, concatenated into one vector.

 Normalized LMS Decision Feedback Equalizer

2-687

References

[1] Farhang-Boroujeny, B., Adaptive Filters: Theory and Applications, Chichester,
England, Wiley, 1998.

See Also

Normalized LMS Linear Equalizer, LMS Decision Feedback Equalizer

2 Blocks — Alphabetical List

2-688

Normalized LMS Linear Equalizer
Equalize using linear equalizer that updates weights with normalized LMS algorithm

Library

Equalizers

Description

The Normalized LMS Linear Equalizer block uses a linear equalizer and the normalized
LMS algorithm to equalize a linearly modulated baseband signal through a dispersive
channel. During the simulation, the block uses the normalized LMS algorithm to update
the weights, once per symbol. When you set the Number of samples per symbol
parameter to 1, the block implements a symbol-spaced (i.e. T-spaced) equalizer and
updates the filter weights once for each symbol. When you set the Number of samples
per symbol parameter to a value greater than 1, the weights are updated once every Nth

sample, for a T/N-spaced equalizer.

Input and Output Signals

The Input port accepts a column vector input signal. The Desired port receives a
training sequence with a length that is less than or equal to the number of symbols
in the Input signal. Valid training symbols are those symbols listed in the Signal
constellation vector.

Set the Reference tap parameter so it is greater than zero and less than the value for
the Number of taps parameter.

The port labeled Equalized outputs the result of the equalization process.

You can configure the block to have one or more of these extra ports:

 Normalized LMS Linear Equalizer

2-689

• Mode input, as described in “Reference Signal and Operation Modes” in
Communications System Toolbox User's Guide.

• Err output for the error signal, which is the difference between the Equalized
output and the reference signal. The reference signal consists of training symbols in
training mode, and detected symbols otherwise.

• Weights output, as described in “Adaptive Algorithms” in Communications System
Toolbox User's Guide.

Decision-Directed Mode and Training Mode

To learn the conditions under which the equalizer operates in training or decision-
directed mode, see “Using Adaptive Equalizers” in Communications System Toolbox
User's Guide.

Equalizer Delay

For proper equalization, you should set the Reference tap parameter so that it
exceeds the delay, in symbols, between the transmitter's modulator output and the
equalizer input. When this condition is satisfied, the total delay, in symbols, between the
modulator output and the equalizer output is equal to
1+(Reference tap-1)/(Number of samples per symbol)

Because the channel delay is typically unknown, a common practice is to set the
reference tap to the center tap.

2 Blocks — Alphabetical List

2-690

Dialog Box

Number of taps
The number of taps in the filter of the linear equalizer.

Number of samples per symbol

 Normalized LMS Linear Equalizer

2-691

The number of input samples for each symbol.
Signal constellation

A vector of complex numbers that specifies the constellation for the modulation.
Reference tap

A positive integer less than or equal to the number of taps in the equalizer.
Step size

The step size of the normalized LMS algorithm.
Leakage factor

The leakage factor of the normalized LMS algorithm, a number between 0 and 1. A
value of 1 corresponds to a conventional weight update algorithm, and a value of 0
corresponds to a memoryless update algorithm.

Bias
The bias parameter of the normalized LMS algorithm, a nonnegative real number.
This parameter is used to overcome difficulties when the algorithm's input signal is
small.

Initial weights
A vector that lists the initial weights for the taps.

Mode input port
When you select this check box, the block has an input port that allows you to toggle
between training and decision-directed mode. For training, the mode input must be 1,
for decision directed, the mode should be 0. For every frame in which the mode input
is 1 or not present, the equalizer trains at the beginning of the frame for the length of
the desired signal.

Output error
If you check this box, the block outputs the error signal, which is the difference
between the equalized signal and the reference signal.

Output weights
If you check this box, the block outputs the current weights.

Examples

See the Adaptive Equalization example.

2 Blocks — Alphabetical List

2-692

References

[1] Farhang-Boroujeny, B., Adaptive Filters: Theory and Applications, Chichester,
England, Wiley, 1998.

See Also

Normalized LMS Decision Feedback Equalizer, LMS Linear Equalizer

 OFDM Demodulator Baseband

2-693

OFDM Demodulator Baseband
Demodulate orthogonal frequency division modulated data

Library

OFDM, in Digital Baseband sublibrary of Modulation

Description

The Orthogonal Frequency Division Modulation (OFDM) Demodulator Baseband block
demodulates an OFDM input signal. The block accepts a single input and has one or two
output ports, depending on the status of Pilot output port.

Signal Dimensions

Pilot Output Port Pilot Carrier
Indices

Signal Input Signal Output Pilot Output

false N/A N/A
2-D Npilot-by-Nsym-by-

Nr

true

3-D

NCPTotal+NFFT×Nsym-
by-Nr

Ndata-by-Nsym-by-
Nr

Npilot-by-Nsym-by-
Nt-by-Nr

where

• NCP represents the cyclic prefix length as determined by Cyclic prefix length.
• NCPTotal represents the cyclic prefix length over all the symbols. When NCP is a scalar,

NCPTotal = NCP × Nsym. When NCP is a row vector, NCPTotal = ∑ NCP.

2 Blocks — Alphabetical List

2-694

• NFFT represents the number of subcarriers as determined by FFT length.
• Nsym represents the number of symbols as determined by Number of OFDM

symbols.
• Nr represents the number of receive antennas as determined by Number of receive

antennas.
• Ndata represents the number of data subcarriers. For further information on how Ndata

is determined, see the comm.OFDMDemodulator.info reference page.
• Npilot represents the number of pilot symbols determined by the second dimension in

the Pilot subcarrier indices array.
• Nt represents the number of transmit antennas. This parameter is derived from the

third dimension of the Pilot subcarrier indices array.

 OFDM Demodulator Baseband

2-695

Dialog Box

FFT Length
Specify the FFT length, which is equivalent to the number of subcarriers. The length
of the FFT, NFFT, must be greater than or equal to 8.

Number of guard bands
Assign the number of subcarriers to the left, NleftG, and right, NrightG, guard bands.
The input is a 2-by-1 vector. The number of subcarriers must fall within [0, NFFT/2 −
1].

2 Blocks — Alphabetical List

2-696

Remove DC carrier
Select to remove the DC subcarrier.

Pilot output port
Select to separate the data from the pilot signal and output the demodulated pilot
signal.

Pilot subcarrier indices
Specify the pilot subcarrier indices. This field is available only when the Pilot
output port check box is selected. You can assign the indices can be assigned to the
same or different subcarriers for each symbol. Similarly, the pilot carrier indices can
differ across multiple transmit antennas. Depending on the desired level of control
for index assignments, the dimensions of the indices’ array vary from 1 to 3. Valid
pilot indices fall in the range

N N N N NleftG FFT FFT FFT rightG+[] + -ÈÎ ˘̊1 2 2 2, , ,∪

where the index value cannot exceed the number of subcarriers. If the number
of transmit antennas is greater than one, ensure that the indices per symbol are
mutually distinct across antennas to minimize interference.

Cyclic prefix length
Specify the length of the cyclic prefix. If you specify a scalar, the prefix length is the
same for all symbols through all antennas. If you specify a row vector of length Nsym,
the prefix length can vary across symbols but remains the same length through all
antennas.

Number of OFDM symbols
Specify the number of OFDM symbols, Nsym, in the time-frequency grid.

Number of receive antennas
Specify the number of receive antennas, Nr, as a positive integer such that Nr ≤ 64.

Simulate using
Select the simulation type from these choices:

• Code generation

• Interpreted execution

 OFDM Demodulator Baseband

2-697

Algorithms

This block implements the algorithm, inputs, and outputs described in the OFDM
Demodulator System object reference page. The object properties correspond to the
block parameters.

Supported Data Types

Port Supported Data Types

Input • Double-precision floating point
Pilot
(optional)

• Double-precision floating point

Output • Double-precision floating point

Selected Bibliography

[1] Dahlman, E., S. Parkvall, and J. Skold. 4G LTE/LTE-Advanced for Mobile
Broadband.London: Elsevier Ltd., 2011.

[2] Andrews, J. G., A. Ghosh, and R. Muhamed. Fundamentals of WiMAX.Upper Saddle
River, NJ: Prentice Hall, 2007.

Pair Block

OFDM Modulator Baseband

See Also
QPSK Demodulator Baseband | Rectangular QAM Demodulator Baseband |
comm.OFDMDemodulator

How To
• “LTE PHY Downlink with Spatial Multiplexing”

2 Blocks — Alphabetical List

2-698

• “IEEE® 802.16-2004 OFDM PHY Link, Including Space-Time Block Coding”
• “IEEE® 802.11a WLAN Physical Layer”
• “Digital Video Broadcasting - Terrestrial”

 OFDM Modulator Baseband

2-699

OFDM Modulator Baseband
Modulate using orthogonal frequency division modulation

Library
OFDM, in Digital Baseband sublibrary of Modulation

Description
The OFDM Modulator Baseband block applies OFDM modulation to an incoming data
signal. The block accepts one or two inputs depending on the state of the Pilot input
port.

Signal Dimensions

Pilot Input Port Signal Input Pilot Input Signal Output

false N/A
true

Ndata-by-Nsym-by-Nt

Npilot-by-Nsym-by-Nt

NCPTotal+NFFT×Nsym-
by-Nt

where

• Ndata represents the number of data subcarriers. For further information on how Ndata
is determined, see the comm.OFDMModulator.info reference page.

• Nsym represents the number of symbols determined by Number of OFDM symbols.
• Nt represents the number of transmit antennas determined by Number of transmit

antennas.
• Npilot represents the number of pilot symbols determined by the first dimension size in

the Pilot subcarrier indices array.
• NCP represents the cyclic prefix length as determined by Cyclic prefix length.

2 Blocks — Alphabetical List

2-700

• NCPTotal represents the cyclic prefix length over all the symbols. When NCP is a scalar,
NCPTotal = NCP × Nsym. When NCP is a row vector, NCPTotal = ∑ NCP.

• NFFT represents the number of subcarriers as determined by FFT length.

Dialog Box

 OFDM Modulator Baseband

2-701

FFT Length
Specify the FFT length, which is equivalent to the number of subcarriers. The length
of the FFT, NFFT, must be greater than or equal to 8.

Number of guard bands
Assign the number of subcarriers to the left and right guard bands. The input is a 2-
by-1 vector. The number of subcarriers must fall within [0, NFFT/2 − 1].

Insert DC null
Select to insert a null on the DC subcarrier.

Pilot input port
Select to allow the specifying of pilot subcarrier indices.

Pilot subcarrier indices
Specify the pilot subcarrier indices. This field is available only when the Pilot
input port check box is selected. You can assign the indices to the same or different
subcarriers for each symbol. Similarly, the pilot carrier indices can differ across
multiple transmit antennas. Depending on the desired level of control for index
assignments, the dimensions of the indices array vary. Valid pilot indices fall in the
range

N N N N NleftG FFT FFT FFT rightG+[] + -ÈÎ ˘̊1 2 2 2, , ,∪

where the index value cannot exceed the number of subcarriers. When the pilot
indices are the same for every symbol and transmit antenna, the property has
dimensions Npilot-by-1. When the pilot indices vary across symbols, the property
has dimensions of Npilot-by-Nsym. If there is only one symbol but multiple transmit
antennas, the property has dimensions of Npilot-by-1-by-Nt. If the indices vary across
the number of symbols and transmit antennas, the property will have dimensions
of Npilot-by-Nsym-by-Nt. If the number of transmit antennas is greater than one,
ensure that the indices per symbol are mutually distinct across antennas to minimize
interference. The default value is [12; 26; 40; 54].

Cyclic prefix length
Specify the length of the cyclic prefix. If you specify a scalar, the prefix length is
the same for all symbols through all antennas. If you specify a row vector of length
Nsym, the prefix length can vary across symbols but remains the same through all
antennas.

2 Blocks — Alphabetical List

2-702

Apply raised cosine windowing between OFDM symbols
Select to apply raised cosine windowing. Windowing is the process in which the
OFDM symbol is multiplied by a raised cosine window before transmission to reduce
the power of out-of-band subcarriers, which serves to reduce spectral regrowth.

Window length
Set the length of the raised cosine window. The field is available only when Apply
raised cosine windowing between OFDM symbols is selected. Use positive
integers having a maximum value no greater than the minimum cyclic prefix length.
For example, in a configuration in which there are four symbols with cyclic prefix
lengths of [12 16 14 18], the window length cannot exceed 12.

Number of OFDM symbols
Specify the number of OFDM symbols in the time-frequency grid.

Number of transmit antennas
Specify the number of transmit antennas, Nt, as a positive integer such that Nt ≤ 64.

Simulate using
Select the simulation type from these choices:

• Code generation

• Interpreted execution

Algorithms

This block implements the algorithm, inputs, and outputs described in the OFDM
Modulator System object reference page. The object properties correspond to the block
parameters.

Supported Data Types

Port Supported Data Types

Input • Double-precision floating point
Pilot
(optional)

• Double-precision floating point

Output • Double-precision floating point

 OFDM Modulator Baseband

2-703

Selected Bibliography

[1] Dahlman, E., S. Parkvall, and J. Skold. 4G LTE/LTE-Advanced for Mobile
Broadband.London: Elsevier Ltd., 2011.

[2] Andrews, J. G., A. Ghosh, and R. Muhamed. Fundamentals of WiMAX.Upper Saddle
River, NJ: Prentice Hall, 2007.

Pair Block

OFDM Demodulator Baseband

See Also
Rectangular QAM Modulator Baseband | comm.OFDMModulator | QPSK Modulator
Baseband

How To
• “LTE PHY Downlink with Spatial Multiplexing”
• “IEEE® 802.16-2004 OFDM PHY Link, Including Space-Time Block Coding”
• “IEEE® 802.11a WLAN Physical Layer”
• “Digital Video Broadcasting - Terrestrial”

2 Blocks — Alphabetical List

2-704

OQPSK Demodulator Baseband
Demodulate OQPSK-modulated data

Library

PM, in Digital Baseband sublibrary of Modulation

Description

The OQPSK Demodulator Baseband block demodulates a signal that was modulated
using the offset quadrature phase shift keying method. The input is a baseband
representation of the modulated signal.

The input must be a discrete-time complex signal. This block accepts a scalar-valued
or column vector input signal. For information about the data types each block port
supports, see “Supported Data Types” on page 2-711.

When you set the Output type parameter to Integer, the block outputs integer symbol
values between 0 and 3. When you set the Output type parameter to Bit, the block
outputs a 2–bit binary representation of integers, in a binary-valued vector with a length
that is an even number.

The block produces one output symbol for each pair of input samples. The input sample
period is half the period of each output integer or bit pair. The constellation used to map
bit pairs to symbols is on the reference page for the OQPSK Modulator Baseband block.

Single-Rate Processing

In single-rate processing mode, the input and output signals have the same port sample
time. The block implicitly implements the rate change by making a size change at the
output when compared to the input. The input can be an even length column vector.

• When you set Output type to Bit, the output width is 2 times the number of input
symbols.

 OQPSK Demodulator Baseband

2-705

• When you set Output type to Integer, the output width is the number of input
symbols.

To open this model, type doc_moqpskdemod_fb at the MATLAB command line.

Multirate Processing

In multirate processing mode, the input and output signals have different port sample
times. The input must be a scalar. The output symbol time is two times the input sample
time.

• When you set Output type to Bit, the output width equals 2.
• When you set Output type to Integer, the output is a scalar.

To open this model, type doc_moqpskdemod_sb at the MATLAB command line.

Delays

The modulator-demodulator pair incurs a delay, as described in “Example: Delays from
Demodulation”.

2 Blocks — Alphabetical List

2-706

Signal Flow Diagram

+

Re
complex

in D.T.

in

D.T.

in D.T.

in D.T.

in D.T.

complex

acc

D.T.

mapping

input

D.T.

Input
z-1

z-1
Optional

cast

Im

Re

Im

out D.T.

(independent

of in D.T.)

derotate factor

(phase offset

not multiple of)

Output
QPSK

Demodulator

π 2

OQPSK Fixed-Point Signal Flow Diagram

Note: Every two input samples produce one output symbol. In the preceding figure, the
dotted line represents the region comprised of input sample processing.

+

Re
complex

in D.T.

in D.T.

in D.T.

in D.T.

in D.T.

in

D.T.

(in

D.T.)

complex

out D.T.

(independent

of in D.T.)

derotate factor

(phase offset

not multiple of)

Input

Output

z
-1

z
-1

QPSK

Demodulator

Im

Re

Im

π 2

OQPSK Floating Point Signal Flow Diagram

Note: Every two input samples produce one output symbol. In the preceding figure, the
dotted line represents the region comprised of input sample processing.

 OQPSK Demodulator Baseband

2-707

Dialog Box

Phase offset (rad)
The amount by which the phase of the zeroth point of the signal constellation is
shifted from π/4.

Output type
Determines whether the output consists of integers or pairs of bits.

Rate options
Select the rate processing option for the block.

• Enforce single-rate processing — When you select this option, the input
and output signals have the same port sample time. The block implements the
rate change by making a size change at the output when compared to the input.
The output width equals half the input width for integer outputs.

2 Blocks — Alphabetical List

2-708

• Allow multirate processing — When you select this option, the input and
output signals have different port sample times. The output symbol time is two
times the input sample time.

Note: The option Inherit from input (this choice will be removed
- see release notes) will be removed in a future release. See “Frame-
Based Processing” in the Communications System Toolbox Release Notes for more
information.

Data Type Pane

Output
For bit outputs, the output data type can be set to 'Inherit via internal
rule', 'Smallest unsigned integer', double, single, int8, uint8, int16,
uint16, int32, uint32, or boolean.

 OQPSK Demodulator Baseband

2-709

For integer outputs, the output data type can be set to 'Inherit via internal
rule', 'Smallest unsigned integer', double, single, int8, uint8, int16,
uint16, int32, or uint32.

When this parameter is set to 'Inherit via internal rule' (default setting),
the block will inherit the output data type from the input port. The output data type
will be the same as the input data type if the input is a floating-point type (single
or double). If the input data type is fixed-point, the output data type will work as if
this parameter is set to 'Smallest unsigned integer'.

When this parameter is set to 'Smallest unsigned integer', the output data
type is selected based on the settings used in the Hardware Implementation pane
of the Configuration Parameters dialog box of the model.

If ASIC/FPGA is selected in the Hardware Implementation pane, and Output
type is Bit, the output data type is the ideal minimum one-bit size, i.e., ufix1. For
all other selections, it is an unsigned integer with the smallest available word length
large enough to fit one bit, usually corresponding to the size of a char (e.g., uint8).

If ASIC/FPGA is selected in the Hardware Implementation pane, and Output
type is Integer, the output data type is the ideal minimum two-bit size, i.e., ufix2.
For all other selections, it is an unsigned integer with the smallest available word
length large enough to fit two bits, usually corresponding to the size of a char (e.g.,
uint8).

Derotate factor
This parameter only applies when the input is fixed-point and Phase offset is not a

multiple of P

2
.

This can be set to Same word length as input or Specify word length, in
which case a field is enabled for user input.

Accumulator
Specify the data type for the Accumulator. You can set this parameter to Inherit
via internal rule, Same as input or Binary point scaling.

The Accumulator parameter only applies for fixed-point inputs. The selections you
make for the Rounding and Overflow parameters affect the Accumulator.

Fixed-point Communications System Toolbox blocks that must hold summation
results for further calculation usually allow you to specify the data type and scaling

2 Blocks — Alphabetical List

2-710

of the accumulator. Most such blocks cast to the accumulator data type prior to
summation:

Use the Accumulator—Mode parameter to specify how you would like to designate
the accumulator word and fraction lengths:

• When you select Inherit via internal rule, the accumulator output word
and fraction lengths are automatically calculated for you. Refer to “Inherit via
Internal Rule” for more information.

• When you select Same as product output, these characteristics match those
of the product output.

• When you select Same as input, these characteristics match those of the first
input to the block.

• When you select Binary point scaling, you are able to enter the word length
and the fraction length of the accumulator, in bits.

• When you select Slope and bias scaling, you are able to enter the word
length, in bits, and the slope of the accumulator. The bias of all signals in DSP
System Toolbox software is zero.

Rounding
The block uses the Rounding method when the result of a fixed-point calculation
does not map exactly to a number representable by the data type and scaling
storing the result. For more information, see “Rounding Modes” in DSP System
Toolbox User's Guide or “Rounding Mode: Simplest” in the Fixed-Point Designer
documentation.

Overflow

 OQPSK Demodulator Baseband

2-711

Specify the method of storing the result when the magnitude of a fixed-point
calculation result that does not does not fit within the range of the data type selected.
You can select either Wrap or Saturate for this parameter.

For more information refer to “Overflow” in the Precision and Range subsection of
DSP System Toolbox.

Mapping input
This can be set to Same as accumulator or Binary point scaling. This
parameter only applies for fixed-point inputs.

Supported Data Types

Port Supported Data Types

Input • Double-precision floating point
• Single-precision floating point
• Signed fixed point

Output • Double-precision floating point
• Single-precision floating point
• Boolean when Output type is Bit
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers
• ufix(1) in ASIC/FPGA when Output type is Bit
• ufix(2) in ASIC/FPGA when Output type is Integer

Pair Block

OQPSK Modulator Baseband

See Also

QPSK Demodulator Baseband

2 Blocks — Alphabetical List

2-712

OQPSK Modulator Baseband

Modulate using offset quadrature phase shift keying method

Library

PM, in Digital Baseband sublibrary of Modulation

Description

The OQPSK Modulator Baseband block modulates using the offset quadrature phase
shift keying method. The block outputs a baseband representation of the modulated
signal.

Note: The OQPSK modulator block upsamples by a factor of 2.

When you set the Input type parameter to Integer, valid input values are 0, 1, 2, and
3. In this case, the block accepts a scalar or a column vector input signal.

When you set the Input type parameter to Bit, a binary-valued vector is a valid input
value. In this case, the block accepts a column vector input signal with a length that is an
even integer.

For information about the data types each block port supports, see “Supported Data
Types” on page 2-718.

The constellation the block uses to map bit pairs to symbols is shown in the following
figure. If you set the Phase offset parameter to a nonzero value, then the constellation
rotates by that value.

 OQPSK Modulator Baseband

2-713

10 00

11 01

Single-Rate Processing

In single-rate processing mode, the input and output signals have the same port sample
time. The block implicitly implements the rate change by making a size change at the
output when compared to the input. In this mode, the input to the block can be multiple
symbols.

• When you set Input type to Integer, the input can be a scalar value or column
vector, the length of which is the number of input symbols.

• When you set Input type to Bit, the input width must be an integer multiple of two.

The output sample period is half the period of each integer or bit pair in the input.

2 Blocks — Alphabetical List

2-714

To open this model, type doc_moqpskmod_fb at the MATLAB command line.

Multirate Processing

In multirate processing mode, the input and output signals have different port sample
times. In this mode, the input to the block must be one symbol.

• When you set Input type to Integer, the input must be a scalar value.
• When you set Input type to Bit, the input width must equal 2.

The output sample time equals one-half the symbol period. The first output symbol is an
initial condition of zero that is unrelated to the input values.

 OQPSK Modulator Baseband

2-715

To open this model, type doc_moqpskmod_sb at the MATLAB command line.

Delays

The modulator-demodulator pair incurs a delay, as described in “Delays in Digital
Modulation”.

2 Blocks — Alphabetical List

2-716

Dialog Box

Phase offset (rad)
The amount by which the block shifts the phase of the zeroth point of the signal
constellation from π/4.

Input type
Indicates whether the input consists of integers or pairs of bits.

Rate options
Select the rate processing option for the block.

• Enforce single-rate processing — When you select this option, the input
and output signals have the same port sample time. The block implements the
rate change by making a size change at the output when compared to the input.
The output width equals two times the number of symbols for integer inputs.

• Allow multirate processing — When you select this option, the input and
output signals have different port sample times. The output sample time equals
one-half the symbol period.

 OQPSK Modulator Baseband

2-717

Note: The option Inherit from input (this choice will be removed
- see release notes) will be removed in a future release. See “Frame-
Based Processing” in the Communications System Toolbox Release Notes for more
information.

Output data type
Select the output data type as double, single, Fixed-point, User-defined, or
Inherit via back propagation.

Setting this parameter to Fixed-point or User-defined enables fields in which
you can further specify details. Setting this parameter to Inherit via back
propagation, sets the output data type and scaling to match the following block.

Output word length
Specify the word length, in bits, of the fixed-point output data type. This parameter is
only visible when you select Fixed-point for the Output data type parameter.

User-defined data type
Specify any signed built-in or signed fixed-point data type. You can specify fixed-
point data types using the sfix, sint, sfrac, and fixdt functions from Fixed-
Point Designer. This parameter is only visible when you select User-defined for
the Output data type parameter.

Set output fraction length to
Specify the scaling of the fixed-point output by either of the following methods:

• When you select Best precision the block sets the output scaling so the output
signal has the best possible precision.

• When you select User-defined you specify the output scaling using the Output
fraction length parameter.

This parameter applies when you select Fixed-point for the Output data type
parameter or you select User-defined and the specified output data type is a fixed-
point data type.

Output fraction length
For fixed-point output data types, specify the number of fractional bits, or bits to the
right of the binary point. This parameter applies when you select Fixed-point or
User-defined for the Output data type parameter and User-defined for the
Set output fraction length to parameter.

2 Blocks — Alphabetical List

2-718

Supported Data Types

Port Supported Data Types

Input • Double-precision floating point
• Single-precision floating point
• Boolean when Input type is Bit
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers
• ufix(1) when Input type is Bit
• ufix(2) when Input type is Integer

Output • Double-precision floating point
• Single-precision floating point
• Signed fixed point

Pair Block

OQPSK Demodulator Baseband

See Also

QPSK Modulator Baseband

 OSTBC Combiner

2-719

OSTBC Combiner
Combine inputs for received signals and channel estimate according to orthogonal space-
time block code (OSTBC)

Library

MIMO

Description

The OSTBC Combiner block combines the input signal (from all of the receive antennas)
and the channel estimate signal to extract the soft information of the symbols that were
encoded using an OSTBC. The input channel estimate may not be constant during each
codeword block transmission and the combining algorithm uses only the estimate for the
first symbol period per codeword block. A symbol demodulator or decoder would follow
the Combiner block in a MIMO communications system.

The block conducts the combining operation for each symbol independently. The
combining algorithm depends on the structure of the OSTBC. For more information, see
the “OSTBC Combining Algorithms” section of this help page.

Dimension

Along with the time and spatial domains for OSTBC transmission, the block supports an
optional dimension, over which the combining calculation is independent. This dimension
can be thought of as the frequency domain for OFDM-based applications. The following
illustration indicates the supported dimensions for inputs and output of the OSTBC
Combiner block.

2 Blocks — Alphabetical List

2-720

The following table describes each variable for the block.

Variable Description

F The additional dimension; typically the frequency dimension.
The combining calculation is independent of this dimension.

N Number of transmit antennas.
M Number of receive antennas.
T Output symbol sequence length in time domain.
R Symbol rate of the code.

Note: On the two inputs, T/R is the symbol sequence length in the time domain.

F can be any positive integers. M can be 1 through 8, indicated by the Number of
receive antennas parameter. N can be 2, 3 or 4, indicated by the Number of transmit
antennas parameter. The time domain length T/R must be a multiple of the codeword
block length (2 for Alamouti; 4 for all other OSTBC). For N = 2, T/R must be a multiple
of 2. When N > 2, T/R must be a multiple of 4. R defaults to 1 for 2 antennas. R can be

either 3

4
 or 1

2
 for more than 2 antennas.

The supported dimensions for the block depend upon the values of F and M. For one
receive antenna (M = 1), the received signal input must be a column vector or a full 2–D
matrix, depending on the value for F. The corresponding channel estimate input must be
a full 2-D or 3-D matrix.

For more than one receive antenna (M > 1), the received signal input must be a full 2-D
or 3-D matrix, depending on the value for F. Correspondingly, the channel estimate input
must be a 3-D or 4-D matrix, depending on the value for F.

To understand the block's dimension propagation, refer to the following table.

 OSTBC Combiner

2-721

 Input 1 (Received
Signal)

Input 2 (Channel
Estimate)

Output

F = 1 and M = 1 Column vector 2-D Column vector
F = 1 and M > 1 2-D 3-D Column vector
F > 1 and M = 1 2-D 3-D 2-D
F > 1 and M > 1 3-D 4-D 2-D

Data Type

For information about the data types each block port supports, see the “Supported Data
Type” on page 2-728 table on this page. The output signal inherits the data type from
the inputs. The block supports different fixed-point properties for the two inputs. For
fixed-point signals, the output word length and fractional length depend on the block’s
mask parameter settings. See Fixed-Point Signals for more information about fixed-point
data propagation of this block.

Frames

The output inherits the frameness of the received signal input. For either column vector
or full 2-D matrix input signal, the input can be either frame-based or sample-based. A
3–D or 4–D matrix input signal must have sample-based input.

OSTBC Combining Algorithms

The OSTBC Combiner block supports five different OSTBC combining computation
algorithms. Depending on the selection for Rate and Number of transmit antennas,
you can select one of the algorithms shown in the following table.

Transmit
Antenna

Rate Computational Algorithm per Codeword Block Length

2 1
ˆ

ˆ

,

,

,
*

, ,
*

,
*

, ,
*

s

s

h r h r

h r h rH

j j j j

j j j j

1

2

1 1 2 2

2 1 1 2

1
2

Ê

Ë
Á

ˆ

¯
˜ =

+

-

Ê

Ë

Á
Á

ˆ̂

¯

˜
˜
◊

=
Â
j

M

1

3 1/2
ˆ

ˆ

,
*

, , ,
*

,
*

,

,
*

, ,

s

s

h r h r h r

h r hH

j j j j j j

j j

1

2

1 1 2 2 3 3

2 1 1

1
2

Ê

Ë
Á

ˆ

¯
˜ =

+ +

- jj j j jj

M

r h r2 3 41 ,
*

, ,
*-

Ê

Ë

Á
Á

ˆ

¯

˜
˜
◊

=
Â

2 Blocks — Alphabetical List

2-722

Transmit
Antenna

Rate Computational Algorithm per Codeword Block Length

3 3/4
ˆ

ˆ

ˆ

,
*

, , ,
*

, ,
*

,
*

s

s

s

h r h r h r

h r
H

j j j j j j

j

1

2

3

1 1 2 2 3 3

2
1

2

Ê

Ë

Á
Á
Á

ˆ

¯

˜
˜
˜

=

+ -

11 1 2 3 4

3 1 1 3 2 4

, , ,
*

, ,
*

,
*

, , ,
*

, ,
*

j j j j j

j j j j j j

h r h r

h r h r h r

- -

+ +

Ê

Ë

Á
Á
Á
ÁÁÁ

ˆ

¯

˜
˜
˜
˜̃

◊
=
Â
j

M

1

4 1/2
ˆ

ˆ

,
*

, , ,
*

,
*

, , , ,
*

s

s

h r h r h r h r

H

j j j j j j j j j1

2

1 1 2 2 3 3 3 4 41
2

Ê

Ë
Á

ˆ

¯
˜ =

+ + +

hh r h r h r h rj j j j j j j jj

M

2 1 1 2 4 3 3 41 ,
*

, , ,
*

,
*

, , ,
*- + -

Ê

Ë

Á
Á

ˆ

¯

˜
˜
◊

=
Â

4 3/4
ˆ

ˆ

ˆ

,
*

, , ,
*

, ,
* *

,s

s

s

h r h r h r h

H

j j j j j j j
1

2

3

1 1 2 2 3 3 4

1
2

Ê

Ë

Á
Á
Á

ˆ

¯

˜
˜
˜

=

+ - - rr

h r h r h r h r

h r h r

j

j j j j j j j j

j j j

4

2 1 1 2 4 3 3 4

3 1 4 2

,
*

, ,
* *

, , , ,
*

,
*

,
*

- + -

+ ,, , ,
*

, ,
*

j j j j j

j

M

h r h r+ +

Ê

Ë

Á
Á
Á
ÁÁ

ˆ

¯

˜
˜
˜
˜̃

◊
=
Â

1 3 2 4

1

ŝk represents the estimated kth symbol in the OSTBC codeword matrix. hij represents
the estimate for the channel from the ith transmit antenna and the jth receive antenna.
The values of i and j can range from 1 to N (the number of transmit antennas) and
to M (the number of receive antennas) respectively. rlj represents the lth symbol at
the jth receive antenna per codeword block. The value of l can range from 1 to the
codeword block length. H

2 represents the summation of channel power per link, i.e.,

H hi j
j

M

i

N
2

11

2

=
==

ÂÂ

Fixed-Point Signals

Use the following formula for ŝ
1 for Alamouti code with 1 receive antenna to highlight

the data types used for fixed-point signals.

ˆ
, ,

*
, , , ,

*
, ,

*
, , , ,

*

, , ,

s
h r h r h r h r

H h h
1

1 1 1 1 2 1 2 1 1 1 1 1 2 1 2 1
2

1 1 1 1

=

+

=

+

**
, , ,

*
+h h2 1 2 1

In this equation, the data types for Product output and Accumulator correspond to
the product and summation in the numerator. Similarly, the types for Energy product

 OSTBC Combiner

2-723

output and Energy accumulator correspond to the product and summation in the
denominator.

Signal Flow Diagram for s1 Combining Calculation of Alamouti Code with One Receive Antenna

The following formula shows the data types used within the OSTBC Combiner block
for fixed-point signals for more than one receive antenna for Alamouti code, where M
represents the number of receive antennas.

ˆ
..., ,

*
, , , ,

*
,

*
, , ,

*
, ,

*

s
h r h r h r h r h rM

1
1 1 1 1 2 1 2 1 1 2 1 2 2 2 2 2 1 1

=

+ + + + + ,, , ,
*

, ,
*

, ,
*

, ,
*

, ,
* ...

M M Mh r

h h h h h h h h h

+

+ + + + +

2 2

1 1 11 2 1 2 1 1 2 1 2 2 2 2 2 11 1 2 2, ,
*

, , ,
*

M M M Mh h h+

2 Blocks — Alphabetical List

2-724

Signal Flow Diagram for Complex Multiply of a + ib and c + id

For Binary point scaling, you can not specify WLp and FLp. Instead, the blocks determine
these values implicitly from WLa and FLa

The Internal Rule for Product output and Energy product output are:

• When you select Inherit via internal rule, the “internal rule” determines WLp
and FLp. Therefore, WLa = WLp + 1 and FLa = FLp

• For Binary point scaling, you specify WLa and FLa. Therefore, WLp = WLa –1
and FLa = FLp.

For information on how the Internal Rule applies to the Accumulator and Energy
Accumulator, see “Inherit via Internal Rule” in the DSP System Toolbox User's Guide.

 OSTBC Combiner

2-725

Dialog Box

Block Parameters

Number of transmit antennas
Sets the number of transmit antennas. The block supports 2, 3, or 4 transmit
antennas. This value defaults to 2.

Rate

2 Blocks — Alphabetical List

2-726

Sets the symbol rate of the code. You can specify either 3/4 or 1/2. This field only

appears when you use more than 2 transmit antennas. This field defaults to 3

4
 for

more than 2 transmit antennas. For 2 transmit antennas, there is no rate option and
the implicit (default) rate defaults to 1.

Number of receive antennas
The number of antennas the block uses to receive signal streams. The block supports
from 1 to 8 receive antennas. This value defaults to 1.

Rounding mode

 OSTBC Combiner

2-727

Sets the rounding mode for fixed-point calculations. The block uses the rounding
mode if a value cannot be represented exactly by the specified data type and scaling.
When this occurs, the value is rounded to a representable number. For more
information refer to “Rounding” in Fixed-Point Designer.

Overflow mode
Sets the overflow mode for fixed-point calculations. Use this parameter to specify the
method to be used if the magnitude of a fixed-point calculation result does not fit into
the range of the data type and scaling that stores the result. For more information
refer to “Precision and Range” in the “Precision and Range” section of the DSP
System Toolbox User's Guide.

Product Output
Complex product in the numerator for the diversity combining. For more information
refer to the Fixed-Point Signals section of this help page.

Accumulator
Summation in the numerator for the diversity combining.

Fixed-point Communications System Toolbox blocks that must hold summation
results for further calculation usually allow you to specify the data type and scaling
of the accumulator. Most such blocks cast to the accumulator data type prior to
summation:

Use the Accumulator—Mode parameter to specify how you would like to designate
the accumulator word and fraction lengths:

• When you select Inherit via internal rule, the accumulator output word
and fraction lengths are automatically calculated for you. Refer to “Inherit via
Internal Rule” for more information.

2 Blocks — Alphabetical List

2-728

• When you select Same as product output, these characteristics match those
of the product output.

• When you select Same as input, these characteristics match those of the first
input to the block.

• When you select Binary point scaling, you are able to enter the word length
and the fraction length of the accumulator, in bits.

• When you select Slope and bias scaling, you are able to enter the word
length, in bits, and the slope of the accumulator. The bias of all signals in DSP
System Toolbox software is zero.

Energy product output
Complex product in the denominator for calculating total energy in the MIMO
channel .

Energy accumulator
Summation in the denominator for calculating total energy in the MIMO channel.

Division output
Normalized diversity combining by total energy in the MIMO channel.

Supported Data Type

Port Supported Data Types

Rx • Double-precision floating point
• Single-precision floating point
• Signed Fixed-point

cEst • Double-precision floating point
• Single-precision floating point
• Signed Fixed-point

Out • Double-precision floating point
• Single-precision floating point
• Signed Fixed-point

 OSTBC Combiner

2-729

Examples

For an example of this block in use, see “OSTBC Over 3x2 Rayleigh Fading Channel”
in the Communications System Toolbox documentation. The model shows the use of
a rate ¾ OSTBC for 3 transmit and 2 receive antennas with BPSK modulation using
independent fading links and AWGN.

You can also see the block in the Concatenated OSTBC with TCM example by typing
commtcmostbc or the IEEE 802.16–2004 OFDM PHY Link, Including Space-Time Block
Coding example by typing commwman80216dstbc at the MATLAB command line.

See Also

OSTBC Encoder

2 Blocks — Alphabetical List

2-730

OSTBC Encoder
Encode input message using orthogonal space-time block code (OSTBC)

Library

MIMO

Description

The OSTBC Encoder block encodes an input symbol sequence using orthogonal space-
time block code (OSTBC). The block maps the input symbols block-wise and concatenates
the output codeword matrices in the time domain. For more information, see the “OSTBC
Encoding Algorithms” section of this help page.

Dimension

The block supports time and spatial domains for OSTBC transmission. It also supports
an optional dimension, over which the encoding calculation is independent. This
dimension can be thought of as the frequency domain. The following illustration indicates
the supported dimensions for the inputs and output of the OSTBC Encoder block.

The following table describes the variables.

 OSTBC Encoder

2-731

Variable Description

F The additional dimension; typically the
frequency domain. The encoding does not
depend on this dimension.

T Input symbol sequence length for the time
domain.

R Symbol rate of the code.
N Number of transmit antennas.

Note: On the output, T/R is the symbol sequence length in time domain.

F can be any positive integer. N can be 2, 3 or 4, indicated by Number of transmit
antennas. For N = 2, R must be 1. For N = 3 or 4, R can be 3/4 or 1/2, indicated by Rate.
The time domain length T must be a multiple of the number of symbols in each codeword
matrix. Specifically, for N = 2 or R = 1/2, T must be a multiple of 2 and when R = 3/4, T
must be a multiple of 3.

To understand the block’s dimension propagation, refer to the following table.

Dimension Input Output

F = 1 Column vector 2-D
F > 1 2-D 3-D

Data Type

For information about the data types each block port supports, see the “Supported Data
Type” on page 2-734 table on this page. The output signal inherits the data type from
the input signal. For fixed-point signals, the complex conjugation may cause overflows
which the fixed-point parameter Overflow mode must handle.

Frames

The output signal inherits frame type from the input signal. A column vector input
requires either frame-based or sample-based input; otherwise, the input must be sample-
based.

2 Blocks — Alphabetical List

2-732

OSTBC Encoding Algorithms

The OSTBC Encoder block supports five different OSTBC encoding algorithms.
Depending on the selection for Rate and Number of transmit antennas, the block
implements one of the algorithms in the following table:

Transmit
Antenna

Rate OSTBC Codeword Matrix

2 1
s s

s s

1 2

2 1
-

Ê

Ë
ÁÁ

ˆ

¯
˜̃

* *

3 1/2
s s

s s

s

s

1 2

2 1

1

2

0

0

0 0

0 0

-

-

Ê

Ë

Á
Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜
˜

* *

*

3 3/4
s s s

s s

s s

s s

1 2 3

2 1

3 1

3 2

0

0

0

-

-

-

Ê

Ë

Á
Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜
˜

* *

* *

* *

4 1/2
s s

s s

s s

s s

1 2

2 1

1 2

2 1

0 0

0 0

0 0

0 0

-

-

Ê

Ë

Á
Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜
˜

* *

* *

4 3/4
s s s

s s s

s s s

s s s

1 2 3

2 1 3

3 1 2

3 2 1

0

0

0

0

-

-

- -

Ê

Ë

Á
Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜
˜

* *

* *

* *

 OSTBC Encoder

2-733

In each matrix, its (l, i) entry indicates the symbol transmitted from the ith antenna
in the lth time slot of the block. The value of i can range from 1 to N (the number of
transmit antennas). The value of l can range from 1 to the codeword block length.

Dialog Box

Block Parameters

Number of transmit antennas
Sets the number of antennas at the transmitter side. The block supports 2, 3, or 4
transmit antennas. The value defaults to 2.

Rate
Sets the symbol rate of the code. You can specify either 3/4 or 1/2. This field only

appears when using more than 2 transmit antennas. This field defaults to 3

4
 for

more than 2 transmit antennas. For 2 transmit antennas, there is no rate option and
the rate defaults to 1.

2 Blocks — Alphabetical List

2-734

Overflow mode
Sets the overflow mode for fixed-point calculations. Use this parameter to specify the
method to be used if the magnitude of a fixed-point calculation result does not fit into
the range of the data type and scaling that stores the result. For more information
refer to “Precision and Range” in DSP System Toolbox.

Supported Data Type

Port Supported Data Types

In • Double-precision floating point
• Single-precision floating point
• Signed Fixed-point

Out • Double-precision floating point
• Single-precision floating point
• Signed Fixed-point

 OSTBC Encoder

2-735

Examples

For an example of this block in use, see “OSTBC Over 3x2 Rayleigh Fading Channel”
in the Communications System Toolbox documentation. The model shows the use of
a rate ¾ OSTBC for 3 transmit and 2 receive antennas with BPSK modulation using
independent fading links and AWGN

You can also see the block in the Concatenated OSTBC with TCM example by typing
commtcmostbc. View the IEEE 802.16–2004 OFDM PHY Link, Including Space-Time
Block Coding example by typing commwman80216dstbc at the MATLAB command line.

See Also

OSTBC Combiner

2 Blocks — Alphabetical List

2-736

OVSF Code Generator

Generate orthogonal variable spreading factor (OVSF) code from set of orthogonal codes

Library

Spreading Codes

Description

The OVSF Code Generator block generates an OVSF code from a set of orthogonal
codes. OVSF codes were first introduced for 3G communication systems. OVSF codes are
primarily used to preserve orthogonality between different channels in a communication
system.

OVSF codes are defined as the rows of an N-by-N matrix, CN, which is defined recursively
as follows. First, define C1 = [1]. Next, assume that CN is defined and let CN(k) denote the
kth row of CN. Define C2N by

C

C C

C C

C C

C C

C N

N

N N

N N

N N

N N

N

2

0 0

0 0

1 1

1 1

1

=

-

-

-

() ()

() ()

() ()

() ()

... ...

()) ()

() ()

C N

C N C N

N

N N

-

- - -

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙

1

1 1

Note that CN is only defined for N a power of 2. It follows by induction that the rows of CN
are orthogonal.

The OVSF codes can also be defined recursively by a tree structure, as shown in the
following figure.

 OVSF Code Generator

2-737

C8,0 = [1 1 1 1 1 1 1 1]

C4,0 = [1 1 1 1]

C4,1 = [1 1 -1 -1]

C4,2 = [1 -1 1 -1]

C4,3 = [1 -1 -1 1]

C2,0 = [1 1]

C1,0 = [1]

C2,1 = [1 -1]

C8,1 = [1 1 1 1 -1 -1 -1 -1]

C8,2 = [1 1 -1 -1 1 1 -1 -1]

C8,3 = [1 1 -1 -1 -1 -1 1 1]

C8,4 = [1 -1 1 -1 1 -1 1 -1]

C8,5 = [1 -1 1 -1 -1 1 -1 1]

C8,6 = [1 -1 -1 1 1 -1 -1 1]

C8,7 = [1 -1 -1 1 -1 1 1 -1]

SF = 2 SF = 4 SF = 8SF = 1

If [C] is a code length 2r at depth r in the tree, where the root has depth 0, the two
branches leading out of C are labeled by the sequences [C C] and [C -C], which have
length 2r+1. The codes at depth r in the tree are the rows of the matrix CN, where N = 2r.

Note that two OVSF codes are orthogonal if and only if neither code lies on the path from
the other code to the root. Since codes assigned to different users in the same cell must
be orthogonal, this restricts the number of available codes for a given cell. For example,
if the code C41 in the tree is assigned to a user, the codes C10, C20, C82, C83, and so on,
cannot be assigned to any other user in the same cell.

2 Blocks — Alphabetical List

2-738

Block Parameters

You specify the code the OVSF Code Generator block outputs by two parameters in the
block's dialog: the Spreading factor, which is the length of the code, and the Code
index, which must be an integer in the range [0, 1, ... , N - 1], where N is the spreading
factor. If the code appears at depth r in the preceding tree, the Spreading factor is
2r. The Code index specifies how far down the column of the tree at depth r the code
appears, counting from 0 to N - 1. For CN, k in the preceding diagram, N is the Spreading
factor and k is the Code index.

You can recover the code from the Spreading factor and the Code index as follows.
Convert the Code index to the corresponding binary number, and then add 0s to the
left, if necessary, so that the resulting binary sequence x1 x2 ... xr has length r, where r
is the logarithm base 2 of the Spreading factor. This sequence describes the path from
the root to the code. The path takes the upper branch from the code at depth i if xi = 0,
and the lower branch if xi = 1.

To reconstruct the code, recursively define a sequence of codes Ci for as follows. Let C0 be
the root [1]. Assuming that Ci has been defined, for i < r, define Ci+1 by

C
C C x

C C x
i

i i i

i i i
+ =

=

- =

Ï
Ì
Ó

1

0

1

if

if ()

The code CN has the specified Spreading factor and Code index.

For example, to find the code with Spreading factor 16 and Code index 6, do the
following:

1 Convert 6 to the binary number 110.
2 Add one 0 to the left to obtain 0110, which has length 4 = log2 16.
3 Construct the sequences Ci according to the following table.

i xi Ci

0 C0 = [1]
1 0 C1 = C0 C0 = [1] [1]
2 1 C2 = C1 -C1 = [1 1] [-1 -1]
3 1 C3 = C2 -C2 = [1 1 -1 -1] [-1 -1 1 1]

 OVSF Code Generator

2-739

i xi Ci

4 0 C4 = C3 C3 = [1 1 -1 -1 -1 -1 1 1] [1 1 -1 -1 -1 -1 1 1]

The code C4 has Spreading factor 16 and Code index 6.

Dialog Box

Spreading factor
Positive integer that is a power of 2, specifying the length of the code.

Code index
Integer in the range [0, 1, ... , N - 1] specifying the code, where N is the Spreading
factor.

2 Blocks — Alphabetical List

2-740

Sample time
A positive real scalar specifying the sample time of the output signal.

Frame-based outputs
Determines whether the output is frame-based or sample-based.

Samples per frame
The number of samples in a frame-based output signal. This field is active only if you
select Frame-based outputs.

Output data type
The output type of the block can be specified as an int8 or double. By default, the
block sets this to double.

See Also

Hadamard Code Generator, Walsh Code Generator

 Phase/Frequency Offset

2-741

Phase/Frequency Offset
Apply phase and frequency offsets to complex baseband signal

Library

RF Impairments

Description

The Phase/Frequency Offset block applies phase and frequency offsets to an incoming
signal.

The block inherits its output data type from the input signal. If the input signal is u(t),
then the output signal is:

y t u t f d t j f d t
t t

() () cos () sin ()= ◊ () +Ê
ËÁ

ˆ
¯̃

+ () +Ê
ËÚ Ú2 2

0 0
p t t j p t t jÁÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

where

f(t) = Frequency offset

φ(t) = Phase offset

The discrete-time output is:

y u j

y i u i f i t i

() () cos () sin ()

() () cos ()

0 0 0 0

2 1

= () + ()()

= -() +

j j

p jD(() + -() +()() >j f i t i isin ()2 1 0p jD

where

Δt = Sample time

This block accepts real and complex inputs of data type double or single.

2 Blocks — Alphabetical List

2-742

Phase Offset

The block applies a phase offset to the input signal, specified by the Phase offset
parameter.

Frequency Offset

The block applies a frequency offset to the input signal, specified by the Frequency
offset parameter. Alternatively, when you select Frequency offset from port, the Frq
input port provides the offset to the block. The frequency offset must be a scalar value,
vector with the same number of rows or columns as the data input, or a matrix with the
same size as the data input. For more information, see “Interdependent Parameter-Port
Dimensions” on page 2-744.

The effects of changing the block's parameters are illustrated by the following scatter
plots of a signal modulated by 16-ary quadrature amplitude modulation (QAM). The
usual 16-ary QAM constellation without the effect of the Phase/Frequency Offset block is
shown in the first scatter plot:

 Phase/Frequency Offset

2-743

The following figure shows a scatter plot of an output signal, modulated by 16-ary QAM,
from the Phase/Frequency Offset block with Phase offset set to 20 and Frequency
offset set to 0:

Observe that each point in the constellation is rotated by a 20 degree angle
counterclockwise.

If you set Frequency offset to 2 and Phase offset to 0, the angles of points in the
constellation change linearly over time. This causes points in the scatter plot to shift
radially, as shown in the following figure:

2 Blocks — Alphabetical List

2-744

Note that every point in the scatter plot has magnitude equal to a point in the original
constellation.

See “Illustrate RF Impairments That Distort a Signal” for a description of the model that
generates this plot.

Interdependent Parameter-Port Dimensions

Number of
Dimensions

Data I/O
Dimension

Frame
Size

Number of
Channels

Frequency/Phase Offset
Parameter Dimension

Frequency Offset
Input Port Dimension

Any Scalar 1 1 Scalar Scalar
2 M-by-1 M 1 M-by-1, 1-by-M, 1-by-1 M, M-by-1, 1, 1-by-1
2 1-by-N 1 N N-by-1, 1-by-N, 1-by-1 N, 1-by-N, 1, 1-by-1
2 M-by-N M N M-by-N, N-by-1, 1-

by-N, M-by-1, 1-by-M,
1-by-1

M-by-N, N, 1-by-N,
1, 1-by-1, M, M-by-1

• When you specify a scalar offset parameter the block applies the same offset to all
elements of the input signal

 Phase/Frequency Offset

2-745

• When you specify a 2-by-1 offset parameter for a 2-by-3 input signal (one offset value
per sample), the block applies the same sample offset across the three channels.

• When you specify a 1-by-3 offset parameter for a 2-by-3 input signal (one offset value
per channel), the same channel offset is applied across the two samples of a channel.

• When you specify a 2-by-3 offset parameter for a 2-by-3 input signal (one offset value
per sample for each channel), the offsets are applied element-wise to the input signal.

Dialog Box

Frequency offset from port
Selecting this option opens a port on the block through which you can input the
frequency offset information.

Frequency offset
Specifies the frequency offset in hertz.

This parameter is tunable in normal mode, Accelerator mode and Rapid Accelerator
mode. If you use the Simulink Coder rapid simulation (RSIM) target to build an
RSIM executable, then you can tune the parameter without recompiling the model.
For more information, see “Tunable Parameters” in the Simulink User's Guide.

Phase offset
Specifies the phase offset in degrees.

2 Blocks — Alphabetical List

2-746

This parameter is tunable in normal mode, Accelerator mode and Rapid Accelerator
mode. If you use the Simulink Coder rapid simulation (RSIM) target to build an
RSIM executable, then you can tune the parameter without recompiling the model.
For more information, see “Tunable Parameters” in the Simulink User's Guide.

If Frequency offset and Phase offset are both vectors or both matrices, their
dimensions (vector lengths, or number of rows and columns) must be the same.

See Also

Phase Noise

 Phase-Locked Loop

2-747

Phase-Locked Loop
Implement phase-locked loop to recover phase of input signal

Library

Components sublibrary of Synchronization

Description

The Phase-Locked Loop (PLL) block is a feedback control system that automatically
adjusts the phase of a locally generated signal to match the phase of an input signal. This
block is most appropriate when the input is a narrowband signal.

This PLL has these three components:

• A multiplier used as a phase detector.
• A filter. You specify the filter transfer function using the Lowpass filter numerator

and Lowpass filter denominator parameters. Each is a vector that gives the
respective polynomial's coefficients in order of descending powers of s.

To design a filter, you can use functions such as butter, cheby1, and cheby2 in
Signal Processing Toolbox software. The default filter is a Chebyshev type II filter
whose transfer function arises from the command below.

[num, den] = cheby2(3,40,100,'s')

• A voltage-controlled oscillator (VCO). You specify characteristics of the VCO using
the VCO quiescent frequency, VCO initial phase, and VCO output amplitude
parameters.

This block accepts a sample-based scalar input signal. The input signal represents the
received signal. The three output ports produce:

• The output of the filter
• The output of the phase detector

2 Blocks — Alphabetical List

2-748

• The output of the VCO

Dialog Box

Lowpass filter numerator
The numerator of the lowpass filter transfer function, represented as a vector that
lists the coefficients in order of descending powers of s.

Lowpass filter denominator

 Phase-Locked Loop

2-749

The denominator of the lowpass filter transfer function, represented as a vector that
lists the coefficients in order of descending powers of s.

VCO input sensitivity (Hz/V)
This value scales the input to the VCO and, consequently, the shift from the VCO
quiescent frequency value. The units of VCO input sensitivity are Hertz per
volt.

VCO quiescent frequency (Hz)
The frequency of the VCO signal when the voltage applied to it is zero. This should
match the carrier frequency of the input signal.

VCO initial phase (rad)
The initial phase of the VCO signal.

VCO output amplitude
The amplitude of the VCO signal.

See Also

Baseband PLL, Linearized Baseband PLL, Charge Pump PLL

References

For more information about phase-locked loops, see the works listed in “Selected
Bibliography for Synchronization” in Communications System Toolbox User's Guide.

2 Blocks — Alphabetical List

2-750

Phase Noise

Apply receiver phase noise to complex baseband signal

Library

RF Impairments

Description

The Phase Noise block applies receiver phase noise to a complex, baseband signal. The
block applies the phase noise as follows:

1 Generates additive white Gaussian noise (AWGN) and filters it with a digital filter.
2 Adds the resulting noise to the angle component of the input signal.

Using this block, you can specify phase noise as a scalar frequency offset or a vector of
frequency offsets.

• For a scalar frequency offset, the block generates phase noise over the entire spectral

observation window, from 0 Hz (or as close as possible to 0 Hz) to ±
FS

2
, where Fs

represents the sampling frequency. The noise is scaled so that it is at the block-
specific phase noise level at the specified frequency offset. The block generates a

phase noise with 1

f
 characteristic over the entire frequency range.

• For a vector of frequency offsets, the block interpolates the spectrum mask across
log10(frequency), and is flat from the highest frequency offset to half the sample rate.

You can view the block's implementation of phase noise by right-clicking on the block and
selecting Mask > Look under mask. This displays the following figure:

 Phase Noise

2-751

You can view the construction of the Noise Source subsystem by double-clicking it.

The effects of changing the block's parameters are illustrated by the following scatter
plots of a signal modulated by 16-ary quadrature amplitude modulation (QAM). The
usual 16-ary QAM constellation without distortion is shown in the first scatter plot:

The following figure shows a scatter plot of an output signal, modulated by 16-ary
QAM, from the Phase Noise block with Phase noise level (dBc/Hz) set to -70 and
Frequency offset (Hz) set to 100:

2 Blocks — Alphabetical List

2-752

This plot is generated by the model described in “Illustrate RF Impairments That Distort
a Signal” with the following parameter settings for the Rectangular QAM Modulator
Baseband block:

• Normalization method set to Average Power
• Average power (watts) set to 1e-12

This block has a companion function, plotPhaseNoiseFilter, that plots the response
of the filter specified by the block.

 Phase Noise

2-753

Dialog Box

Phase noise level (dBc/Hz)
Scalar or vector that specifies the phase noise level. Specify the phase noise level in
decibels relative to carrier per Hertz (dBc/Hz). The lengths of the phase noise level
and frequency offset vectors must be equal.

Frequency offset (Hz)

2 Blocks — Alphabetical List

2-754

Specifies the frequency offset in Hertz. If the frequency offset is a vector, then the
vector must be monotonically increasing. The lengths of the phase noise level and
frequency offset vectors must be equal.

Sample rate (Hz)
Must be greater than twice the largest value of the Frequency offset vector to avoid
aliasing. Specify in Hertz. When you specify a vector of frequency offsets, the block
uses this parameter. The block does not use this parameter when you specify a scalar
frequency offset.

The sample rate must match the sample rate of the input signal. This quantity is the
actual sample rate, not the frame rate of a frame-based signal.

Initial seed
Nonnegative integer specifying the initial seed for the random number generator the
block uses to generate noise.

Examples

For an example model that uses this block, see “View Phase Noise Effects on Signal
Spectrum”.

See Also

• Phase/Frequency Offset
• plotPhaseNoiseFilter

References

[1] Kasdin, N.J., "Discrete Simulation of Colored Noise and Stochastic Processes and 1/
(f^alpha); Power Law Noise Generation," The Proceedings of the IEEE, May,
1995, Vol. 83, No. 5

 PM Demodulator Passband

2-755

PM Demodulator Passband

Demodulate PM-modulated data

Library

Analog Passband Modulation, in Modulation

Description

The PM Demodulator Passband block demodulates a signal that was modulated using
phase modulation. The input is a passband representation of the modulated signal. Both
the input and output signals are real scalar signals.

For best results, use a carrier frequency which is estimated to be larger than 10% of your
input signal's sample rate. This is due to the implementation of the Hilbert transform by
means of a filter.

In the following example, we sample a 10Hz input signal at 8000 samples per second.
We then designate a Hilbert Transform filter of order 100. Below is the response of the
Hilbert Transform filter as returned by fvtool.

2 Blocks — Alphabetical List

2-756

Note the bandwidth of the filter's magnitude response. By choosing a carrier frequency
larger than 10% (but less than 90%) of the input signal's sample rate (8000 samples
per second, in this example) or equivalently, a carrier frequency larger than 400Hz, we
ensure that the Hilbert Transform Filter will be operating in the flat section of the filter's
magnitude response (shown in blue), and that our modulated signal will have the desired
magnitude and form.

Typically, an appropriate Carrier frequency value is much higher than the highest
frequency of the input signal. By the Nyquist sampling theorem, the reciprocal of
the model's sample time (defined by the model's signal source) must exceed twice the
Carrier frequency parameter.

This block works only with real inputs of type double. This block does not work inside a
triggered subsystem.

 PM Demodulator Passband

2-757

Dialog Box

Carrier frequency (Hz)
The frequency of the carrier.

Initial phase (rad)
The initial phase of the carrier in radians.

Phase deviation (rad)
The phase deviation of the carrier frequency in radians. Sometimes it is referred to as
the "variation" in the phase.

Hilbert transform filter order
The length of the FIR filter used to compute the Hilbert transform.

Pair Block

PM Modulator Passband

2 Blocks — Alphabetical List

2-758

PM Modulator Passband

Modulate using phase modulation

Library

Analog Passband Modulation, in Modulation

Description

The PM Modulator Passband block modulates using phase modulation. The output is a
passband representation of the modulated signal. The output signal's frequency varies
with the input signal's amplitude. Both the input and output signals are real scalar
signals.

If the input is u(t) as a function of time t, then the output is

cos(())2p qf t K u tc c+ +

where

• fc represents the Carrier frequency parameter
• θ represents the Initial phase parameter
• Kc represents the Phase deviation parameter

An appropriate Carrier frequency value is generally much higher than the highest
frequency of the input signal. By the Nyquist sampling theorem, the reciprocal of
the model's sample time (defined by the model's signal source) must exceed twice the
Carrier frequency parameter.

This block works only with real inputs of type double. This block does not work inside a
triggered subsystem.

 PM Modulator Passband

2-759

Dialog Box

Carrier frequency (Hz)
The frequency of the carrier.

Initial phase (rad)
The initial phase of the carrier in radians.

Phase deviation (rad)
The phase deviation of the carrier frequency in radians. This is sometimes referred to
as the "variation" in the phase.

Pair Block

PM Demodulator Passband

2 Blocks — Alphabetical List

2-760

PN Sequence Generator

Generate pseudonoise sequence

Library

Sequence Generators sublibrary of Comm Sources

Description

The PN Sequence Generator block generates a sequence of pseudorandom binary
numbers using a linear-feedback shift register (LFSR). This block implements LFSR
using a simple shift register generator (SSRG, or Fibonacci) configuration. A pseudonoise
sequence can be used in a pseudorandom scrambler and descrambler. It can also be used
in a direct-sequence spread-spectrum system.

This block can output sequences that vary in length during simulation. For more
information about variable-size signals, see “Variable-Size Signal Basics” in the Simulink
documentation.

The PN Sequence Generator block uses a shift register to generate sequences, as shown
below.

 PN Sequence Generator

2-761

gr-1

r-1 r-2 0

gr gr-2

mr-1 mr-2 m0

g1 g0

Output

XOR addition

All r registers in the generator update their values at each time step, according to the
value of the incoming arrow to the shift register. The adders perform addition modulo
2. The shift register is described by the Generator Polynomial parameter, which is a
primitive binary polynomial in z, grzr+gr-1zr-1+gr-2zr-2+...+g0. The coefficient gk is 1 if there
is a connection from the kth register, as labeled in the preceding diagram, to the adder.
The leading term gr and the constant term g0 of the Generator Polynomial parameter
must be 1 because the polynomial must be primitive.

You can specify the Generator polynomial parameter using either of these formats:

• A vector that lists the coefficients of the polynomial in descending order of powers.
The first and last entries must be 1. Note that the length of this vector is one more
than the degree of the generator polynomial.

• A vector containing the exponents of z for the nonzero terms of the polynomial in
descending order of powers. The last entry must be 0.

For example, [1 0 0 0 0 0 1 0 1] and [8 2 0] represent the same polynomial, p(z)
= z8 + z2 + 1.

The Initial states parameter is a vector specifying the initial values of the registers. The
Initial states parameter must satisfy these criteria:

2 Blocks — Alphabetical List

2-762

• All elements of the Initial states vector must be binary numbers.
• The length of the Initial states vector must equal the degree of the generator

polynomial.

Note At least one element of the Initial states vector must be nonzero in order for
the block to generate a nonzero sequence. That is, the initial state of at least one of
the registers must be nonzero.

For example, the following table indicates two sets of parameter values that correspond
to a generator polynomial of p(z) = z8 + z2 + 1.

Quantity Example 1 Example 2

Generator
polynomial

g1 = [1 0 0 0 0 0 1 0 1] g2 = [8 2 0]

Degree of
generator
polynomial

8, which is length(g1)-1 8

Initial states [1 0 0 0 0 0 1 0] [1 0 0 0 0 0 1 0]

Output mask vector (or scalar shift value) shifts the starting point of the output
sequence. With the default setting for this parameter, the only connection is along the
arrow labeled m0, which corresponds to a shift of 0. The parameter is described in greater
detail below.

You can shift the starting point of the PN sequence with Output mask vector (or
scalar shift value). You can specify the parameter in either of two ways:

• An integer representing the length of the shift
• A binary vector, called the mask vector, whose length is equal to the degree of the

generator polynomial

The difference between the block's output when you set Output mask vector (or scalar
shift value) to 0, versus a positive integer d, is shown in the following table.

 T = 0 T = 1 T = 2 ... T = d T = d+1

Shift = 0 x0 x1 x2 ... xd xd+1

 PN Sequence Generator

2-763

 T = 0 T = 1 T = 2 ... T = d T = d+1

Shift = d xd xd+1 xd+2 ... x2d x2d+1

Alternatively, you can set Output mask vector (or scalar shift value) to a binary
vector, corresponding to a polynomial in z, mr-1zr-1 + mr-2zr-2 + ... + m1z + m0, of degree at
most r-1. The mask vector corresponding to a shift of d is the vector that represents m(z)
= zd modulo g(z), where g(z) is the generator polynomial. For example, if the degree of the
generator polynomial is 4, then the mask vector corresponding to d = 2 is [0 1 0 0],
which represents the polynomial m(z) = z2. The preceding schematic diagram shows how
Output mask vector (or scalar shift value) is implemented when you specify it as a
mask vector. The default setting for Output mask vector (or scalar shift value) is 0.
You can calculate the mask vector using the Communications System Toolbox function
shift2mask.

You can use an external signal to reset the values of the internal shift register to the
initial state by selecting Reset on nonzero input. This creates an input port for
the external signal in the PN Sequence Generator block. The way the block resets
the internal shift register depends on whether its output signal and the reset signal
are sample-based or frame-based. The following example demonstrates the possible
alternatives.

Example: Resetting a Signal

Suppose that the PN Sequence Generator block outputs [1 0 0 1 1 0 1 1] when
there is no reset. You then select Reset on nonzero input and input a reset signal [0
0 0 1]. The following table shows three possibilities for the properties of the reset signal
and the PN Sequence Generator block.

Reset Signal Properties PN Sequence Generator
block

Reset Signal, Output Signal

Sample-based

Sample time = 1

Sample-based

Sample time = 1 0 0 0 1

Reset

1 0 0 1 0 0 1 1 0 1 1

Frame-based

Sample time =1

Frame-based

Sample time = 1 0 0 0 1

Reset

1 0 0 1 0 0 1 1 0 1 1

2 Blocks — Alphabetical List

2-764

Reset Signal Properties PN Sequence Generator
block

Reset Signal, Output Signal

Samples per frame =
2

Samples per frame =
2

Sample-based

Sample time = 2

Samples per frame =
1

Frame-based

Sample time = 1

Samples per frame =
2

0 1

Reset

1 0

0

00

0

1 0 1 0 0 1 1 0 1 1

In the first two cases, the PN sequence is reset at the fourth bit, because the fourth bit of
the reset signal is a 1 and the Sample time is 1. Note that in the second case, the frame
sizes are 2, and the reset occurs at the end of the second frame.

In the third case, the PN sequence is reset at the seventh bit. This is because the reset
signal has Sample time 2, so the reset bit is first sampled at the seventh bit. With these
settings, the reset always occurs at the beginning of a frame.

Attributes of Output Signal

If the Frame-based outputs box is selected, the output signal is a frame-based column
vector whose length is the Samples per frame parameter. Otherwise, the output signal
is a one-dimensional scalar.

Sequences of Maximum Length

If you want to generate a sequence of the maximum possible length for a fixed degree,
r, of the generator polynomial, you can set Generator polynomial to a value from the
following table. See [1] for more information about the shift-register configurations that
these polynomials represent.

r Generator Polynomial r Generator Polynomial

2 [2 1 0] 21 [21 19 0]

3 [3 2 0] 22 [22 21 0]

4 [4 3 0] 23 [23 18 0]

5 [5 3 0] 24 [24 23 22 17 0]

 PN Sequence Generator

2-765

r Generator Polynomial r Generator Polynomial

6 [6 5 0] 25 [25 22 0]

7 [7 6 0] 26 [26 25 24 20 0]

8 [8 6 5 4 0] 27 [27 26 25 22 0]

9 [9 5 0] 28 [28 25 0]

10 [10 7 0] 29 [29 27 0]

11 [11 9 0] 30 [30 29 28 7 0]

12 [12 11 8 6 0] 31 [31 28 0]

13 [13 12 10 9 0] 32 [32 31 30 10 0]

14 [14 13 8 4 0] 33 [33 20 0]

15 [15 14 0] 34 [34 15 14 1 0]

16 [16 15 13 4 0] 35 [35 2 0]

17 [17 14 0] 36 [36 11 0]

18 [18 11 0] 37 [37 12 10 2 0]
19 [19 18 17 14 0] 38 [38 6 5 1 0]
20 [20 17 0] 39 [39 8 0]
40 [40 5 4 3 0] 47 [47 14 0]
41 [41 3 0] 48 [48 28 27 1 0]
42 [42 23 22 1 0] 49 [49 9 0]
43 [43 6 4 3 0] 50 [50 4 3 2 0]
44 [44 6 5 2 0] 51 [51 6 3 1 0]
45 [45 4 3 1 0] 52 [52 3 0]
46 [46 21 10 1 0] 53 [53 6 2 1 0]

Example of PN Sequence Generation

This example clarifies the operation of the PN Sequence Generator block by
comparing the output sequence from the library block with that generated from primitive
Simulink blocks.

To open the model, enter doc_pnseq2 at the MATLAB command line.

2 Blocks — Alphabetical List

2-766

For the chosen generator polynomial, p z z z() = + +
6

1 , the model generates a PN
sequence of period 63, using both the library block and corresponding Simulink blocks.
It shows how the two parameters, Initial states and Output mask vector (or scalar
shift value), are interpreted in the latter schematic.

You can experiment with different initial states, by changing the value of Initial states
prior to running the simulation. For all values, the two generated sequences are the
same.

Using the PN Sequence Generator block allows you to easily generate PN sequences of
large periods.

 PN Sequence Generator

2-767

Dialog Box

Generator polynomial
Polynomial that determines the shift register's feedback connections.

2 Blocks — Alphabetical List

2-768

Initial states
Vector of initial states of the shift registers.

Output mask source
Specifies how output mask information is given to the block.

• When you set this parameter to Dialog parameter, the field Output mask
vector (or scalar shift value) is enabled for user input.

• When set this parameter to Input port, a Mask input port appears on the block
icon. The Mask input port only accepts mask vectors.

Output mask vector (or scalar shift value)
This field is available only when Output mask source is set to Dialog
parameter.

Integer scalar or binary vector that determines the delay of the PN sequence from the
initial time. If you specify the shift as a binary vector, the vector's length must equal
the degree of the generator polynomial.

Output variable-size signals
Select this check box if you want the output sequences to vary in length during
simulation. The default selection outputs fixed-length signals.

Maximum output size source
Specify how the block defines maximum output size for a signal.

• When you select Dialog parameter, the value you enter in the Maximum
output size parameter specifies the maximum size of the output. When you make
this selection, the oSiz input port specifies the current size of the output signal
and the block output inherits sample time from the input signal. The input value
must be less than or equal to the Maximum output size parameter.

• When you select Inherit from reference port, the block output inherits
sample time, maximum size, and current size from the variable-sized signal at the
Ref input port.

This parameter only appears when you select Output variable-size signals. The
default selection is Dialog parameter.

Maximum output size
Specify a two-element row vector denoting the maximum output size for the block.
The second element of the vector must be 1 For example, [10 1] gives a 10-by-1

 PN Sequence Generator

2-769

maximum sized output signal. This parameter only appears when you select Output
variable-size signals.

Sample time
Period of each element of the output signal.

Frame-based outputs
Determines whether the output is frame-based or sample-based.

Samples per frame
The number of samples in a frame-based output signal. This field is active only if you
select Frame-based outputs.

Reset on nonzero input
When selected, you can specify an input signal that resets the internal shift registers
to the original values of the Initial states parameter.

Enable bit-packed outputs
When selected, the field Number of packed bits and the option Interpret bit-
packed values as signed is enabled.

Number of packed bits
Indicates how many bits to pack into each output data word (allowable range is 1 to
32).

Interpret bit-packed values as signed
Indicates whether packed bits are treated as signed or unsigned integer data values.
When selected, a 1 in the most significant bit (sign bit) indicates a negative value.

Output data type
By default, this is set to double.

When Enable bit-packed outputs is not selected, the output data type can
be specified as a double, boolean, or Smallest unsigned integer. When
the parameter is set to Smallest unsigned integer, the output data type is
selected based on the settings used in the Hardware Implementation pane of the
Configuration Parameters dialog box of the model. If ASIC/FPGA is selected in the
Hardware Implementation pane, the output data type is the ideal minimum one-
bit size, i.e., ufix(1). For all other selections, it is an unsigned integer with the
smallest available word length large enough to fit one bit, usually corresponding to
the size of a char (e.g., uint8).

When Enable bit-packed outputs is selected, the output data type can be specified
as double or Smallest integer. When the parameter is set to Smallest

2 Blocks — Alphabetical List

2-770

integer, the output data type is selected based on Interpret bit-packed values
as signed, Number of packed bits, and the settings used in the Hardware
Implementation pane of the Configuration Parameters dialog box of the model. If
ASIC/FPGA is selected in the Hardware Implementation pane, the output data
type is the ideal minimum n-bit size, i.e., sfix(n) or ufix(n), based on Interpret
bit-packed values as signed. For all other selections, it is a signed or unsigned
integer with the smallest available word length large enough to fit n bits.

Examples

PN Spreading with Multipath

This example model considers pseudo-random spreading for a single-user system in a
multipath transmission environment.

Open the model here: pn_sequence_block_example1

modelname = 'pn_sequence_block_example1';

open_system(modelname);

sim(modelname);

In this case for a three path channel, there are gains due to diversity combining. This is
made possible by the ideal auto-correlation properties of the PN sequences used.

 PN Sequence Generator

2-771

To experiment with this model further, change the PN Sequence Generator block
parameters. Additionally for the same sequences,select other path delays to see
performance variations.

close_system(modelname, 0);

PN Spreading with Two Users and Multipath

This model considers pseudo-random spreading for a combined two-user transmission in
a multipath environment.

Open the model here: pn_sequence_block_example2

modelname = 'pn_sequence_block_example2';

open_system(modelname);

sim(modelname);

2 Blocks — Alphabetical List

2-772

For the two distinct PN sequences used for spreading, note that the individual user
performance has now worsened for the same channel conditions (compare 139 errors
to 41 from above). This is primarily due to the higher cross-correlation values between
the two sequences which prevent ideal separation. Note, there are still advantages to
combining as the error rate for a multipath plus AWGN channel with RAKE combining is
nearly as good as for an AWGN-only case.

close_system(modelname, 0);

HDL Code Generation

This block supports HDL code generation using HDL Coder. HDL Coder provides
additional configuration options that affect HDL implementation and synthesized logic.

 PN Sequence Generator

2-773

For more information on implementations, properties, and restrictions for HDL code
generation, see PN Sequence Generator in the HDL Coder documentation.

See Also

Kasami Sequence Generator, Scrambler

References

[1] Proakis, John G., Digital Communications, Third edition, New York, McGraw Hill,
1995.

[2] Lee, J. S., and L. E. Miller, CDMA Systems Engineering Handbook, Artech House,
1998.

[3] Golomb, S.W., Shift Register Sequences, Aegean Park Press, 1967.

2 Blocks — Alphabetical List

2-774

Poisson Integer Generator
Generate Poisson-distributed random integers

Library

Random Data Sources sublibrary of Comm Sources

Description

The Poisson Integer Generator block generates random integers using a Poisson
distribution. The probability of generating a nonnegative integer k is

l l
k

kexp() / (!)-

where λ is a positive number known as the Poisson parameter.

You can use the Poisson Integer Generator to generate noise in a binary transmission
channel. In this case, the Poisson parameter Lambda should be less than 1, usually
much less.

Attributes of Output Signal

The output signal can be a frame-based matrix, a sample-based row or column vector, or
a sample-based one-dimensional array. These attributes are controlled by the Frame-
based outputs, Samples per frame, and Interpret vector parameters as 1-D
parameters. See “Sources and Sinks” in Communications System Toolbox User's Guide
for more details.

The number of elements in the Initial seed parameter becomes the number of columns
in a frame-based output or the number of elements in a sample-based vector output. Also,
the shape (row or column) of the Initial seed parameter becomes the shape of a sample-
based two-dimensional output signal.

 Poisson Integer Generator

2-775

Dialog Box

Lambda
The Poisson parameter λ. If it is a scalar, then every element in the output vector
shares the same Poisson parameter.

Initial seed
The initial seed value for the random number generator.

Sample time
The period of each sample-based vector or each row of a frame-based matrix.

Frame-based outputs
Determines whether the output is frame-based or sample-based. This box is active
only if Interpret vector parameters as 1-D is unchecked.

Samples per frame
The number of samples in each column of a frame-based output signal. This field is
active only if Frame-based outputs is checked.

Interpret vector parameters as 1-D

2 Blocks — Alphabetical List

2-776

If this box is checked, then the output is a one-dimensional signal. Otherwise, the
output is a two-dimensional signal. This box is active only if Frame-based outputs
is unchecked.

Output data type
The output type of the block can be specified as a double, int8, uint8, int16,
uint16, int32, or uint32. By default, the block sets this to double.

See Also

Random Integer Generator; poissrnd (Statistics Toolbox)

 Puncture

2-777

Puncture

Output elements which correspond to 1s in binary Puncture vector

Library

Sequence Operations

Description

The Puncture block creates an output vector by removing selected elements of the input
vector and preserving others. This block accepts an input signal that is a real or complex
vector of length K. The block determines which elements to remove and preserve by using
the binary Puncture vector parameter.

and mod is the modulus function (mod in MATLAB).

• If Puncture vector(n) = 0, then the block removes the nth element of the input vector
and does not include it as part of the output vector.

• If Puncture vector(n) = 1, then the block preserves the nth element of the input
vector as part of the output vector.

The input length, K, must be an integer multiple of the Puncture vector parameter
length. The block repeats the puncturing pattern, as necessary, to include all input
elements. The preserved elements appear in the output vector in the same order in which
they appear in the input vector.

The input signal and the puncture vector are both column vectors.

The block accepts signals with the following data types: int8, uint8, int16, uint16,
int32, uint32, boolean, single, double, and fixed-point. The output signal inherits
its data type from the input signal.

2 Blocks — Alphabetical List

2-778

Dialog Box

Puncture vector
A binary vector whose pattern of 0s (1s) indicates which elements of the input the
block should remove (preserve).

Examples

If the Puncture vector parameter is the six-element vector [1;0;1;1;1;0], then the
block:

• Removes the second and sixth elements from the group of six input elements.
• Sends the first, third, fourth, and fifth elements to the output vector.

The diagram below depicts the block's operation on an input vector of [1;2;3;4;5;6],
using this Puncture vector parameter.

 Puncture

2-779

1

2

3

4

5

6

1

3

4

5

See Also

Insert Zero

2 Blocks — Alphabetical List

2-780

QPSK Demodulator Baseband

Demodulate QPSK-modulated data

Library

PM, in Digital Baseband sublibrary of Modulation

Description

The QPSK Demodulator Baseband block demodulates a signal that was modulated using
the quaternary phase shift keying method. The input is a baseband representation of the
modulated signal.

The input must be a complex signal. This block accepts a scalar or column vector input
signal. For information about the data types each block port supports, see “Supported
Data Types” on page 2-788.

 QPSK Demodulator Baseband

2-781

Algorithm

output

formatting

(and data

type casting)

constellation

mapping to

symbol index

(simple sign

comparisons)

u

input DT

Output DT

symbol

index

(integer)

I

input DT

Q

Re

Im

{ , , , }0 1 2 3

Hard-Decision QPSK Demodulator Signal Diagram for Trivial Phase Offset (odd multiple of)

2 Blocks — Alphabetical List

2-782

output

formatting

(and data

type casting)

constellation

mapping to

symbol index

(simple sign

comparisons)

input DT

Output DT

symbol

index

(integer)

I

input DT

Q

{ , , , }0 1 2 3

derotate input to

 Phase offset4π

u

+

+

-

+

+

+

I input DT

input DT

input DT

input DT

Q

input DT

input DT

(constant derotate factors)

Re

Im

sin()

cos()

Phase offset

Phase offset

−

−

π

π

4

4

Hard-Decision QPSK Demodulator Floating-Point Signal Diagram for Nontrivial Phase Offset

 QPSK Demodulator Baseband

2-783

+

+

-

+

+

+

output

formatting

(and data

type casting)

constellation

mapping to

symbol index

(simple sign

comparisons)

u I input DT

input DT
input DT

input DT

input DT

Output DT

symbol

index

(integer)

Q

I

input DT

Q

Derotate

factor DT

Derotate

factor DT

(constant derotate factors)

(saturate on)

(saturate on)

Re

Im

{ , , , }0 1 2 3

derotate input to

 Phase offset4π

sin()

cos()

Phase offset

Phase offset

−

−

π

π

4

4

Hard-Decision QPSK Demodulator Fixed-Point Signal Diagram for Nontrivial Phase Offset

The exact LLR and approximate LLR cases (soft-decision) are described in “Exact LLR
Algorithm” and “Approximate LLR Algorithm” in the Communications System Toolbox
User's Guide.

2 Blocks — Alphabetical List

2-784

Dialog Box

Phase offset (rad)
The phase of the zeroth point of the signal constellation.

Constellation ordering
Determines how the block maps each integer to a pair of output bits.

Output type
Determines whether the output consists of integers or bits.

If the Output type parameter is set to Integer and Constellation ordering is set
to Binary, then the block maps the point
exp(jθ + jπm/2)

to m, where θ is the Phase offset parameter and m is 0, 1, 2, or 3.

The reference page for the QPSK Modulator Baseband block shows the signal
constellations for the cases when Constellation ordering is set to either Binary or
Gray.

 QPSK Demodulator Baseband

2-785

If the Output type is set to Bit, then the output contains pairs of binary values if
Decision type is set to Hard decision. The most significant bit (i.e. the left-most
bit in the vector), is the first bit the block outputs.

If the Decision type is set to Log-likelihood ratio or Approximate log-
likelihood ratio, then the output contains bitwise LLR or approximate LLR
values, respectively.

Decision type
Specifies the use of hard decision, LLR, or approximate LLR during demodulation.
This parameter appears when you select Bit from the Output type drop-down
list. The output values for Log-likelihood ratio and Approximate log-likelihood ratio
decision types are of the same data type as the input values. For integer output, the
block always performs Hard decision demodulation.

See “Exact LLR Algorithm” and “Approximate LLR Algorithm” in the
Communications System Toolbox User's Guide for algorithm details.

Noise variance source
This field appears when Approximate log-likelihood ratio or Log-
likelihood ratio is selected for Decision type.

When set to Dialog, the noise variance can be specified in the Noise variance field.
When set to Port, a port appears on the block through which the noise variance can
be input.

Noise variance
This parameter appears when the Noise variance source is set to Dialog and
specifies the noise variance in the input signal. This parameter is tunable in normal
mode, Accelerator mode and Rapid Accelerator mode.

If you use the Simulink Coder rapid simulation (RSIM) target to build an RSIM
executable, then you can tune the parameter without recompiling the model. This is
useful for Monte Carlo simulations in which you run the simulation multiple times
(perhaps on multiple computers) with different amounts of noise.

The LLR algorithm involves computing exponentials of very large or very small
numbers using finite precision arithmetic and would yield:

• Inf to -Inf if Noise variance is very high
• NaN if Noise variance and signal power are both very small

2 Blocks — Alphabetical List

2-786

In such cases, use approximate LLR, as its algorithm does not involve computing
exponentials.

Data Types Pane for Hard-Decision

Output
For bit outputs, when Decision type is set to Hard decision, the output data type
can be set to 'Inherit via internal rule', 'Smallest unsigned integer',
double, single, int8, uint8, int16, uint16, int32, uint32, or boolean.

For integer outputs, the output data type can be set to 'Inherit via internal
rule', 'Smallest unsigned integer', double, single, int8, uint8, int16,
uint16, int32, or uint32.

When this parameter is set to 'Inherit via internal rule' (default setting),
the block will inherit the output data type from the input port. The output data type
will be the same as the input data type if the input is a floating-point type (single
or double). If the input data type is fixed-point, the output data type will work as if
this parameter is set to 'Smallest unsigned integer'.

When this parameter is set to 'Smallest unsigned integer', the output data
type is selected based on the settings used in the Hardware Implementation pane
of the Configuration Parameters dialog box of the model.

 QPSK Demodulator Baseband

2-787

If ASIC/FPGA is selected in the Hardware Implementation pane, and Output
type is Bit, the output data type is the ideal minimum one-bit size, i.e., ufix(1).
For all other selections, it is an unsigned integer with the smallest available word
length large enough to fit one bit, usually corresponding to the size of a char (e.g.,
uint8).

If ASIC/FPGA is selected in the Hardware Implementation pane, and Output
type is Integer, the output data type is the ideal minimum two-bit size, i.e.,
ufix(2). For all other selections, it is an unsigned integer with the smallest
available word length large enough to fit two bits, usually corresponding to the size of
a char (e.g., uint8).

Derotate factor
This parameter only applies when the input is fixed-point and Phase offset is not an

even multiple of p

4
.

You can select Same word length as input or Specify word length, in which
case you define the word length using an input field.

2 Blocks — Alphabetical List

2-788

Data Types Pane for Soft-Decision

For bit outputs, when Decision type is set to Log-likelihood ratio or
Approximate log-likelihood ratio, the output data type is inherited from the
input (e.g., if the input is of data type double, the output is also of data type double).

Supported Data Types

Port Supported Data Types

Input • Double-precision floating point
• Single-precision floating point
• Signed fixed-point when:

• Output type is Integer

 QPSK Demodulator Baseband

2-789

Port Supported Data Types

• Output type is Bit and Decision type is Hard-decision

Var • Double-precision floating point
• Single-precision floating point

Output • Double-precision floating point
• Single-precision floating point
• Boolean when Output type is Bit and Decision type is Hard-decision
• 8-, 16-, 32- bit signed integers
• 8-, 16-, 32- bit unsigned integers
• ufix(1) in ASIC/FPGA when Output type is Bit
• ufix(2) in ASIC/FPGA when Output type is Integer

HDL Code Generation

This block supports HDL code generation using HDL Coder. HDL Coder provides
additional configuration options that affect HDL implementation and synthesized logic.
For more information on implementations, properties, and restrictions for HDL code
generation, see QPSK Demodulator Baseband in the HDL Coder documentation.

Pair Block

QPSK Modulator Baseband

See Also

M-PSK Demodulator Baseband, BPSK Demodulator Baseband, DQPSK Demodulator
Baseband

2 Blocks — Alphabetical List

2-790

QPSK Modulator Baseband

Modulate using quaternary phase shift keying method

Library

PM in Digital Baseband sublibrary of Modulation

Description

The QPSK Modulator Baseband block modulates using the quaternary phase shift keying
method. The output is a baseband representation of the modulated signal.

Integer-Valued Signals and Binary-Valued Signals

If you set the Input type parameter to Integer, then valid input values are 0, 1, 2, and
3. When you set Constellation ordering to Binary for input m the output symbol is
exp(jθ + jπm/2)

where θ represents the Phase offset parameter (see the following figure for Gray
constellation ordering). In this case, the block accepts a scalar or column vector signal.

If you set the Input type parameter to Bit, then the input contains pairs of binary
values. For this configuration, the block accepts column vectors with even lengths.

When you set the Phase offset parameter to P

4
, then the block uses one of the signal

constellations in the following figure, depending on whether you set the Constellation
ordering parameter to Binary or Gray.

 QPSK Modulator Baseband

2-791

Binary

01 00

10 11

Gray

01 00

11 10

In the previous figure, the most significant bit (i.e. the left-most bit), is the first bit input
to the block. For additional information about Gray mapping, see the M-PSK Modulator
Baseband help page.

Constellation Visualization

The QPSK Modulator Baseband block provides the capability to visualize a signal
constellation from the block mask. This Constellation Visualization feature allows you to
visualize a signal constellation for specific block parameters. For more information, see
the “Constellation Visualization” section of the Communications System Toolbox User's
Guide.

2 Blocks — Alphabetical List

2-792

Dialog Box

Phase offset (rad)
The phase of the zeroth point of the signal constellation.

Constellation ordering
Determines how the block maps each pair of input bits or input integers to
constellation symbols.

Input type
Indicates whether the input consists of integers or pairs of bits.

Output data type
The output data type can be set to double, single, Fixed-point, User-defined,
or Inherit via back propagation.

Setting this parameter to Fixed-point or User-defined enables fields in which
you can further specify details. Setting this parameter to Inherit via back
propagation, sets the output data type and scaling to match the following block.

Output word length
Specify the word length, in bits, of the fixed-point output data type. This parameter is
only visible when you select Fixed-point for the Output data type parameter.

Set output fraction length to

 QPSK Modulator Baseband

2-793

Specify the scaling of the fixed-point output by either of the following methods:

• Choose Best precision to have the output scaling automatically set such that
the output signal has the best possible precision.

• Choose User-defined to specify the output scaling in the Output fraction
length parameter.

This parameter is only visible when you select Fixed-point for the Output data
type parameter or when you select User-defined and the specified output data
type is a fixed-point data type.

User-defined data type
Specify any signed built-in or signed fixed-point data type. You can specify fixed-
point data types using the sfix, sint, sfrac, and fixdt functions from Fixed-
Point Designer. This parameter is only visible when you select User-defined for
the Output data type parameter.

Output fraction length
For fixed-point output data types, specify the number of fractional bits or bits to
the right of the binary point. This parameter is only visible when you select Fixed-
point or User-defined for the Output data type parameter and User-defined
for the Set output fraction length to parameter.

Supported Data Types

Port Supported Data Types

Input • Double-precision floating point
• Single-precision floating point
• Boolean when Input type is Bit
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers
• ufix(1) when Input type is Bit
• ufix(2) when Input type is Integer

Output • Double-precision floating point
• Single-precision floating point
• Signed fixed point

2 Blocks — Alphabetical List

2-794

HDL Code Generation

This block supports HDL code generation using HDL Coder. HDL Coder provides
additional configuration options that affect HDL implementation and synthesized logic.
For more information on implementations, properties, and restrictions for HDL code
generation, see QPSK Modulator Baseband in the HDL Coder documentation.

Pair Block

QPSK Demodulator Baseband

See Also

M-PSK Modulator Baseband, BPSK Modulator Baseband, DQPSK Modulator Baseband

 Quantizing Decoder

2-795

Quantizing Decoder

Decode quantization index according to codebook

Library

Source Coding

Description

The Quantizing Decoder block converts quantization indices to the corresponding
codebook values. The Quantization codebook parameter, a vector of length N,
prescribes the possible output values. If the input is an integer k between 0 and N-1,
then the output is the (k+1)st element of Quantization codebook.

The input must be a discrete-time signal. This block processes each vector element
independently. For information about the data types each block port supports, see the
“Supported Data Type” on page 2-796 table on this page.

Note The Quantizing Encoder block also uses a Quantization codebook parameter.
The first output of that block corresponds to the input of Quantizing Decoder, while the
second output of that block corresponds to the output of Quantizing Decoder.

2 Blocks — Alphabetical List

2-796

Dialog Box

Quantization codebook
A real vector that prescribes the output value corresponding to each nonnegative
integer of the input.

Quantized output data type
Select the output data type.

Supported Data Type

Port Supported Data Types

Idx • Double-precision floating point
• Single-precision floating point
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

 Quantizing Decoder

2-797

Port Supported Data Types

Q(U) • Double-precision floating point
• Single-precision floating point

Pair Block

Quantizing Encoder

See Also

Scalar Quantizer (Obsolete) (DSP System Toolbox documentation)

2 Blocks — Alphabetical List

2-798

Quantizing Encoder
Quantize signal using partition and codebook

Library
Source Coding

Description
The Quantizing Encoder block quantizes the input signal according to the Partition
vector and encodes the input signal according to the Codebook vector. This block
processes each vector element independently. The input must be a discrete-time signal.
This block processes each vector element independently. For information about the data
types each block port supports, see the “Supported Data Type” on page 2-799 table on
this page.

The first output is the quantization index. The second output is the quantized signal. The
values for the quantized signal are taken from the Codebook vector.

The Quantization partition parameter, P, is a real vector of length n whose entries
are in strictly ascending order. The quantization index (second output signal value)
corresponding to an input value of x is

• 0 if x ⩽ P(1)
• m if P(m) < x ⩽ P(m+1)
• n if P(n) < x

The Quantization codebook parameter, whose length is n+1, prescribes a value for
each partition in the quantization. The first element of Quantization codebook is the
value for the interval between negative infinity and the first element of P. The second
output signal from this block contains the quantization of the input signal based on the
quantization indices and prescribed values.

You can use the function lloyds in Communications System Toolbox with a
representative sample of your data as training data, to obtain appropriate partition and
codebook parameters.

 Quantizing Encoder

2-799

Dialog Box

Quantization partition
The vector of endpoints of the partition intervals.

Quantization codebook
The vector of output values assigned to each partition.

Index output data type
Select the output data type.

Supported Data Type

Port Supported Data Types

U • Double-precision floating point

2 Blocks — Alphabetical List

2-800

Port Supported Data Types

• Single-precision floating point
• Signed fixed-point

Idx • Double-precision floating point
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers

Q(U) • Double-precision floating point
• Single-precision floating point
• Signed fixed-point

Pair Block

Quantizing Decoder

See Also

Scalar Quantizer (Obsolete) (DSP System Toolbox documentation), lloyds
(Communications System Toolbox documentation)

 Raised Cosine Receive Filter

2-801

Raised Cosine Receive Filter
Apply pulse shaping by downsampling signal using raised cosine FIR filter

Library

Comm Filters

Description

The Raised Cosine Receive Filter block filters the input signal using a normal raised
cosine FIR filter or a square root raised cosine FIR filter. It also downsamples the filtered
signal if you set the Output mode parameter to Downsampling. The FIR Decimation
block implements this functionality. The Raised Cosine Receive Filter block's icon shows
the filter's impulse response.

Characteristics of the Filter

Characteristics of the raised cosine filter are the same as in the Raised Cosine Transmit
Filter block, except that the length of the filter's input response has a slightly different
expression: L * Filter span in symbols + 1, where L is the value of the Input samples
per symbol parameter (not the Output samples per symbol parameter, as in the case
of the Raised Cosine Transmit Filter block).

The block normalizes the filter coefficients to unit energy. If you specify a Liner
amplitude filter gain other than 1, then the block scales the normalized filter
coefficients using the gain value you specify.

Decimating the Filtered Signal

To have the block decimate the filtered signal, set the Decimation factor parameter to
a value greater than 1.

If K represents the Decimation factor parameter value, then the block retains 1/K of
the samples, choosing them as follows:

2 Blocks — Alphabetical List

2-802

• If the Decimation offset parameter is zero, then the block selects the samples of the
filtered signal indexed by 1, K+1, 2*K+1, 3*K+1, etc.

• If the Decimation offset parameter is a positive integer less than M, then the block
initially discards that number of samples from the filtered signal and downsamples
the remaining data as in the previous case.

To preserve the entire filtered signal and avoid decimation, set Decimation factor to
1. This setting is appropriate, for example, when the output from the filter block forms
the input to a timing phase recovery block such as Squaring Timing Recovery. The timing
phase recovery block performs the downsampling in that case.

Input Signals and Output Signals

This block accepts a column vector or matrix input signal. For information about the data
types each block port supports, see the “Supported Data Type” on page 2-810 table on
this page.

If you set Decimation factor to 1, then the input and output signals share the same
sampling mode, sample time, and vector length.

If you set Decimation factor to K, which is greater than 1, then K and the input
sampling mode determine characteristics of the output signal:

Single-Rate Processing

When you set the Rate options parameter to Enforce single-rate processing,
the input and output of the block have the same sample rate. To genereate the output
while maintaining the input sample rate, the block resamples the data in each column of
the input such that the frame size of the output (Mo) is 1/K times that of the input (Mo =
Mi/K), In this mode, the input frame size, Mi, must be a multiple of K.

Multirate Processing

When you set the Rate options parameter to Allow multirate processing, the
input and output of the block are the same size, but the sample rate of the output is K
times slower than that of the input. When the block is in multirate processing mode, you
must also specify a value for the Input processing parameter:

• When you set the Input processing parameter to Elements as channels
(sample based), the block treats an M-by-N matrix input as M*N independent

 Raised Cosine Receive Filter

2-803

channels, and processes each channel over time. The output sample period (Tso) is
K times longer than the input sample period (Tso = K*Tsi), and the input and output
sizes are identical.

• When you set the Input processing parameter to Columns as channels (frame
based), the block treats an Mi-by-N matrix input as N independent channels. The
block processes each column of the input over time by keeping the frame size constant
(Mi=Mo), and making the output frame period (Tfo) K times longer than the input
frame period (Tfo = K*Tfi).

Exporting Filter Coefficients to the MATLAB Workspace

To examine or manipulate the coefficients of the filter that this block designs, select
Export filter coefficients to workspace. Then set the Coefficient variable name
parameter to the name of a variable that you want the block to create in the MATLAB
workspace. Running the simulation causes the block to create the variable, overwriting
any previous contents in case the variable already exists.

Latency

For information pertaining to the latency of the block, see details in FIR Decimation.

2 Blocks — Alphabetical List

2-804

Dialog Box

Filter shape
Specify the filter shape as Square root or Normal.

Rolloff factor
Specify the rolloff factor of the filter. Use a real number between 0 and 1.

Filter span in symbols
Specify the number of symbols the filter spans as an even, integer-valued positive
scalar. The default is 10. Because the ideal raised cosine filter has an infinite impulse

 Raised Cosine Receive Filter

2-805

response, the block truncates the impulse response to the number of symbols that
this parameter specifies.

Input samples per symbol
An integer greater than 1 representing the number of samples that represent one
symbol in the input signal.

Decimation factor
Specify the decimation factor the block applies to the input signal. The output
samples per symbol equals the value of the input samples per symbol divided by the
decimation factor. If the decimation factor is one, then the block only applies filtering.
There is no decimation.

Decimation offset
Specify the decimation offset in samples. Use a value between 0 and Decimation
factor -1.

Linear amplitude filter gain
Specify a positive scalar value that the block uses to scale the filter coefficients. By
default, the block normalizes filter coefficients to provide unit energy gain. If you
specify a gain other than 1, the block scales the normalized filter coefficients using
the gain value you specify.

Input processing
Specify how the block processes the input signal. You can set this parameter to one of
the following options:

• Columns as channels (frame based) — When you select this option, the
block treats each column of the input as a separate channel.

• Elements as channels (sample based) — When you select this option, the
block treats each element of the input as a separate channel.

Note: The Inherited (this choice will be removed - see release
notes) option will be removed in a future release. See “Frame-Based Processing” in
the Communications System Toolbox Release Notes for more information.

Rate options
Specify the method by which the block should filter and downsample the input signal.
You can select one of the following options:

2 Blocks — Alphabetical List

2-806

• Enforce single-rate processing — When you select this option, the block
maintains the input sample rate and processes the signal by decreasing the
output frame size by a factor of K. To select this option, you must set the Input
processing parameter to Columns as channels (frame based).

• Allow multirate processing — When you select this option, the block
processes the signal such that the output sample rate is K times slower than the
input sample rate.

Export filter coefficients to workspace
Select this check box to create a variable in the MATLAB workspace that contains
the filter coefficients.

Coefficient variable name
The name of the variable to create in the MATLAB workspace. This field appears
only if Export filter coefficients to workspace is selected.

Visualize filter with FVTool
If you click this button, then MATLAB launches the Filter Visualization Tool,
fvtool, to analyze the raised cosine filter whenever you apply any changes to the
block's parameters. If you launch fvtool for the filter, and subsequently change
parameters in the mask, fvtool will not update. You will need to launch a new
fvtool in order to see the new filter characteristics. Also note that if you have
launched fvtool, then it will remain open even after the model is closed.

 Raised Cosine Receive Filter

2-807

Rounding mode
Select the rounding mode for fixed-point operations. The block uses the Rounding
mode when the result of a fixed-point calculation does not map exactly to a number
representable by the data type and scaling storing the result. The filter coefficients
do not obey this parameter; they always round to Nearest. For more information,
see “Rounding Modes” in the DSP System Toolbox documentation or “Rounding
Mode: Simplest” in the Fixed-Point Designer documentation.

Overflow mode
Select the overflow mode for fixed-point operations. The filter coefficients do not obey
this parameter; they are always saturated.

2 Blocks — Alphabetical List

2-808

Coefficients
Choose how you specify the word length and the fraction length of the filter
coefficients (numerator and/or denominator).

See the Coefficients section of the FIR Decimation help page and “Filter Structure
Diagrams” in DSP System Toolbox Reference Guide for illustrations depicting the use
of the coefficient data types in this block:

See the Coefficients subsection of the Digital Filter help page for descriptions of
parameter settings.

• When you select Same word length as input, the word length of the filter
coefficients match that of the input to the block. In this mode, the fraction length
of the coefficients is automatically set to the binary-point only scaling that
provides you with the best precision possible given the value and word length of
the coefficients.

• When you select Specify word length, you are able to enter the word length
of the coefficients, in bits. In this mode, the fraction length of the coefficients is
automatically set to the binary-point only scaling that provides you with the best
precision possible given the value and word length of the coefficients.

• When you select Binary point scaling, you are able to enter the word length
and the fraction length of the coefficients, in bits. If applicable, you are able to
enter separate fraction lengths for the numerator and denominator coefficients.

• When you select Slope and bias scaling, you are able to enter the word
length, in bits, and the slope of the coefficients. If applicable, you are able to
enter separate slopes for the numerator and denominator coefficients. This block
requires power-of-two slope and a bias of zero.

• The filter coefficients do not obey the Rounding mode and the Overflow mode
parameters; they are always saturated and rounded to Nearest.

Product output
Use this parameter to specify how you would like to designate the product output
word and fraction lengths. See “Filter Structure Diagrams” and “Multiplication Data
Types” in DSP System Toolbox Reference Guide for illustrations depicting the use of
the product output data type in this block:

• When you select Same as input, these characteristics match those of the input
to the block.

• When you select Binary point scaling, you are able to enter the word length
and the fraction length of the product output, in bits.

 Raised Cosine Receive Filter

2-809

• When you select Slope and bias scaling, you are able to enter the word
length, in bits, and the slope of the product output. This block requires power-of-
two slope and a bias of zero.

Accumulator
Use this parameter to specify how you would like to designate the accumulator word
and fraction lengths. See “Filter Structure Diagrams” and “Multiplication Data
Types” for illustrations depicting the use of the accumulator data type in this block:

• When you select Same as input, these characteristics match those of the input
to the block.

• When you select Same as product output, these characteristics match those
of the product output.

• When you select Binary point scaling, you are able to enter the word length
and the fraction length of the accumulator, in bits.

• When you select Slope and bias scaling, you are able to enter the word
length, in bits, and the slope of the accumulator. This block requires power-of-two
slope and a bias of zero.

Output
Choose how you specify the output word length and fraction length:

• When you select Same as input, these characteristics match those of the input
to the block.

• When you select Same as accumulator, these characteristics match those of the
accumulator.

• When you select Binary point scaling, you are able to enter the word length
and the fraction length of the output, in bits.

• When you select Slope and bias scaling, you are able to enter the word
length, in bits, and the slope of the output. This block requires power-of-two slope
and a bias of zero.

Lock data type settings against changes by the fixed-point tools
Select this parameter to prevent any fixed-point scaling you specify in this block
mask from being overridden by the autoscaling tool in the Fixed-Point Tool.

2 Blocks — Alphabetical List

2-810

Supported Data Type

Port Supported Data Types

In • Double-precision floating point
• Single-precision floating point
• Signed fixed-point

Out • Double-precision floating point
• Single-precision floating point
• Signed fixed-point

Pair Block

Raised Cosine Transmit Filter

See Also

rcosdesign, comm.RaisedCosineTransmitFilter

 Raised Cosine Transmit Filter

2-811

Raised Cosine Transmit Filter

Apply pulse shaping by upsampling signal using raised cosine FIR filter

Library

Comm Filters

Description

The Raised Cosine Transmit Filter block upsamples and filters the input signal using a
normal raised cosine FIR filter or a square root raised cosine FIR filter. The block's icon
shows the filter's impulse response.

Characteristics of the Filter

The Filter shape parameter determines which type of filter the block uses; choices are
Normal and Square root.

The impulse response of a normal raised cosine filter with rolloff factor R and symbol
period T is

h t
t T

t T

Rt T

R t T

()
sin(/)

(/)

cos(/)

(/)
= ◊

-

p

p

p

1 4
2 2 2

The impulse response of a square root raised cosine filter with rolloff factor R is

h t R

R t T
R t T

Rt T

T Rt T

()

cos () /
sin () /

(/)

(/)
=

+() +
-()

-()
4

1
1

4

1 4
2

p
p

p

2 Blocks — Alphabetical List

2-812

The impulse response of a square root raised cosine filter convolved with itself is
approximately equal to the impulse response of a normal raised cosine filter.

Because the ideal raised cosine filter has an infinite impulse response, the block
truncates the impulse response to the number of symbols that the Filter span in
symbols parameter specifies. The Filter span in symbols, N, and the Output
samples per symbol, L, determine the length of the filter's impulse response, which is
L * Filter span in symbols + 1.

The Rolloff factor parameter is the filter's rolloff factor. It must be a real number
between 0 and 1. The rolloff factor determines the excess bandwidth of the filter. For
example, a rolloff factor of .5 means that the bandwidth of the filter is 1.5 times the input
sampling frequency.

The block normalizes the filter coefficients to unit energy. If you specify a Liner
amplitude filter gain other than 1, then the block scales the normalized filter
coefficients using the gain value you specify.

Input Signals and Output Signals

The input must be a discrete-time signal. This block accepts a column vector or matrix
input signal. For information about the data types each block port supports, see the
“Supported Data Type” on page 2-819 table on this page.

The Rate options method and the value of the Output samples per symbol, L,
parameter determine the characteristics of the output signal:

Single-Rate Processing

When you set the Rate options parameter to Enforce single-rate processing,
the input and output of the block have the same sample rate. To generate the output
while maintaining the input sample rate, the block resamples the data in each column
of the input such that the frame size of the output (Mo) is L times larger than that of the
input (Mo = Mi*L), where L represents the value of the Output samples per symbol
parameter.

Multirate Processing

When you set the Rate options parameter to Allow multirate processing, the
input and output of the block are the same size. However, the sample rate of the output

 Raised Cosine Transmit Filter

2-813

is L times faster than that of the input (i.e. the output sample time is 1/L times the input
sample time). When the block is in multirate processing mode, you must also specify a
value for the Input processing parameter:

• When you set the Input processing parameter to Elements as channels
(sample based), the block treats an M-by-L matrix input as M*N independent
channels, and processes each channel over time. The output sample period (Tso) is L
times shorter than the input sample period (Tso = Tsi/L), while the input and output
sizes remain identical.

• When you set the Input processing parameter to Columns as channels (frame
based), the block treats an Mi-by-N matrix input as N independent channels. The
block processes each column of the input over time by keeping the frame size constant
(Mi=Mo), while making the output frame period (Tfo) L times shorter than the input
frame period (Tfo = Tfi/L).

Exporting Filter Coefficients to the MATLAB Workspace

To examine or manipulate the coefficients of the filter that this block designs, select
Export filter coefficients to workspace. Then set the Coefficient variable name
parameter to the name of a variable that you want the block to create in the MATLAB
workspace. Running the simulation causes the block to create the variable, overwriting
any previous contents in case the variable already exists.

2 Blocks — Alphabetical List

2-814

Dialog Box

Filter shape
Specify the filter shape as Square root or Normal.

Rolloff factor
Specify the rolloff factor of the filter. Use a real number between 0 and 1.

Filter span in symbols
Specify the number of symbols the filter spans as an even, integer-valued positive
scalar. The default is 10. Because the ideal raised cosine filter has an infinite impulse
response, the block truncates the impulse response to the number of symbols that
this parameter specifies.

 Raised Cosine Transmit Filter

2-815

Output samples per symbol
Specify the number of output samples for each input symbol. The default is 8. This
property accepts an integer-valued, positive scalar. The number of taps for the raised
cosine filter equals the value of this parameter multiplied by the value of the Filter
span in symbols parameter.

Linear amplitude filter gain
Specify a positive scalar value that the block uses to scale the filter coefficients. By
default, the block normalizes filter coefficients to provide unit energy gain. If you
specify a gain other than 1, the block scales the normalized filter coefficients using
the gain value you specify.

Input processing
Specify how the block processes the input signal. You can set this parameter to one of
the following options:

• Columns as channels (frame based) — When you select this option, the
block treats each column of the input as a separate channel.

• Elements as channels (sample based) — When you select this option, the
block treats each element of the input as a separate channel.

Note: The Inherited (this choice will be removed - see release
notes) option will be removed in a future release. See “Frame-Based Processing” in
the Communications System Toolbox Release Notes for more information.

Rate options
Specify the method by which the block should upsample and filter the input signal.
You can select one of the following options:

• Enforce single-rate processing — When you select this option, the block
maintains the input sample rate, and processes the signal by increasing the
output frame size by a factor of N. To select this option, you must set the Input
processing parameter to Columns as channels (frame based).

• Allow multirate processing — When you select this option, the block
processes the signal such that the output sample rate is N times faster than the
input sample rate.

Export filter coefficients to workspace

2 Blocks — Alphabetical List

2-816

Select this check box to create a variable in the MATLAB workspace that contains
the filter coefficients.

Visualize filter with FVTool
If you click this button, then MATLAB launches the Filter Visualization Tool,
fvtool, to analyze the raised cosine filter whenever you apply any changes to the
block's parameters. If you launch fvtool for the filter, and subsequently change
parameters in the mask, fvtool will not update. You will need to launch a new
fvtool in order to see the new filter characteristics. Also note that if you have
launched fvtool, then it will remain open even after the model is closed.

Rounding mode
Select the rounding mode for fixed-point operations. The block uses the Rounding
mode when the result of a fixed-point calculation does not map exactly to a number

 Raised Cosine Transmit Filter

2-817

representable by the data type and scaling storing the result. The filter coefficients
do not obey this parameter; they always round to Nearest. For more information,
see “Rounding Modes” in the DSP System Toolbox documentation or “Rounding
Mode: Simplest” in the Fixed-Point Designer documentation.

Overflow mode
Select the overflow mode for fixed-point operations. The filter coefficients do not obey
this parameter; they are always saturated.

Coefficients
Choose how you specify the word length and the fraction length of the filter
coefficients (numerator and/or denominator). See “Filter Structure Diagrams” in DSP
System Toolbox Reference Guide for illustrations depicting the use of the coefficient
data types in this block:

• When you select Same word length as input, the word length of the filter
coefficients match that of the input to the block. In this mode, the fraction length
of the coefficients is automatically set to the binary-point only scaling that
provides you with the best precision possible given the value and word length of
the coefficients.

• When you select Specify word length, you are able to enter the word length
of the coefficients, in bits. In this mode, the fraction length of the coefficients is
automatically set to the binary-point only scaling that provides you with the best
precision possible given the value and word length of the coefficients.

• When you select Binary point scaling, you are able to enter the word length
and the fraction length of the coefficients, in bits. If applicable, you are able to
enter separate fraction lengths for the numerator and denominator coefficients.

• When you select Slope and bias scaling, you are able to enter the word
length, in bits, and the slope of the coefficients. If applicable, you are able to
enter separate slopes for the numerator and denominator coefficients. This block
requires power-of-two slope and a bias of zero.

• The filter coefficients do not obey the Rounding mode and the Overflow mode
parameters; they are always saturated and rounded to Nearest.

Product output
Use this parameter to specify how you would like to designate the product output
word and fraction lengths. See “Filter Structure Diagrams” and “Multiplication Data
Types” in DSP System Toolbox Reference Guide for illustrations depicting the use of
the product output data type in this block:

2 Blocks — Alphabetical List

2-818

• When you select Same as input, these characteristics match those of the input
to the block.

• When you select Binary point scaling, you are able to enter the word length
and the fraction length of the product output, in bits.

• When you select Slope and bias scaling, you are able to enter the word
length, in bits, and the slope of the product output. This block requires power-of-
two slope and a bias of zero.

Accumulator
Use this parameter to specify how you would like to designate the accumulator word
and fraction lengths. See “Filter Structure Diagrams” and “Multiplication Data
Types” for illustrations depicting the use of the accumulator data type in this block:

• When you select Same as input, these characteristics match those of the input
to the block.

• When you select Same as product output, these characteristics match those
of the product output.

• When you select Binary point scaling, you are able to enter the word length
and the fraction length of the accumulator, in bits.

• When you select Slope and bias scaling, you are able to enter the word
length, in bits, and the slope of the accumulator. This block requires power-of-two
slope and a bias of zero.

Output
Choose how you specify the output word length and fraction length:

• When you select Same as input, these characteristics match those of the input
to the block.

• When you select Same as accumulator, these characteristics match those of the
accumulator.

• When you select Binary point scaling, you are able to enter the word length
and the fraction length of the output, in bits.

• When you select Slope and bias scaling, you are able to enter the word
length, in bits, and the slope of the output. This block requires power-of-two slope
and a bias of zero.

Lock data type settings against changes by the fixed-point tools

 Raised Cosine Transmit Filter

2-819

Select this parameter to prevent any fixed-point scaling you specify in this block
mask from being overridden by the autoscaling tool in the Fixed-Point Tool.

Supported Data Type

Port Supported Data Types

In • Double-precision floating point
• Single-precision floating point
• Signed fixed-point

Out • Double-precision floating point
• Single-precision floating point
• Signed fixed-point

Pair Block

Raised Cosine Receive Filter

See Also

rcosdesign, comm.RaisedCosineReceiveFilter

2 Blocks — Alphabetical List

2-820

Random Deinterleaver

Restore ordering of input symbols using random permutation

Library

Block sublibrary of Interleaving

Description

The Random Deinterleaver block rearranges the elements of its input vector using
a random permutation. The Initial seed parameter initializes the random number
generator that the block uses to determine the permutation. If this block and the
Random Interleaver block have the same value for Initial seed, then the two blocks are
inverses of each other.

This block accepts a column vector input signal. The Number of elements parameter
indicates how many numbers are in the input vector.

The block accepts the following data types int8, uint8, int16, uint16, int32,
uint32, boolean, single, double, and fixed-point. The output signal inherits its data
type from the input signal.

 Random Deinterleaver

2-821

Dialog Box

Number of elements
The number of elements in the input vector.

Initial seed
The initial seed value for the random number generator.

Pair Block

Random Interleaver

See Also

General Block Deinterleaver

2 Blocks — Alphabetical List

2-822

Random Integer Generator

Generate integers randomly distributed in range [0, M-1]

Library

Random Data Sources sublibrary of Comm Sources

Description

The Random Integer Generator block generates uniformly distributed random integers in
the range [0, M-1], where M is the M-ary number defined in the dialog box.

The M-ary number can be either a scalar or a vector. If it is a scalar, then all output
random variables are independent and identically distributed (i.i.d.). If the M-ary
number is a vector, then its length must equal the length of the Initial seed; in this
case each output has its own output range.

If the Initial seed parameter is a constant, then the resulting noise is repeatable.

Attributes of Output Signal

The output signal can be a frame-based matrix, a sample-based row or column vector, or
a sample-based one-dimensional array. These attributes are controlled by the Frame-
based outputs, Samples per frame, and Interpret vector parameters as 1-D
parameters. See “Sources and Sinks” in Communications System ToolboxUser's Guide for
more details.

The number of elements in the Initial seed parameter becomes the number of columns
in a frame-based output or the number of elements in a sample-based vector output. Also,
the shape (row or column) of the Initial seed parameter becomes the shape of a sample-
based two-dimensional output signal.

 Random Integer Generator

2-823

Dialog Box

M-ary number
The positive integer, or vector of positive integers, that indicates the range of output
values.

Initial seed
The initial seed value for the random number generator. The vector length of the
seed determines the length of the output vector.

Sample time
The period of each sample-based vector or each row of a frame-based matrix.

Frame-based outputs
Determines whether the output is frame-based or sample-based. This box is active
only if Interpret vector parameters as 1-D is unchecked.

Samples per frame
The number of samples in each column of a frame-based output signal. This field is
active only if Frame-based outputs is checked.

2 Blocks — Alphabetical List

2-824

Interpret vector parameters as 1-D
If this box is checked, then the output is a one-dimensional signal. Otherwise, the
output is a two-dimensional signal. This box is active only if Frame-based outputs
is unchecked.

Output data type
The output type of the block can be specified as a boolean, int8, uint8, int16,
uint16, int32, uint32, single, or double. By default, the block sets this to
double. Single outputs may lead to different results when compared with double
outputs for the same set of parameters. For Boolean typed outputs, the M-ary
number must be 2.

See Also

randi

 Random Interleaver

2-825

Random Interleaver

Reorder input symbols using random permutation

Library

Block sublibrary of Interleaving

Description

The Random Interleaver block rearranges the elements of its input vector using a
random permutation. This block accepts a column vector input signal. The Number of
elements parameter indicates how many numbers are in the input vector.

The block accepts the following data types: int8, uint8, int16, uint16, int32,
uint32, boolean, single, double, and fixed-point. The output signal inherits its data
type from the input signal.

The Initial seed parameter initializes the random number generator that the block uses
to determine the permutation. The block is predictable for a given seed, but different
seeds produce different permutations.

2 Blocks — Alphabetical List

2-826

Dialog Box

Number of elements
The number of elements in the input vector.

Initial seed
The initial seed value for the random number generator.

Pair Block

Random Deinterleaver

See Also

General Block Interleaver

 Rayleigh Noise Generator

2-827

Rayleigh Noise Generator

Generate Rayleigh distributed noise

Library

Noise Generators sublibrary of Comm Sources

Description

The Rayleigh Noise Generator block generates Rayleigh distributed noise. The Rayleigh
probability density function is given by

f x

x x
x

x

()
exp

=
-

Ê

Ë
ÁÁ

ˆ

¯
˜̃ ≥

<

Ï

Ì
Ô

Ó
Ô

s s2

2

22
0

0 0

where σ2 is known as the fading envelope of the Rayleigh distribution.

The block requires you to specify the Initial seed for the random number generator. If it
is a constant, then the resulting noise is repeatable. The sigma parameter can be either
a vector of the same length as the Initial seed, or a scalar. When sigma is a scalar,
every element of the output signal shares that same value.

Initial Seed

The Initial seed parameter initializes the random number generator that the Rayleigh
Noise Generator block uses to add noise to the input signal. For best results, the Initial
seed should be a prime number greater than 30. Also, if there are other blocks in a model
that have an Initial seed parameter, you should choose different initial seeds for all
such blocks.

2 Blocks — Alphabetical List

2-828

You can choose seeds for the Rayleigh Noise Generator block using the Communications
System Toolbox randseed function. At the MATLAB prompt, enter

randseed

This returns a random prime number greater than 30. Entering randseed again
produces a different prime number. If you supply an integer argument, randseed always
returns the same prime for that integer. For example, randseed(5) always returns the
same answer.

Attributes of Output Signal

The output signal can be a frame-based matrix, a sample-based row or column vector, or
a sample-based one-dimensional array. These attributes are controlled by the Frame-
based outputs, Samples per frame, and Interpret vector parameters as 1-D
parameters. See “Sources and Sinks” in the Control System Toolbox™ documentation for
more details.

The number of elements in the Initial seed parameter becomes the number of columns
in a frame-based output or the number of elements in a sample-based vector output. Also,
the shape (row or column) of the Initial seed parameter becomes the shape of a sample-
based two-dimensional output signal.

 Rayleigh Noise Generator

2-829

Dialog Box

Sigma
Specify σ as defined in the Rayleigh probability density function.

Initial seed
The initial seed value for the random number generator.

Sample time
The period of each sample-based vector or each row of a frame-based matrix.

Frame-based outputs
Determines whether the output is frame-based or sample-based. This box is active
only if Interpret vector parameters as 1-D is unchecked.

Samples per frame
The number of samples in each column of a frame-based output signal. This field is
active only if Frame-based outputs is checked.

Interpret vector parameters as 1-D

2 Blocks — Alphabetical List

2-830

If this box is checked, then the output is a one-dimensional signal. Otherwise, the
output is a two-dimensional signal. This box is active only if Frame-based outputs
is unchecked.

Output data type
The output can be set to double or single data types.

See Also

Multipath Rayleigh Fading Channel; raylrnd (Statistics Toolbox)

References

[1] Proakis, John G., Digital Communications, Third edition, New York, McGraw Hill,
1995.

 Receiver Thermal Noise

2-831

Receiver Thermal Noise

Apply receiver thermal noise to complex baseband signal

Library

RF Impairments

Description

The Receiver Thermal Noise block simulates the effects of thermal noise on a complex,
baseband signal. You can specify the amount of thermal noise in three ways, according to
which Specification method you select:

• Noise temperature specifies the noise in degrees kelvin.
• Noise factor specifies the noise as 1+(Noise temperature / 290).
• Noise figure specifies the noise as 10*log10(1+(Noise temperature / 290)). This is

the decibel equivalent of Noise factor.

The following scatter plot shows the effect of the Receiver Thermal Noise block, with
Specification method set to Noise figure and Noise figure (dB) set to 3.01, on a
signal modulated by 16-QAM.

2 Blocks — Alphabetical List

2-832

This plot is generated by the model described in “Illustrate RF Impairments That Distort
a Signal” with the following parameter settings:

• Rectangular QAM Modulator Baseband

• Normalization method set to Average Power
• Average power (watts) set to 1e-12

• Receiver Thermal Noise

• Specification method set to Noise figure
• Noise figure (dB) set to 3.01

 Receiver Thermal Noise

2-833

Dialog Box

Specification method
The method by which you specify the amount of noise. The choices are Noise
temperature, Noise figure, and Noise factor.

Noise temperature (K)
Scalar specifying the amount of noise in degrees kelvin.

Noise figure
Scalar specifying the amount of noise in decibels relative to a noise temperature of
290 degrees kelvin. A Noise figure setting of 0 dB indicates a noiseless system.

Noise factor
Scalar specifying the amount of noise relative to a noise temperature of 290 degrees
kelvin.

Initial seed
The initial seed value for the random number generator that generates the noise.

2 Blocks — Alphabetical List

2-834

See Also

Free Space Path Loss

 Rectangular QAM Demodulator Baseband

2-835

Rectangular QAM Demodulator Baseband

Demodulate rectangular-QAM-modulated data

Library

AM, in Digital Baseband sublibrary of Modulation

Description

The Rectangular QAM Demodulator Baseband block demodulates a signal that was
modulated using quadrature amplitude modulation with a constellation on a rectangular
lattice.

Note: All values of power assume a nominal impedance of 1 ohm.

The signal constellation has M points, where M is the M-ary number parameter.
M must have the form 2K for some positive integer K. The block scales the signal
constellation based on how you set the Normalization method parameter. For details,
see the reference page for the Rectangular QAM Modulator Baseband block.

This block accepts a scalar or column vector input signal. For information about the data
types each block port supports, see the “Supported Data Types” on page 2-844 table on
this page.

Hard Decision Algorithm

The demodulator algorithm maps received input signal constellation values to M-ary
integer I and Q symbol indices between 0 and M -1 and then maps these demodulated
symbol indices to formatted output values.

2 Blocks — Alphabetical List

2-836

The integer symbol index computation is performed by first derotating and scaling
the complex input signal constellation (possibly with noise) by a derotate factor and
denormalization factor, respectively. These factors are derived from the Phase offset,
Normalization method, and related parameters. These derotated and denormalized
values are added to M -1 to translate them into an approximate range between 0
and 2 1¥ -()M (plus noise). The resulting values are then rescaled via a divide-by-
two (or, equivalently, a right-shift by one bit for fixed-point operation) to obtain a range
approximately between 0 and M -1 (plus noise) for I and Q. The noisy index values
are rounded to the nearest integer and clipped, via saturation, and mapped to integer
symbol values in the range [0 M-1]. Finally, based on other block parameters, the integer
index is mapped to a symbol value that is formatted and cast to the selected Output
data type.

The following figures contains signal flow diagrams for floating-point and fixed-point
algorithm operation. The floating-point diagrams apply when the input signal data
type is double or single. The fixed-point diagrams apply when the input signal is a
signed fixed-point data type. Note that the diagram is simplified when Phase offset is a

multiple of
p

2 , and/or the derived denormalization factor is 1.

 Rectangular QAM Demodulator Baseband

2-837

Demodulator input

(complex)

Floating Point Fixed Point

+
inDT

Demodulator input

(complex)

Demodulator output

Sum DT

Divide-by-2 with round to nearest
Cast to integer

Cast before sum

int32

outDT (a built-in or

ufix data type)

Format output

Demodulator output

Divide-by-2 with round to nearest
Cast to integer

int32

outDT (a built-in or

ufix data type)

Format output

I idx Q idx I idx Q idx

Clip range to [0 sqrt(M)-1]Clip range to [0 sqrt(M)-1]

inDT

inDT

inDT

sqrt(M)-1 +
inDT

+ sqrt(M)-1 +
Sum DT

Sum DT Sum DT

Cast before sum

inDTI QinDT inDTI Q

Pass through or negate I and Q
(with saturation)

Pass through or negate I and Q
(with saturation)

Signal-Flow Diagrams with Trivial Phase Offset and Denormalization Factor Equal to 1

2 Blocks — Alphabetical List

2-838

Demodulator input

(complex)

Floating Point Fixed Point

+
inDT

Demodulator input

(complex)

Demodulator output

Derotate

factor DT

Sum DT

Divide-by-2 with round to nearest
Cast to integer

Cast before sum

int32

outDT (a built-in or

ufix data type)

Format output

Demodulator output

Divide-by-2 with round to nearest
Cast to integer

int32

outDT (a built-in or

ufix data type)

Format output

I idx Q idx I idx Q idx

Clip range to [0 sqrt(M)-1]Clip range to [0 sqrt(M)-1]

inDT

Derotate factors
(sin and cos)

Product output DT

inDT

inDT

Derotate factors
(sin and cos)

Denorm

DT

sqrt(M)-1 +
inDT

+ sqrt(M)-1 +
Sum DT

Sum DT Sum DT

Cast before sum

+ +
Denorm
factor

Denorm

DT

inDTI QinDT

+ +
Denorm
factor

inDTI Q

inDT inDT

inDT inDT

Complex fixed-point multiplyComplex floating-point multiply

Signal-Flow Diagrams with Nontrivial Phase Offset and Nonunity Denormalization Factor

 Rectangular QAM Demodulator Baseband

2-839

Dialog Box

M-ary number

The number of points in the signal constellation. It must have the form 2K for some
positive integer K.

Normalization method
Determines how the block scales the signal constellation. Choices are Min.
distance between symbols, Average Power, and Peak Power.

Minimum distance

2 Blocks — Alphabetical List

2-840

This parameter appears when Normalization method is set to Min. distance
between symbols.

The distance between two nearest constellation points.
Average power, referenced to 1 ohm (watts)

The average power of the symbols in the constellation, referenced to 1 ohm. This field
appears only when Normalization method is set to Average Power.

Peak power, referenced to 1 ohm (watts)
The maximum power of the symbols in the constellation, referenced to 1 ohm. This
field appears only when Normalization method is set to Peak Power.

Phase offset (rad)
The rotation of the signal constellation, in radians.

Constellation ordering
Determines how the block assigns binary words to points of the signal constellation.
More details are on the reference page for the Rectangular QAM Modulator
Baseband block.

Selecting User-defined displays the field Constellation mapping, allowing for
user-specified mapping.

Constellation mapping
This parameter appears when User-defined is selected in the pull-down list
Constellation ordering.

This is a row or column vector of size M and must have unique integer values in the
range [0, M-1]. The values must be of data type double.

The first element of this vector corresponds to the top-leftmost point of the
constellation, with subsequent elements running down column-wise, from left to
right. The last element corresponds to the bottom-rightmost point.

Output type
Determines whether the block produces integers or binary representations of
integers.

If set to Integer, the block produces integers.

If set to Bit, the block produces a group of K bits, called a binary word, for each
symbol, when Decision type is set to Hard decision. If Decision type is set to

 Rectangular QAM Demodulator Baseband

2-841

Log-likelihood ratio or Approximate log-likelihood ratio, the block
outputs bitwise LLR and approximate LLR, respectively.

Decision type
This parameter appears when Bit is selected in the pull-down list Output type.

Specifies the use of hard decision, LLR, or approximate LLR during demodulation.
See “Exact LLR Algorithm” and “Approximate LLR Algorithm” in the
Communications System Toolbox User's Guide for algorithm details.

Noise variance source
This parameter appears when Approximate log-likelihood ratio or Log-
likelihood ratio is selected for Decision type.

When set to Dialog, the noise variance can be specified in the Noise variance field.
When set to Port, a port appears on the block through which the noise variance can
be input.

Noise variance
This parameter appears when the Noise variance source is set to Dialog and
specifies the noise variance in the input signal. This parameter is tunable in normal
mode, Accelerator mode and Rapid Accelerator mode.

If you use the Simulink Coder rapid simulation (RSIM) target to build an RSIM
executable, then you can tune the parameter without recompiling the model. This is
useful for Monte Carlo simulations in which you run the simulation multiple times
(perhaps on multiple computers) with different amounts of noise.

The LLR algorithm involves computing exponentials of very large or very small
numbers using finite precision arithmetic and would yield:

• Inf to -Inf if Noise variance is very high
• NaN if Noise variance and signal power are both very small

In such cases, use approximate LLR, as its algorithm does not involve computing
exponentials.

2 Blocks — Alphabetical List

2-842

Output
When the parameter is set to 'Inherit via internal rule' (default setting),
the block will inherit the output data type from the input port. The output data type
will be the same as the input data type if the input is of type single or double.
Otherwise, the output data type will be as if this parameter is set to 'Smallest
unsigned integer'.

When the parameter is set to 'Smallest unsigned integer', the output data
type is selected based on the settings used in the Hardware Implementation pane
of the Configuration Parameters dialog box of the model. If ASIC/FPGA is selected in
the Hardware Implementation pane, the output data type is the ideal minimum
size, i.e., ufix(1) for bit outputs, and ufix(ceil(log2(M))) for integer outputs.

 Rectangular QAM Demodulator Baseband

2-843

For all other selections, it is an unsigned integer with the smallest available word
length large enough to fit the ideal minimum size, usually corresponding to the size
of a char (e.g., uint8).

For integer outputs, this parameter can be set to Smallest unsigned integer,
int8, uint8, int16, uint16, int32, uint32, single, and double. For bit outputs,
the options are Smallest unsigned integer, int8, uint8, int16, uint16,
int32, uint32, boolean, single, or double.

Derotate factor
This parameter only applies when the input is fixed-point and Phase offset is not a

multiple of
p

2 .

This can be set to Same word length as input or Specify word length, in
which case a field is enabled for user input.

Denormalization factor
This parameter only applies when the input is fixed-point and the derived
denormalization factor is nonunity (not equal to 1). This scaling factor is derived from
Normalization method and other parameter values in the block dialog.

This can be set to Same word length as input or Specify word length, in
which case a field is enabled for user input. A best-precision fraction length is always
used.

Product output
This parameter only applies when the input is a fixed-point signal and there is
a nonunity (not equal to 1) denormalized factor. It can be set to Inherit via
internal rule or Specify word length, which enables a field for user input.

Setting to Inherit via internal rule computes the full-precision product word
length and fraction length. “Internal Rule for Product Data Types” in DSP System
Toolbox User's Guide describes the full-precision Product output internal rule.

Setting to Specify word length allows you to define the word length. The block
computes a best-precision fraction length based on the word length specified and the
pre-computed worst-case (min/max) real world value Product output result. The
worst-case Product output result is precomputed by multiplying the denormalized
factor with the worst-case (min/max) input signal range, purely based on the input
signal data type.

2 Blocks — Alphabetical List

2-844

The block uses the Rounding mode when the result of a fixed-point calculation
does not map exactly to a number representable by the data type and scaling
storing the result. For more information, see “Rounding Modes” in the DSP System
Toolbox documentation or “Rounding Mode: Simplest” in the Fixed-Point Designer
documentation.

Sum
This parameter only applies when the input is a fixed-point signal. It can be set to
Inherit via internal rule, Same as product output, or Specify word
length, in which case a field is enabled for user input

Setting to Inherit via internal rule computes the full-precision sum word
length and fraction length, based on the two inputs to the Sum in the fixed-point
“Hard Decision Algorithm” signal flow diagram. The rule is the same as the fixed-
point inherit rule of the internal Accumulator data type parameter in the
Simulink “Sum” block.

Setting to Specify word length allows you to define the word length. A best
precision fraction length is computed based on the word length specified in the pre-
computed maximum range necessary for the demodulated algorithm to produce
accurate results. The signed fixed-point data type that has the best precision fully
contains the values in the range 2 1*()M - for the specified word length.

Setting to Same as product output allows the Sum data type to be the same as
the Product output data type (when Product output is used). If the Product
output is not used, then this setting will be ignored and the Inherit via
internal rule Sum setting will be used.

Supported Data Types

Port Supported Data Types

Input • Double-precision floating point
• Single-precision floating point
• Signed fixed–point when M-ary number is an even power of 2 and:

• Output type is Integer
• Output type is Bit and Decision type is Hard-decision

 Rectangular QAM Demodulator Baseband

2-845

Port Supported Data Types

Var • Double-precision floating point
• Single-precision floating point

Output • Double-precision floating point
• Single-precision floating point
• Boolean when Output type is Bit
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers
• ufix(1) in ASIC/FPGA when Output type is Bit
• ufix Mlog2() in ASIC/FPGA when Output type is Integer

HDL Code Generation

This block supports HDL code generation using HDL Coder. HDL Coder provides
additional configuration options that affect HDL implementation and synthesized
logic. For more information on implementations, properties, and restrictions for HDL
code generation, see Rectangular QAM Demodulator Baseband in the HDL Coder
documentation.

Pair Block

Rectangular QAM Modulator Baseband

See Also

General QAM Demodulator Baseband

References

[1] Smith, Joel G., “Odd-Bit Quadrature Amplitude-Shift Keying,” IEEE Transactions on
Communications, Vol. COM-23, March 1975, 385–389.

2 Blocks — Alphabetical List

2-846

Rectangular QAM Modulator Baseband
Modulate using rectangular quadrature amplitude modulation

Library

AM, in Digital Baseband sublibrary of Modulation

Description

The Rectangular QAM Modulator Baseband block modulates using M-ary quadrature
amplitude modulation with a constellation on a rectangular lattice. The output is a
baseband representation of the modulated signal. This block accepts a scalar or column
vector input signal. For information about the data types each block port supports, see
“Supported Data Types” on page 2-851.

Note: All values of power assume a nominal impedance of 1 ohm.

Integer-Valued Signals and Binary-Valued Signals

When you set the Input type parameter to Integer, the block accepts integer values
between 0 and M-1. M represents the M-ary number block parameter.

When you set the Input type parameter to Bit, the block accepts binary-valued inputs
that represent integers. The block collects binary-valued signals into groups of K =
log2(M) bits

where

K represents the number of bits per symbol.

The input vector length must be an integer multiple of K. In this configuration, the block
accepts a group of K bits and maps that group onto a symbol at the block output. The
block outputs one modulated symbol for each group of K bits.

 Rectangular QAM Modulator Baseband

2-847

The Constellation ordering parameter indicates how the block assigns binary words to
points of the signal constellation. Such assignments apply independently to the in-phase
and quadrature components of the input:

• If Constellation ordering is set to Binary, the block uses a natural binary-coded
constellation.

• If Constellation ordering is set to Gray and K is even, the block uses a Gray-coded
constellation.

• If Constellation ordering is set to Gray and K is odd, the block codes the
constellation so that pairs of nearest points differ in one or two bits. The constellation
is cross-shaped, and the schematic below indicates which pairs of points differ in two
bits. The schematic uses M = 128, but suggests the general case.

Hollow vertical pairs of adjacent
points differ by two bits

Other pairs of adjacent
points differ by one bit

For details about the Gray coding, see the reference page for the M-PSK Modulator
Baseband block and the paper listed in References. Because the in-phase and quadrature
components are assigned independently, the Gray and binary orderings coincide when
M = 4.

Constellation Size and Scaling

The signal constellation has M points, where M is the M-ary number parameter.
M must have the form 2K for some positive integer K. The block scales the signal
constellation based on how you set the Normalization method parameter. The
following table lists the possible scaling conditions.

2 Blocks — Alphabetical List

2-848

Value of Normalization Method Parameter Scaling Condition

Min. distance between symbols The nearest pair of points in the
constellation is separated by the value of
the Minimum distance parameter

Average Power The average power of the symbols in
the constellation is the Average power
parameter

Peak Power The maximum power of the symbols in
the constellation is the Peak power
parameter

Constellation Visualization

The Rectangular QAM Modulator Baseband block provides the capability to visualize
a signal constellation from the block mask. This Constellation Visualization feature
allows you to visualize a signal constellation for specific block parameters. For more
information, see the “Constellation Visualization” section of the Communications System
Toolbox User's Guide.

 Rectangular QAM Modulator Baseband

2-849

Dialog Box

M-ary number

The number of points in the signal constellation. It must have the form 2K for some
positive integer K.

Input type
Indicates whether the input consists of integers or groups of bits.

Constellation ordering
Determines how the block maps each symbol to a group of output bits or integer.

2 Blocks — Alphabetical List

2-850

Selecting User-defined displays the field Constellation mapping, which allows
for user-specified mapping.

Constellation mapping
This parameter is a row or column vector of size M and must have unique integer
values in the range [0, M-1]. The values must be of data type double.

The first element of this vector corresponds to the top-leftmost point of the
constellation, with subsequent elements running down column-wise, from left to
right. The last element corresponds to the bottom-rightmost point.

This field appears when User-defined is selected in the drop-down list
Constellation ordering.

Normalization method
Determines how the block scales the signal constellation. Choices are
Min. distance between symbols, Average Power, and Peak Power.

Minimum distance
The distance between two nearest constellation points. This field appears only when
Normalization method is set to Min. distance between symbols.

Average power, referenced to 1 ohm (watts)
The average power of the symbols in the constellation, referenced to 1 ohm. This field
appears only when Normalization method is set to Average Power.

Peak power, referenced to 1 ohm (watts)
The maximum power of the symbols in the constellation, referenced to 1 ohm. This
field appears only when Normalization method is set to Peak Power.

Phase offset (rad)
The rotation of the signal constellation, in radians.

Output data type
The output data type can be set to double, single, Fixed-point, User-defined,
or Inherit via back propagation.

Setting this parameter to Fixed-point or User-defined enables fields in which
you can further specify details. Setting this parameter to Inherit via back
propagation, sets the output data type and scaling to match the following block.

Output word length
Specify the word length, in bits, of the fixed-point output data type. This parameter is
only visible when you select Fixed-point for the Output data type parameter.

 Rectangular QAM Modulator Baseband

2-851

User-defined data type
Specify any signed built-in or signed fixed-point data type. You can specify fixed-
point data types using the sfix, sint, sfrac, and fixdt functions from Fixed-Point
Designer software. This parameter is only visible when you select User-defined for
the Output data type parameter.

Set output fraction length to
Specify the scaling of the fixed-point output by either of the following methods:

• Choose Best precision to have the output scaling automatically set such that
the output signal has the best possible precision.

• Choose User-defined to specify the output scaling in the Output fraction
length parameter.

This parameter is only visible when you select Fixed-point for the Output data
type parameter or when you select User-defined and the specified output data
type is a fixed-point data type.

Output fraction length
For fixed-point output data types, specify the number of fractional bits, or bits to
the right of the binary point. This parameter is only visible when you select Fixed-
point or User-defined for the Output data type parameter and User-defined
for the Set output fraction length to parameter.

Supported Data Types

Port Supported Data Types

Input • Double-precision floating point
• Single-precision floating point
• Boolean when Input type is Bit
• 8-, 16-, 32-bit signed integers
• 8-, 16-, 32-bit unsigned integers
• ufix Mlog2() when Input type is Integer

Output • Double-precision floating point
• Single-precision floating point
• Signed fixed-point

2 Blocks — Alphabetical List

2-852

HDL Code Generation

This block supports HDL code generation using HDL Coder. HDL Coder provides
additional configuration options that affect HDL implementation and synthesized
logic. For more information on implementations, properties, and restrictions for
HDL code generation, see Rectangular QAM Modulator Baseband in the HDL Coder
documentation.

Pair Block

Rectangular QAM Demodulator Baseband

See Also

General QAM Modulator Baseband

References

[1] Smith, Joel G., “Odd-Bit Quadrature Amplitude-Shift Keying,” IEEE Transactions on
Communications, Vol. COM-23, March 1975, 385–389.

 Rectangular QAM TCM Decoder

2-853

Rectangular QAM TCM Decoder

Decode trellis-coded modulation data, modulated using QAM method

Library

TCM, in Digital Baseband sublibrary of Modulation

Description

The Rectangular QAM TCM Decoder block uses the Viterbi algorithm to decode a trellis-
coded modulation (TCM) signal that was previously modulated using a QAM signal
constellation.

The M-ary number parameter represents the number of points in the signal
constellation, which also equals the number of possible output symbols from the
convolutional encoder. (That is, log2(M-ary number) is the number of output bit streams
from the convolutional encoder.)

The Trellis structure and M-ary number parameters in this block should match those
in the Rectangular QAM TCM Encoder block, to ensure proper decoding.

Input and Output Signals

This block accepts a column vector input signal containing complex numbers. For
information about the data types each block port supports, see “Supported Data Types”
on page 2-856.

If the convolutional encoder described by the trellis structure represents a rate k/n code,
then the Rectangular QAM TCM Decoder block's output is a binary column vector with a
length of k times the vector length of the input signal.

2 Blocks — Alphabetical List

2-854

Operation Modes

The block has three possible methods for transitioning between successive frames. The
Operation mode parameter controls which method the block uses. This parameter also
affects the range of possible values for the Traceback depth parameter, D.

• In Continuous mode, the block initializes all state metrics to zero at the beginning
of the simulation, waits until it accumulates D symbols, and then uses a sequence of
D symbols to compute each of the traceback paths. D can be any positive integer. At
the end of each frame, the block saves its internal state metric for use with the next
frame.

If you select Enable the reset input, the block displays another input port, labeled
Rst. This port receives an integer scalar signal. Whenever the value at the Rst port
is nonzero, the block resets all state metrics to zero and sets the traceback memory to
zero.

• In Truncated mode, the block treats each frame independently. The traceback path
starts at the state with the lowest metric. D must be less than or equal to the vector
length of the input.

• In Terminated mode, the block treats each frame independently. The traceback path
always starts at the all-zeros state. D must be less than or equal to the vector length
of the input. If you know that each frame of data typically ends at the all-zeros state,
then this mode is an appropriate choice.

Decoding Delay

If you set Operation mode to Continuous, then this block introduces a decoding delay
equal to Traceback depth*k bits, for a rate k/n convolutional code. The decoding delay
is the number of zeros that precede the first decoded bit in the output.

The block incurs no delay for other values of Operation mode.

 Rectangular QAM TCM Decoder

2-855

Dialog Box

Trellis structure
MATLAB structure that contains the trellis description of the convolutional encoder.

M-ary number
The number of points in the signal constellation.

Traceback depth
The number of trellis branches (equivalently, the number of symbols) the block uses
in the Viterbi algorithm to construct each traceback path.

Operation mode
The operation mode of the Viterbi decoder. Choices are Continuous, Truncated,
and Terminated.

2 Blocks — Alphabetical List

2-856

Enable the reset input port
When you select this check box, the block has a second input port labeled Rst.
Providing a nonzero input value to this port causes the block to set its internal
memory to the initial state before processing the input data. This option appears only
if you set Operation mode to Continuous.

Output data type
Select the data type for the block output signal as boolean or single. By default,
the block sets this to double.

Supported Data Types

Port Supported Data Types

Input • Double-precision floating point
• Single-precision floating point

Reset • Double-precision floating point
• Boolean

Output • Double-precision floating point
• Boolean

Pair Block

Rectangular QAM TCM Encoder

See Also

General TCM Decoder, poly2trellis

References

[1] Biglieri, E., D. Divsalar, P. J. McLane and M. K. Simon, Introduction to Trellis-Coded
Modulation with Applications, New York, Macmillan, 1991.

 Rectangular QAM TCM Decoder

2-857

[2] Proakis, John G., Digital Communications, Fourth edition, New York, McGraw-Hill,
2001.

2 Blocks — Alphabetical List

2-858

Rectangular QAM TCM Encoder
Convolutionally encode binary data and modulate using QAM method

Library

TCM, in Digital Baseband sublibrary of Modulation

Description

The Rectangular QAM TCM Encoder block implements trellis-coded modulation (TCM)
by convolutionally encoding the binary input signal and mapping the result to a QAM
signal constellation.

The M-ary number parameter is the number of points in the signal constellation, which
also equals the number of possible output symbols from the convolutional encoder. (That
is, log2(M-ary number) is equal to n for a rate k/n convolutional code.)

Input Signals and Output Signals

If the convolutional encoder described by the trellis structure represents a rate k/n code,
then the Rectangular QAM TCM Encoder block's input must be a binary column vector
with a length of L*k for some positive integer L.

The output from the Rectangular QAM TCM Encoder block is a complex column vector of
length L.

Specifying the Encoder

To define the convolutional encoder, use the Trellis structure parameter. This
parameter is a MATLAB structure whose format is described in “Trellis Description of a
Convolutional Code” in the Communications System Toolbox documentation. You can use
this parameter field in two ways:

 Rectangular QAM TCM Encoder

2-859

• If you want to specify the encoder using its constraint length, generator polynomials,
and possibly feedback connection polynomials, then use a poly2trellis command
within the Trellis structure field. For example, to use an encoder with a constraint
length of 7, code generator polynomials of 171 and 133 (in octal numbers), and a
feedback connection of 171 (in octal), set the Trellis structure parameter to

poly2trellis(7,[171 133],171)

• If you have a variable in the MATLAB workspace that contains the trellis structure,
then enter its name as the Trellis structure parameter. This way is faster because
it causes Simulink to spend less time updating the diagram at the beginning of each
simulation, compared to the usage in the previous bulleted item.

The encoder registers begin in the all-zeros state. You can configure the encoder so that
it resets its registers to the all-zeros state during the course of the simulation. To do this,
set the Operation mode to Reset on nonzero input via port. The block then opens
a second input port, labeled Rst. The signal at the Rst port is a scalar signal. When it is
nonzero, the encoder resets before processing the data at the first input port.

Signal Constellations

The trellis-coded modulation technique partitions the constellation into subsets called
cosets, so as to maximize the minimum distance between pairs of points in each coset.
This block internally forms a valid partition based on the value you choose for the M-ary
number parameter.

The figures below show the labeled set-partitioned signal constellations that the block
uses when M-ary number is 16, 32, and 64. For constellations of other sizes, see
Biglieri, E., D. Divsalar, P. J. McLane and M. K. Simon, Introduction to Trellis-Coded
Modulation with Applications, New York, Macmillan, 1991.

2 Blocks — Alphabetical List

2-860

 Rectangular QAM TCM Encoder

2-861

2 Blocks — Alphabetical List

2-862

Coding Gains

Coding gains of 3 to 6 decibels, relative to the uncoded case can be achieved in the
presence of AWGN with multiphase trellis codes. For more information, see Biglieri, E.,
D. Divsalar, P. J. McLane and M. K. Simon, Introduction to Trellis-Coded Modulation
with Applications, New York, Macmillan, 1991.

 Rectangular QAM TCM Encoder

2-863

Dialog Box

Trellis structure
MATLAB structure that contains the trellis description of the convolutional encoder.

Operation mode
In Continuous mode (default setting), the block retains the encoder states at the
end of each frame, for use with the next frame.

In Truncated (reset every frame) mode, the block treats each frame
independently. I.e., the encoder states are reset to all-zeros state at the start of each
frame.

In Terminate trellis by appending bits mode, the block treats each frame
independently. For each input frame, extra bits are used to set the encoder states to
all-zeros state at the end of the frame. The output length is given by y n x s k= ◊ +() / ,
where x is the number of input bits, and s = -constraint length 1 (or, in the case
of multiple constraint lengths, s =sum(ConstraintLength(i)-1)). The block
supports this mode for column vector input signals.

2 Blocks — Alphabetical List

2-864

In Reset on nonzero input via port mode, the block has an additional input
port, labeled Rst. When the Rst input is nonzero, the encoder resets to the all-zeros
state.

M-ary number
The number of points in the signal constellation.

Output data type
The output type of the block can be specified as a single or double. By default, the
block sets this to double.

Pair Block

Rectangular QAM TCM Decoder

See Also

General TCM Encoder, poly2trellis

References

[1] Biglieri, E., D. Divsalar, P. J. McLane and M. K. Simon, Introduction to Trellis-Coded
Modulation with Applications, New York, Macmillan, 1991.

[2] Proakis, John G., Digital Communications, Fourth edition, New York, McGraw-Hill,
2001

[3] Ungerboeck, G., “Channel Coding with Multilevel/Phase Signals”, IEEE Trans. on
Information Theory, Vol IT28, Jan. 1982, pp. 55–67.

 Repeat

2-865

Repeat
Resample input at higher rate by repeating values

Library

Signal Operations

Description

The Filter block is a DSP System Toolbox block. For more information, see the Repeat
block reference page in the DSP System Toolbox documentation.

2 Blocks — Alphabetical List

2-866

Rician Noise Generator
Generate Rician distributed noise

Library

Noise Generators sublibrary of Comm Sources

Description

The Rician Noise Generator block generates Rician distributed noise. The Rician
probability density function is given by

f x

x
I

mx x m
x

x

()
exp

=
Ê

Ë
Á

ˆ

¯
˜ - +Ê

Ë
ÁÁ

ˆ

¯
˜̃ ≥

<

Ï

Ì
Ô

Ó
Ô

s s s2 0 2

2 2

22
0

0 0

where:

• σ is the standard deviation of the Gaussian distribution that underlies the Rician
distribution noise

• m2 = mI
2+mQ

2, where mI and mQ are the mean values of two independent Gaussian
components

• I0 is the modified 0th-order Bessel function of the first kind given by

I y e dty t
0

1

2
()

cos=
-Úp p

p

Note that m and σ are not the mean value and standard deviation for the Rician noise.

You must specify the Initial seed for the random number generator. When it is
a constant, the resulting noise is repeatable. The vector length of the Initial seed

 Rician Noise Generator

2-867

parameter should equal the number of columns in a frame-based output or the number
of elements in a sample-based output. The set of numerical parameters above the Initial
seed parameter in the dialog box can consist of vectors having the same length as the
Initial seed, or scalars.

Initial Seed

The scalar Initial seed parameter initializes the random number generator that the
block uses to generate its Rician-distributed complex random process. For best results,
the Initial seed should be a prime number greater than 30. Also, if there are other
blocks in a model that have an Initial seed parameter, you should choose different
initial seeds for all such blocks.

You can choose seeds for the Rician Noise Generator block using the Communications
System Toolbox randseed function. At the MATLAB prompt, enter

randseed

This returns a random prime number greater than 30. Entering randseed again
produces a different prime number. If you supply an integer argument, randseed always
returns the same prime for that integer. For example, randseed(5) always returns the
same answer.

Attributes of Output Signal

The output signal can be a frame-based matrix, a sample-based row or column vector, or
a sample-based one-dimensional array. These attributes are controlled by the Frame-
based outputs, Samples per frame, and Interpret vector parameters as 1-D
parameters. See “Sources and Sinks” in Communications System Toolbox User's Guide
for more details.

The number of elements in the Initial seed and Sigma parameters becomes the number
of columns in a frame-based output or the number of elements in a sample-based vector
output. Also, the shape (row or column) of the Initial seed and Sigma parameters
becomes the shape of a sample-based two-dimensional output signal.

2 Blocks — Alphabetical List

2-868

Dialog Box

Specification method
Either K-factor or Quadrature components.

Rician K-factor

K = m2/(2σ2), where m is as in the Rician probability density function. This field
appears only if Specification method is K-factor.

In-phase component (mean), Quadrature component (mean)
The mean values mI and mQ, respectively, of the Gaussian components. These fields
appear only if Specification method is Quadrature components.

Sigma
The variable σ in the Rician probability density function.

 Rician Noise Generator

2-869

Initial seed
The initial seed value for the random number generator.

Sample time
The period of each sample-based vector or each row of a frame-based matrix.

Frame-based outputs
Determines whether the output is frame-based or sample-based. This box is active
only if Interpret vector parameters as 1-D is unchecked.

Samples per frame
The number of samples in each column of a frame-based output signal. This field is
active only if Frame-based outputs is checked.

Interpret vector parameters as 1-D
If this box is checked, then the output is a one-dimensional signal. Otherwise, the
output is a two-dimensional signal. This box is active only if Frame-based outputs
is unchecked.

Output data type
The output can be set to double or single data types.

See Also

Multipath Rician Fading Channel

References

[1] Proakis, John G., Digital Communications, Third edition, New York, McGraw Hill,
1995.

2 Blocks — Alphabetical List

2-870

RLS Decision Feedback Equalizer
Equalize using decision feedback equalizer that updates weights with RLS algorithm

Library

Equalizers

Description

The RLS Decision Feedback Equalizer block uses a decision feedback equalizer and the
RLS algorithm to equalize a linearly modulated baseband signal through a dispersive
channel. During the simulation, the block uses the RLS algorithm to update the weights,
once per symbol. When you set the Number of samples per symbol parameter to 1,
the block implements a symbol-spaced equalizer and updates the filter weights once for
each symbol. When you set the Number of samples per symbol parameter to a value
greater than 1, the weights are updated once every Nth sample, for a fractionally spaced
equalizer.

Input and Output Signals

The Input port accepts a column vector input signal. The Desired port receives a
training sequence with a length that is less than or equal to the number of symbols
in the Input signal. Valid training symbols are those symbols listed in the Signal
constellation vector.

Set the Reference tap parameter so it is greater than zero and less than the value for
the Number of forward taps parameter.

The port labeled Equalized outputs the result of the equalization process.

You can configure the block to have one or more of these extra ports:

 RLS Decision Feedback Equalizer

2-871

• Mode input, as described in “Reference Signal and Operation Modes” in
Communications System ToolboxUser's Guide.

• Err output for the error signal, which is the difference between the Equalized
output and the reference signal. The reference signal consists of training symbols in
training mode, and detected symbols otherwise.

• Weights output, as described in “Adaptive Algorithms” in Communications System
ToolboxUser's Guide.

Decision-Directed Mode and Training Mode

To learn the conditions under which the equalizer operates in training or decision-
directed mode, see “Adaptive Algorithms” in Communications System Toolbox User's
Guide.

Equalizer Delay

For proper equalization, you should set the Reference tap parameter so that it
exceeds the delay, in symbols, between the transmitter's modulator output and the
equalizer input. When this condition is satisfied, the total delay, in symbols, between the
modulator output and the equalizer output is equal to
1+(Reference tap-1)/(Number of samples per symbol)

Because the channel delay is typically unknown, a common practice is to set the
reference tap to the center tap of the forward filter.

2 Blocks — Alphabetical List

2-872

Dialog Box

Number of forward taps
The number of taps in the forward filter of the decision feedback equalizer.

 RLS Decision Feedback Equalizer

2-873

Number of feedback taps
The number of taps in the feedback filter of the decision feedback equalizer.

Number of samples per symbol
The number of input samples for each symbol.

Signal constellation
A vector of complex numbers that specifies the constellation for the modulation.

Reference tap
A positive integer less than or equal to the number of forward taps in the equalizer.

Forgetting factor
The forgetting factor of the RLS algorithm, a number between 0 and 1.

Inverse correlation matrix
The initial value for the inverse correlation matrix. The matrix must be N-by-N,
where N is the total number of forward and feedback taps.

Initial weights
A vector that concatenates the initial weights for the forward and feedback taps.

Mode input port
When you select this check box, the block has an input port that allows you to toggle
between training and decision-directed mode. For training, the mode input must be
1, and for decision directed, the mode must be 0. For every frame in which the mode
input is 1 or not present, the equalizer trains at the beginning of the frame for the
length of the desired signal.

Output error
When you select this check box, the block outputs the error signal, which is the
difference between the equalized signal and the reference signal.

Output weights
When you select this check box, the block outputs the current forward and feedback
weights, concatenated into one vector.

References

[1] Farhang-Boroujeny, B., Adaptive Filters: Theory and Applications, Chichester,
England, Wiley, 1998.

2 Blocks — Alphabetical List

2-874

[2] Haykin, Simon, Adaptive Filter Theory, Third Ed., Upper Saddle River, N.J., Prentice-
Hall, 1996.

[3] Kurzweil, Jack, An Introduction to Digital Communications, New York, Wiley, 2000.

[4] Proakis, John G., Digital Communications, Fourth Ed., New York, McGraw-Hill,
2001.

See Also

RLS Linear Equalizer, LMS Decision Feedback Equalizer, CMA Equalizer

 RLS Linear Equalizer

2-875

RLS Linear Equalizer
Equalize using linear equalizer that updates weights using RLS algorithm

Library

Equalizers

Description

The RLS Linear Equalizer block uses a linear equalizer and the RLS algorithm to
equalize a linearly modulated baseband signal through a dispersive channel. During the
simulation, the block uses the RLS algorithm to update the weights, once per symbol.
When you set the Number of samples per symbol parameter to 1, then the block
implements a symbol-spaced (i.e. T-spaced) equalizer and updates the filter weights
once for each symbol. When you set the Number of samples per symbol parameter
to a value greater than 1, the block updates the weights once every Nth sample, for a
fractionally spaced (i.e. T/N-spaced) equalizer.

Input and Output Signals

The Input port accepts a column vector input signal. The Desired port receives a
training sequence with a length that is less than or equal to the number of symbols
in the Input signal. Valid training symbols are those symbols listed in the Signal
constellation vector.

Set the Reference tap parameter so it is greater than zero and less than the value for
the Number of taps parameter.

The port labeled Equalized outputs the result of the equalization process.

You can configure the block to have one or more of these extra ports:

2 Blocks — Alphabetical List

2-876

• Mode input, as described in “Adaptive Algorithms” in Communications System
Toolbox User's Guide.

• Err output for the error signal, which is the difference between the Equalized
output and the reference signal. The reference signal consists of training symbols in
training mode, and detected symbols otherwise.

• Weights output, as described in “Adaptive Algorithms” in Communications System
Toolbox User's Guide.

Decision-Directed Mode and Training Mode

To learn the conditions under which the equalizer operates in training or decision-
directed mode, see “Adaptive Algorithms” in Communications System Toolbox User's
Guide.

Equalizer Delay

For proper equalization, you should set the Reference tap parameter so that it
exceeds the delay, in symbols, between the transmitter's modulator output and the
equalizer input. When this condition is satisfied, the total delay, in symbols, between the
modulator output and the equalizer output is equal to
1+(Reference tap-1)/(Number of samples per symbol)

Because the channel delay is typically unknown, a common practice is to set the
reference tap to the center tap.

 RLS Linear Equalizer

2-877

Dialog Box

Number of taps
The number of taps in the filter of the linear equalizer.

2 Blocks — Alphabetical List

2-878

Number of samples per symbol
The number of input samples for each symbol.

Signal constellation
A vector of complex numbers that specifies the constellation for the modulation.

Reference tap
A positive integer less than or equal to the number of taps in the equalizer.

Forgetting factor
The forgetting factor of the RLS algorithm, a number between 0 and 1.

Inverse correlation matrix
The initial value for the inverse correlation matrix. The matrix must be N-by-N,
where N is the number of taps.

Initial weights
A vector that lists the initial weights for the taps.

Mode input port
When you select this check box, the block has an input port that allows you to toggle
between training and decision-directed mode. For training, the mode input must be
1, and for decision directed, the mode must be 0. For every frame in which the mode
input is 1 or not present, the equalizer trains at the beginning of the frame for the
length of the desired signal.

Output error
When you select this check box, the block outputs the error signal, which is the
difference between the equalized signal and the reference signal.

Output weights
When you select this check box, the block outputs the current weights.

Examples

See the “Adaptive Equalization” example.

References

[1] Farhang-Boroujeny, B., Adaptive Filters: Theory and Applications, Chichester,
England, Wiley, 1998.

 RLS Linear Equalizer

2-879

[2] Haykin, Simon, Adaptive Filter Theory, Third Ed., Upper Saddle River, N.J., Prentice-
Hall, 1996.

[3] Kurzweil, Jack, An Introduction to Digital Communications, New York, Wiley, 2000.

[4] Proakis, John G., Digital Communications, Fourth Ed., New York, McGraw-Hill,
2001.

See Also

RLS Decision Feedback Equalizer, LMS Linear Equalizer, CMA Equalizer

2 Blocks — Alphabetical List

2-880

Scrambler

Scramble input signal

Library

Sequence Operations

Description

The Scrambler block scrambles a scalar or column vector input signal. If you set the
Calculation base parameter to N, then the input values must be integers between 0
and N-1.

One purpose of scrambling is to reduce the length of strings of 0s or 1s in a transmitted
signal, since a long string of 0s or 1s may cause transmission synchronization problems.
Below is a schematic of the scrambler. All adders perform addition modulo N.

Input data

Scrambled data

1 2 M-1 M

p11 p2 pm-1 pm

At each time step, the input causes the contents of the registers to shift sequentially. The
Scramble polynomial parameter defines if each switch in the scrambler is on or off.
Specify the polynomial by listing its coefficients in order of ascending powers of z-1, where
p(z-1) = 1 + p1z-1 + p2z-2+..., or by listing the powers of z that appear in the polynomial

 Scrambler

2-881

with a coefficient of 1. For example p = [1 0 0 0 0 0 1 0 1] and p = [0 -6 -8] both represent
the polynomial p(z-1) = 1 + z-6 + z-8.

The Initial states parameter lists the states of the scrambler's registers when the
simulation starts. The elements of this vector must be integers between 0 and N-1. The
vector length of this parameter must equal the order of the scramble polynomial. (If the
Scramble polynomial parameter is a vector that lists the coefficients in order, then the
order of the scramble polynomial is one less than the vector length). There is an optional
port that can be used to reset the scrambler.

Alternatively, the initial states can be provided by an input port when Initial states
source parameter is set to Input port.

This block can accept input sequences that vary in length during simulation. For more
information about sequences that vary in length, or variable-size signals, see “Variable-
Size Signal Basics” in the Simulink documentation.

2 Blocks — Alphabetical List

2-882

Dialog Box

Calculation base
The calculation base N. The input and output of this block are integers in the range
[0, N-1].

Scramble polynomial
A polynomial that defines the connections in the scrambler.

Initial states source
A drop down menu that controls the source of the initial states. Select either Dialog
Parameter or Input port. The default value is Dialog Parameter.

Initial states

 Scrambler

2-883

The states of the scrambler's registers when the simulation starts. This parameter is
available when Initial states source is set to Dialog Parameter.

Reset on nonzero input via port
A check box that creates a reset port. When checked, the scrambler is reset if a
nonzero input is applied to the port. This control is available when Initial states
source is set to Dialog Parameter. The default is that the box is not checked.

Pair Block

Descrambler

See Also

PN Sequence Generator

2 Blocks — Alphabetical List

2-884

Sign LMS Decision Feedback Equalizer

Equalize using decision feedback equalizer that updates weights with signed LMS
algorithm

Library

Equalizers

Description

The Sign LMS Decision Feedback Equalizer block uses a decision feedback equalizer and
an algorithm from the family of signed LMS algorithms to equalize a linearly modulated
baseband signal through a dispersive channel.

The supported algorithms, corresponding to the Update algorithm parameter, are

• Sign LMS

• Sign Regressor LMS

• Sign Sign LMS

During the simulation, the block uses the particular signed LMS algorithm to update
the weights, once per symbol. If the Number of samples per symbol parameter is 1,
then the block implements a symbol-spaced equalizer; otherwise, the block implements a
fractionally spaced equalizer.

Input and Output Signals

The Input port accepts a column vector input signal. The Desired port receives a
training sequence with a length that is less than or equal to the number of symbols

 Sign LMS Decision Feedback Equalizer

2-885

in the Input signal. Valid training symbols are those symbols listed in the Signal
constellation vector.

Set the Reference tap parameter so it is greater than zero and less than the value for
the Number of forward taps parameter.

The port labeled Equalized outputs the result of the equalization process.

You can configure the block to have one or more of these extra ports:

• Mode input, as described in “Reference Signal and Operation Modes” in
Communications System Toolbox User's Guide.

• Err output for the error signal, which is the difference between the Equalized
output and the reference signal. The reference signal consists of training symbols in
training mode, and detected symbols otherwise.

• Weights output, as described in “Adaptive Algorithms” in Communications System
Toolbox User's Guide.

Decision-Directed Mode and Training Mode

To learn the conditions under which the equalizer operates in training or decision-
directed mode, see “Adaptive Algorithms” in Communications System ToolboxUser's
Guide.

Equalizer Delay

For proper equalization, you should set the Reference tap parameter so that it
exceeds the delay, in symbols, between the transmitter's modulator output and the
equalizer input. When this condition is satisfied, the total delay, in symbols, between the
modulator output and the equalizer output is equal to
1+(Reference tap-1)/(Number of samples per symbol)

Because the channel delay is typically unknown, a common practice is to set the
reference tap to the center tap of the forward filter.

2 Blocks — Alphabetical List

2-886

Dialog Box

Update algorithm

 Sign LMS Decision Feedback Equalizer

2-887

The specific type of signed LMS algorithm that the block uses to update the equalizer
weights.

Number of forward taps
The number of taps in the forward filter of the decision feedback equalizer.

Number of feedback taps
The number of taps in the feedback filter of the decision feedback equalizer.

Number of samples per symbol
The number of input samples for each symbol.

• When you set this parameter to 1, the filter weights are updated once for each
symbol, for a symbol spaced (i.e. T-spaced) equalizer.

• When you set this parameter to a value greater than 1, the weights are updated
once every Nth sample, for a T/N-spaced equalizer.

Signal constellation
A vector of complex numbers that specifies the constellation for the modulation.

Reference tap
A positive integer less than or equal to the number of forward taps in the equalizer.

Step size
The step size of the signed LMS algorithm.

Leakage factor
The leakage factor of the signed LMS algorithm, a number between 0 and 1. A
value of 1 corresponds to a conventional weight update algorithm, and a value of 0
corresponds to a memoryless update algorithm.

Initial weights
A vector that concatenates the initial weights for the forward and feedback taps.

Mode input port
When you select this check box, the block has an input port that allows you to toggle
between training and decision-directed mode. For training, the mode input must be 1,
for decision directed, the mode should be 0. For every frame in which the mode input
is 1 or not present, the equalizer trains at the beginning of the frame for the length of
the desired signal.

Output error
When you select this check box, the block outputs the error signal, which is the
difference between the equalized signal and the reference signal.

2 Blocks — Alphabetical List

2-888

Output weights
When you select this check box, the block outputs the current forward and feedback
weights, concatenated into one vector.

References

[1] Farhang-Boroujeny, B., Adaptive Filters: Theory and Applications, Chichester,
England, Wiley, 1998.

[2] Kurzweil, Jack, An Introduction to Digital Communications, New York, Wiley, 2000.

See Also

Sign LMS Linear Equalizer, LMS Decision Feedback Equalizer

 Sign LMS Linear Equalizer

2-889

Sign LMS Linear Equalizer

Equalize using linear equalizer that updates weights with signed LMS algorithm

Library

Equalizers

Description

The Sign LMS Linear Equalizer block uses a linear equalizer and an algorithm from
the family of signed LMS algorithms to equalize a linearly modulated baseband signal
through a dispersive channel. The supported algorithms, corresponding to the Update
algorithm parameter, are

• Sign LMS

• Sign Regressor LMS

• Sign Sign LMS

During the simulation, the block uses the particular signed LMS algorithm to update
the weights, once per symbol. When you set the Number of samples per symbol
parameter to 1, then the block implements a symbol-spaced equalizer and updates the
filter weights once for each symbol. When you set the Number of samples per symbol
parameter to a value greater than 1, the weights are updated once every Nth sample, for
a T/N-spaced equalizer.

Input and Output Signals

The Input port accepts a column vector input signal. The Desired port receives a
training sequence with a length that is less than or equal to the number of symbols

2 Blocks — Alphabetical List

2-890

in the Input signal. Valid training symbols are those symbols listed in the Signal
constellation vector.

Set the Reference tap parameter so it is greater than zero and less than the value for
the Number of taps parameter.

The Equalized port outputs the result of the equalization process.

You can configure the block to have one or more of these extra ports:

• Mode input, as described in “Adaptive Algorithms” in Communications System
ToolboxUser's Guide.

• Err output for the error signal, which is the difference between the Equalized
output and the reference signal. The reference signal consists of training symbols in
training mode, and detected symbols otherwise.

• Weights output, as described in “Adaptive Algorithms” in Communications System
Toolbox User's Guide.

Decision-Directed Mode and Training Mode

To learn the conditions under which the equalizer operates in training or decision-
directed mode, see “Adaptive Algorithms” in Communications System Toolbox User's
Guide.

Equalizer Delay

For proper equalization, you should set the Reference tap parameter so that it
exceeds the delay, in symbols, between the transmitter's modulator output and the
equalizer input. When this condition is satisfied, the total delay, in symbols, between the
modulator output and the equalizer output is equal to
1+(Reference tap-1)/(Number of samples per symbol)

Because the channel delay is typically unknown, a common practice is to set the
reference tap to the center tap.

 Sign LMS Linear Equalizer

2-891

Dialog Box

Update algorithm
The specific type of signed LMS algorithm that the block uses to update the equalizer
weights.

2 Blocks — Alphabetical List

2-892

Number of taps
The number of taps in the filter of the linear equalizer.

Number of samples per symbol
The number of input samples for each symbol.

Signal constellation
A vector of complex numbers that specifies the constellation for the modulation.

Reference tap
A positive integer less than or equal to the number of taps in the equalizer.

Step size
The step size of the signed LMS algorithm.

Leakage factor
The leakage factor of the signed LMS algorithm, a number between 0 and 1. A
value of 1 corresponds to a conventional weight update algorithm, and a value of 0
corresponds to a memoryless update algorithm.

Initial weights
A vector that lists the initial weights for the taps.

Mode input port
When you select this check box, the block has an input port that allows you to toggle
between training and decision-directed mode. For training, the mode input must be 1,
for decision directed, the mode should be 0. For every frame in which the mode input
is 1 or not present, the equalizer trains at the beginning of the frame for the length of
the desired signal.

Output error
When you select this check box, the block outputs the error signal, which is the
difference between the equalized signal and the reference signal.

Output weights
When you select this check box, the block outputs the current weights.

Examples

See the Adaptive Equalization example.

 Sign LMS Linear Equalizer

2-893

References

[1] Farhang-Boroujeny, B., Adaptive Filters: Theory and Applications, Chichester,
England, Wiley, 1998.

[2] Kurzweil, Jack, An Introduction to Digital Communications, New York, Wiley, 2000.

See Also

Sign LMS Decision Feedback Equalizer, LMS Linear Equalizer

2 Blocks — Alphabetical List

2-894

Sphere Decoder

Decode input using a sphere decoder

Library

MIMO

Description

This block decodes the symbols sent over Nt antennas using the sphere decoding
algorithm.

Data Type

For information about the data types each block port supports, see the “Supported Data
Type” on page 2-896 table on this page. The output signal inherits the data type from
the inputs.

Algorithm

This block implements the algorithm, inputs, and outputs described on the
comm.SphereDecoder System object block reference page. The object properties
correspond to the block parameters.

 Sphere Decoder

2-895

Dialog Box

Block Parameters

Signal constellation
Specify the number of points in the signal constellation to which the bits are mapped.
This value must be a complex column vector. The length of the vector must be a
power of two. The block uses the same constellation for each transmit antenna. The
default setting is a QPSK constellation with an average power of 1.

Bit mapping per constellation point
Specify the bit mapping that the block uses for each constellation point. This
value must be a numerical matrix. he matrix size must be [ConstellationLength
bitsPerSymbol], where ConstellationLength represents the length of the Signal
constellation parameter value and bitsPerSymbol represents the number of
bits that each symbol encodes. The default matrix size is [0 0; 0 1; 1 0; 1 1], which
matches the default value of the Signal constellation property.

Initial search radius
Specify the initial search radius for the decoding algorithm as Infinity or ZF
solution.

2 Blocks — Alphabetical List

2-896

When you select Infinity, the block sets the initial search radius to Inf. When
you select ZF solution, the block 'sets the initial search radius to the zero-forcing
solution. The zero-forcing solution is calculated by the pseudo-inverse of the input
channel when decoding. Large constellations and/or antenna counts can benefit
from the initial reduction in the search radius. In most cases, however, the extra
computation of the ZF Solution will not provide a benefit.

Decision method
Specify the decoding decision method as Soft or Hard. When you select Soft the
block outputs log-likelihood ratios (LLRs), or soft bits. When you select set to Hard,
the block converts the soft LLRs to bits. The hard decision output logical array
follows the mapping of a 0 for a negative LLR and 1 for all other values.

Simulation using
Specify if the block simulates using Code generation or Interpreted
execution. The default is Interpreted execution.

Algorithms

This block implements the algorithm, inputs, and outputs described on the Sphere
Decoder System object reference page. The object properties correspond to the block
parameters.

Supported Data Type

Port Supported Data Types

Rx • Double-precision floating point
cEst • Double-precision floating point
Output • Double-precision floating point

• Boolean (Hard-decision method)

See Also
comm.SphereDecoder | OSTBC Combiner | OSTBC Encoder

 Squaring Timing Recovery

2-897

Squaring Timing Recovery

Recover symbol timing phase using squaring method

Library

Timing Phase Recovery sublibrary of Synchronization

Description

The Squaring Timing Recovery block recovers the symbol timing phase of the input
signal using a squaring method. This feedforward, non-data-aided method is similar
to the conventional squaring loop. This block is suitable for systems that use linear
baseband modulation types such as pulse amplitude modulation (PAM), phase shift
keying (PSK) modulation, and quadrature amplitude modulation (QAM).

Typically, the input to this block is the output of a receive filter that is matched to the
transmitting pulse shape. This block accepts a column vector input signal of type double
or single. The input represents Symbols per frame symbols, using Samples per
symbol samples for each symbol. Typically, Symbols per frame is approximately 100,
Samples per symbol is at least 4, and the input signal is shaped using a raised cosine
filter.

Note The block assumes that the phase offset is constant for all symbols in the entire
input frame. If necessary, use the Buffer block to reorganize your data into frames over
which the phase offset can be assumed constant. If the assumption of constant phase
offset is valid, then a larger frame length yields a more accurate phase offset estimate.

The block estimates the phase offset for the symbols in each input frame and applies
the estimate uniformly over the input frame. The block outputs signals containing one
sample per symbol. Therefore, the size of each output equals the Symbols per frame
parameter value. The outputs are as follows:

2 Blocks — Alphabetical List

2-898

• The output port labeled Sym gives the result of applying the phase estimate uniformly
over the input frame. This output is the signal value for each symbol, which can be
used for decision purposes.

• The output port labeled Ph gives the phase estimate for each symbol in the input
frame. All elements in this output are the same nonnegative real number less than
the Samples per symbol parameter value. Noninteger values for the phase estimate
correspond to interpolated values that lie between two values of the input signal.

Dialog Box

Symbols per frame
The number of symbols in each frame of the input signal.

Samples per symbol

 Squaring Timing Recovery

2-899

The number of input samples that represent each symbol. This must be greater than
1.

Algorithm
This block uses a timing estimator that returns

-
Ê

Ë
ÁÁ

ˆ

¯
˜̃+Â1

2
1

2

p
parg x m

m

m

exp(-j2 /N)

=0

LN-1

as the normalized phase between -1/2 and 1/2, where x is the input vector, L is the
Symbols per frame parameter and N is the Samples per symbol parameter.

For more information about the role that the timing estimator plays in this block's
algorithm, see “Feedforward Method for Timing Phase Recovery” in Communications
System Toolbox User's Guide.

Examples
See “Squaring Timing Phase Recovery Example” in Communications System Toolbox
User's Guide.

References

[1] Oerder, M. and H. Myer, "Digital Filter and Square Timing Recovery," IEEE
Transactions on Communications, Vol. COM-36, No. 5, May 1988, pp. 605-612.

[2] Mengali, Umberto and Aldo N. D'Andrea, Synchronization Techniques for Digital
Receivers, New York, Plenum Press, 1997.

[3] Meyr, Heinrich, Marc Moeneclaey, and Stefan A. Fechtel, Digital Communication
Receivers, Vol 2, New York, Wiley, 1998.

See Also
Gardner Timing Recovery, Early-Late Gate Timing Recovery

2 Blocks — Alphabetical List

2-900

SSB AM Demodulator Passband

Demodulate SSB-AM-modulated data

Library

Analog Passband Modulation, in Modulation

Description

The SSB AM Demodulator Passband block demodulates a signal that was modulated
using single-sideband amplitude modulation. The input is a passband representation of
the modulated signal. Both the input and output signals are real scalar signals.

This block works only with real inputs of type double. This block does not work inside a
triggered subsystem.

 SSB AM Demodulator Passband

2-901

Dialog Box

Carrier frequency (Hz)
The carrier frequency in the corresponding SSB AM Modulator Passband block.

Initial phase (rad)

The phase offset, q , of the modulated signal.
Lowpass filter design method

The method used to generate the filter. Available methods are Butterworth,
Chebyshev type I, Chebyshev type II, and Elliptic.

Filter order
The order of the lowpass digital filter specified in the Lowpass filter design
method field .

Cutoff frequency

2 Blocks — Alphabetical List

2-902

The cutoff frequency of the lowpass digital filter specified in the Lowpass filter
design method field in Hertz.

Passband ripple
Applies to Chebyshev type I and Elliptic filters only. This is peak-to-peak ripple in
the passband in dB.

Stopband ripple
Applies to Chebyshev type II and Elliptic filters only. This is the peak-to-peak ripple
in the stopband in dB.

Pair Block

SSB AM Modulator Passband

See Also

DSB AM Demodulator Passband, DSBSC AM Demodulator Passband

 SSB AM Modulator Passband

2-903

SSB AM Modulator Passband
Modulate using single-sideband amplitude modulation

Library

Analog Passband Modulation, in Modulation

Description

The SSB AM Modulator Passband block modulates using single-sideband amplitude
modulation with a Hilbert transform filter. The output is a passband representation of
the modulated signal. Both the input and output signals are real scalar signals.

SSB AM Modulator Passband transmits either the lower or upper sideband signal,
but not both. To control which sideband it transmits, use the Sideband to modulate
parameter.

If the input is u(t) as a function of time t, then the output is

u t f t u t f tc c() cos() � ()sin()+ +q q∓

where:

• fc is the Carrier frequency parameter.
• q is the Initial phase parameter.
• û(t) is the Hilbert transform of the input u(t).
• The minus sign indicates the upper sideband and the plus sign indicates the lower

sideband.

Hilbert Tranform Filter

This block uses the Analytic Signal block from the DSP System Toolbox Transforms block
library.

2 Blocks — Alphabetical List

2-904

The Analytic Signal block computes the complex analytic signal corresponding to each
channel of the real M-by-N input, u

y u j u= + H{ }

where j = -1 and H{} denotes the Hilbert transform. The real part of the output in
each channel is a replica of the real input in that channel; the imaginary part is the
Hilbert transform of the input. In the frequency domain, the analytic signal retains the
positive frequency content of the original signal while zeroing-out negative frequencies
and doubling the DC component.

The block computes the Hilbert transform using an equiripple FIR filter with the order
specified by the Filter order parameter, n. The linear phase filter is designed using the
Remez exchange algorithm, and imposes a delay of n/2 on the input samples.

For best results, use a carrier frequency which is estimated to be larger than 10% of your
input signal's sample rate. This is due to the implementation of the Hilbert transform by
means of a filter.

In the following example, we sample a 10Hz input signal at 8000 samples per second.
We then designate a Hilbert Transform filter of order 100. Below is the response of the
Hilbert Transform filter as returned by fvtool.

 SSB AM Modulator Passband

2-905

Note the bandwidth of the filter's magnitude response. By choosing a carrier frequency
larger than 10% (but less than 90%) of the input signal's sample time (8000 samples
per second, in this example) or equivalently, a carrier frequency larger than 400Hz, we
ensure that the Hilbert Transform Filter will be operating in the flat section of the filter's
magnitude response (shown in blue), and that our modulated signal will have the desired
magnitude and form.

Typically, an appropriate Carrier frequency value is much higher than the highest
frequency of the input signal. By the Nyquist sampling theorem, the reciprocal of
the model's sample time (defined by the model's signal source) must exceed twice the
Carrier frequency parameter.

This block works only with real inputs of type double. This block does not work inside a
triggered subsystem.

2 Blocks — Alphabetical List

2-906

Dialog Box

Carrier frequency (Hz)
The frequency of the carrier.

Initial phase (rad)
The phase offset, q , of the modulated signal.

Sideband to modulate
This parameter specifies whether to transmit the upper or lower sideband.

Hilbert Transform filter order
The length of the FIR filter used to compute the Hilbert transform.

Pair Block

SSB AM Demodulator Passband

 SSB AM Modulator Passband

2-907

See Also

DSB AM Modulator Passband, DSBSC AM Modulator Passband; hilbiir
(Communications Toolbox)

References

[1] Peebles, Peyton Z, Jr. Communication System Principles. Reading, Mass.: Addison-
Wesley, 1976.

2 Blocks — Alphabetical List

2-908

Turbo Decoder

Decode input signal using parallel concatenated decoding scheme

Library

Convolutional sublibrary of Error Detection and Correction

Description

The Turbo Decoder block decodes the input signal using a parallel concatenated decoding
scheme. The iterative decoding scheme uses the a posteriori probability (APP) decoder as
the constituent decoder, an interleaver, and a deinterleaver.

The two constituent decoders use the same trellis structure and decoding algorithm.

Block Diagram of Iterative Turbo Decoding

π
–1

π

SISO

2

DECISION

(c;O)

(u;O)
(u;I)

(c;I)

π

π

π

π

π
–1

SISO

1

(c;O)

(u;O)
(u;I)

(c;I)

π

π

π

π

NOT USED

FROM

DEMOD NOT USED
FROM

DEMOD

The previous block diagram illustrates that the APP decoders (labeled as SISO modules
in the previous image) output an updated sequence of log-likelihoods of the encoder input
bits, π(u;O). This sequence is based on the received sequence of log-likelihoods of the
channel (coded) bits, π(c;I), and code parameters.

 Turbo Decoder

2-909

The decoder block iteratively updates these likelihoods for a fixed number of decoding
iterations and then outputs the decision bits. The interleaver (π) that the decoder uses
is identical to the one the encoder uses. The deinterleaver (π-1) performs the inverse
permutation with respect to the interleaver. The decoder does not assume knowledge of
the tail bits and excludes these bits from the iterations.

Dimensions

This block accepts an M-by-1 column vector input signal and outputs an L-by-1 column
vector signal. For a given trellis, L and M are related by:

L
M numTails

n
=

- ◊

◊ -

()

()

2

2 1

and

M L n numTails= ◊ ◊ - + ◊()2 1 2

where

M = decoder input length

L = decoder output length

n = log2(trellis.NumOutputSymbols), for a rate 1/2 trellis, n = 2

numTails = log2(trellis.numStates) * n

Bit Stream Ordering

The bit ordering subsystem reorganizes the incoming data into the two log likelihood
ratio (LLR) streams input to the constituent decoders. This subsystem reconstructs the
second systematic stream and reorders the bits so that they match the two constituent
encoder outputs at the transmitter. This ordering subsystem is the inverse of the
reordering subsystem at the turbo encoder.

2 Blocks — Alphabetical List

2-910

Dialog Box

Trellis structure
Trellis structure of constituent convolutional code.

Specify the trellis as a MATLAB structure that contains the trellis description of the
constituent convolutional code. Alternatively, use the poly2trellis function to create
a custom trellis using the constraint length, code generator (octal), and feedback
connection (octal).

The default structure is the result of poly2trellis(4, [13 15], 13).
Source of interleaver indices

Specify the source of the interleaver indices as Property or Input port.

 Turbo Decoder

2-911

When you set this parameter to Property, the block uses the Interleaver indices
parameter to specify the interleaver indices.

When you set this parameter to Input port, the block uses the secondary input
port, IntrInd, to specify the interleaver indices.

Interleaver indices
Specify the mapping that the Turbo encoder block uses to permute the input bits
as a column vector of integers. The default is (64:-1:1).'. This mapping is a
vector with the number of elements equal to L, the length of the output signal. Each
element must be an integer between 1 and L, with no repeated values.

Decoding algorithm
Specify the decoding algorithm that the constituent APP decoders use to decode the
input signal as True APP, Max*, Max. When you set this parameter to:

• True APP – the block implements true a posteriori probability decoding
• Max* or Max – the block uses approximations to increase the speed of the

computations.

Number of scaling bits
Specify the number of bits which the constituent APP decoders must use to scale the
input data to avoid losing precision during computations. The decoder multiplies
the input by 2^Number of scaling bits and divides the pre-output by the same
factor. The value for this parameter must be a scalar integer between 0 and 8. This
parameter only applies when you set Decoding algorithm to Max*. The default is 3.

Number of decoding iterations
Specify the number of decoding iterations the block uses. The default is 6. The block
iterates and provides updates to the log-likelihood ratios (LLR) of the uncoded output
bits. The output of the block is the hard-decision output of the final LLR update.

Simulate using
Specify if the block simulates using Code generation or Interpreted
execution. The default is Interpreted execution.

Supported Data Type

Port Supported Data Types

In • Double

2 Blocks — Alphabetical List

2-912

Port Supported Data Types

• Single
Out • Double

Examples

For an example that uses the Turbo Encoder and Turbo Decoder blocks, see the Parallel
Concatenated Convolutional Coding: Turbo Codes example.

Pair Block

Turbo Encoder

See Also

APP Decoder

General Block Deinterleaver

General Block Interleaver

comm.TurboDecoder

References

[1] Berrou, C., A. Glavieux, and P. Thitimajshima. "Near Shannon limit error correcting
coding and decoding: turbo codes,” Proceedings of the IEEE International
Conference on Communications, Geneva, Switzerland, May 1993, pp. 1064–1070.

[2] Benedetto, S., G. Montorsi, D. Divsalar, and F. Pollara. “ Soft-Input Soft-Output
Maximum A Posterior (MAP) Module to Decode Parallel and Serial Concatenated
Codes,”Jet Propulsion Lab TDA Progress Report, Vol. 42–27, Nov. 1996.

[3] Schlegel, Christian B. and Lance C. Perez. Trellis and Turbo Coding, IEEE Press,
2004.

 Turbo Decoder

2-913

[4] 3GPP TS 36.212 v9.0.0, 3rd Generation partnership project; Technical specification
group radio access network; Evolved Universal Terrestrial Radio Acess (E-UTRA);
Multiplexing and channel coding (release 9), 2009-12.

2 Blocks — Alphabetical List

2-914

Turbo Encoder
Encode binary data using parallel concatenated encoding scheme

Library

Convolutional sublibrary of Error Detection and Correction

Description

The Turbo Encoder block encodes a binary input signal using a parallel concatenated
coding scheme. This coding scheme employs two identical convolutional encoders and one
internal interleaver. Each constituent encoder is independently terminated by tail bits.

Block Diagram of Parallel Concatenated Convolutional Code

π
ENCODER

2

RATE=1/2

ENCODER

1

RATE=1/2 TO CHANNEL

NOT TRANSMITED

TO CHANNEL

TO CHANNEL

N

N

1

N

1

N

The previous block diagram illustrates that the output of the Turbo Encoder block
consists of the systematic and parity bits streams of the first encoder, and only the parity
bit streams of the second encoder.

For a rate one-half constituent encoder, the block interlaces the three streams and
multiplexes the tail bits to the end of the encoded data streams.

 Turbo Encoder

2-915

For more information about tail bits, see the terminate Operation mode on the
Convolutional Encoder block reference page.

Dimensions

This block accepts an L-by-1 column vector input signal and outputs an M-by-1 column
vector signal. For a given trellis, M and L are related by:

M L n numTails= ◊ ◊ - + ◊()2 1 2

and

L
M numTails

n
=

- ◊

◊ -

()

()

2

2 1

where

L = encoder input length

M = encoder output length

n = log2(trellis.NumOutputSymbols), for a rate 1/2 trellis, n = 2

numTails = log2(trellis.numStates) * n

2 Blocks — Alphabetical List

2-916

Encoder Schematic for Rate 1/3 Turbo Code Example

Turbo code

internal interleaver

Input

Output

First constituent encoder

Second constituent encoder

Xk

Z
k

Zk
‘

Xk
‘

Z
-1

Z
-1

Z
-1

Z
-1

Z
-1

Z
-1

Input

The previous schematic shows the encoder configuration for a trellis specified by the
default value of the Trellis structure parameter, poly2trellis(4, [13 15], 13).
For an input vector length of 64 bits, the output of the encoder block is 204 bits. The
first 192 bits correspond to the three 64 bit streams (systematic (Xk) and parity (Zk) bit
streams from the first encoder and the parity (Z’

k) bit stream of the second encoder),
interlaced as per Xk, Zk, Z’

k. The last 12 bits correspond to the tail bits from the two
encoders, when the switches are in the lower position corresponding to the dashed lines.
The first group of six bits are the tail bits from the first constituent encoder and the
second group is from the second constituent encoder.

Due to the tail bits, the encoder output code rate is slightly less than 1/3.

 Turbo Encoder

2-917

Dialog Box

Trellis structure
Trellis structure of constituent convolutional code.

Specify the trellis as a MATLAB structure that contains the trellis description of
the constituent convolutional code. Alternatively, use the poly2trellis function
to create a custom trellis using the constraint length, code generator (octal), and
feedback connections (octal).

This block supports only rate 1-by-N trellises where N is an integer.

The default structure is the result of poly2trellis(4, [13 15], 13).
Source of interleaver indices

Specify the source of the interleaver indices as Property or Input port.

When you set this parameter to Property, the block uses the Interleaver indices
parameter to specify the interleaver indices.

2 Blocks — Alphabetical List

2-918

When you set this parameter to Input port, the block uses the secondary input
port, IntrInd, to specify the interleaver indices.

Interleaver indices
Specify the mapping that the block uses to permute the input bits as a column vector
of integers. The default is (64:-1:1).'. This mapping is a vector with the number
of elements equal to the length, L, of the input signal. Each element must be an
integer between 1 and L, with no repeated values.

Simulate using
Specify if the block simulates using Code generation or Interpreted
execution. The default is Interpreted execution.

Supported Data Type
Port Supported Data Types

In • Double
• Single
• Fixed-point

Out • Double
• Single
• Fixed-point

Examples
For an example that uses the Turbo Encoder and Turbo Decoder blocks, see the Parallel
Concatenated Convolutional Coding: Turbo Codes example.

Pair Block
Turbo Decoder

See Also
Convolutional Encoder

 Turbo Encoder

2-919

General Block Interleaver

comm.TurboEncoder

References

[1] Berrou, C., A. Glavieux, and P. Thitimajshima. "Near Shannon limit error correcting
coding and decoding: turbo codes,” Proceedings of the IEEE International
Conference on Communications, Geneva, Switzerland, May 1993, pp. 1064–1070.

[2] Benedetto, S., G. Montorsi, D. Divsalar, and F. Pollara. “ Soft-Input Soft-Output
Maximum A Posterior (MAP) Module to Decode Parallel and Serial Concatenated
Codes,”Jet Propulsion Lab TDA Progress Report, Vol. 42–27, Nov. 1996.

[3] Schlegel, Christian B. and Lance C. Perez. Trellis and Turbo Coding, IEEE Press,
2004.

[4] 3GPP TS 36.212 v9.0.0, 3rd Generation partnership project; Technical specification
group radio access network; Evolved Universal Terrestrial Radio Acess (E-UTRA);
Multiplexing and channel coding (release 9), 2009-12.

2 Blocks — Alphabetical List

2-920

Uniform Noise Generator
Generate uniformly distributed noise between upper and lower bounds

Library

Noise Generators sublibrary of Comm Sources

Description

The Uniform Noise Generator block generates uniformly distributed noise. The output
data of this block is uniformly distributed between the specified lower and upper bounds.
The upper bound must be greater than or equal to the lower bound.

You must specify the Initial seed in the simulation. When it is a constant, the resulting
noise is repeatable.

If all the elements of the output vector are to be independent and identically distributed
(i.i.d.), then you can use a scalar for the Noise lower bound and Noise upper bound
parameters. Alternatively, you can specify the range for each element of the output
vector individually, by using vectors for the Noise lower bound and Noise upper
bound parameters. If the bounds are vectors, then their length must equal the length of
the Initial seed parameter.

Attributes of Output Signal

The output signal can be a frame-based matrix, a sample-based row or column vector, or
a sample-based one-dimensional array. These attributes are controlled by the Frame-
based outputs, Samples per frame, and Interpret vector parameters as 1-D
parameters.

The number of elements in the Initial seed parameter becomes the number of columns
in a frame-based output or the number of elements in a sample-based vector output. Also,
the shape (row or column) of the Initial seed parameter becomes the shape of a sample-
based two-dimensional output signal.

 Uniform Noise Generator

2-921

Dialog Box

Noise lower bound, Noise upper bound
The lower and upper bounds of the interval over which noise is uniformly distributed.

Initial seed
The initial seed value for the random number generator.

Sample time
The period of each sample-based vector or each row of a frame-based matrix.

Frame-based outputs
Determines whether the output is frame-based or sample-based. This box is active
only if Interpret vector parameters as 1-D is unchecked.

Samples per frame

2 Blocks — Alphabetical List

2-922

The number of samples in each column of a frame-based output signal. This field is
active only if Frame-based outputs is checked.

Interpret vector parameters as 1-D
If this box is checked, then the output is a one-dimensional signal. Otherwise, the
output is a two-dimensional signal. This box is active only if Frame-based outputs
is unchecked.

Output data type
The output can be set to double or single data types.

See Also

Random Source (DSP System Toolbox documentation); rand (built-in MATLAB function)

 Unipolar to Bipolar Converter

2-923

Unipolar to Bipolar Converter

Map unipolar signal in range [0, M-1] into bipolar signal

Library

Utility Blocks

Description

The Unipolar to Bipolar Converter block maps the unipolar input signal to a bipolar
output signal. If the input consists of integers between 0 and M-1, where M is the M-ary
number parameter, then the output consists of integers between -(M-1) and M-1. If M
is even, then the output is odd. If M is odd, then the output is even. This block is only
designed to work when the input value is within the set {0,1,2...(M-1)}, where M is the
M-ary number parameter. If the input value is outside of this set of integers the output
may not be valid.

The table below shows how the block's mapping depends on the Polarity parameter.

Polarity Parameter Value Output Corresponding to Input Value of k

Positive 2k-(M-1)
Negative -2k+(M-1)

2 Blocks — Alphabetical List

2-924

Dialog Box

M-ary number
The number of symbols in the bipolar or unipolar alphabet.

Polarity
A value of Positive causes the block to maintain the relative ordering of symbols in
the alphabets. A value of Negative causes the block to reverse the relative ordering
of symbols in the alphabets.

Output Data Type
The type of bipolar signal produced at the block's output.

The block supports the following output data types:

• Inherit via internal rule

• Same as input

• double

• int8

• int16

• int32

 Unipolar to Bipolar Converter

2-925

When the parameter is set to its default setting, Inherit via internal rule, the
block determines the output data type based on the input data type.

• If the input signal is floating-point (either single or double), the output data
type is the same as the input data type.

• If the input data type is not floating-point:

• Based on the M-ary number parameter, an ideal signed integer output word
length required to contain the range [-(M-1)M-1] is computed as follows:

ideal word length = ceil(log2(M))+1

Note: The +1 is associated with the need for the sign bit.
• The block sets the output data type to be a signed integer, based on the

smallest word length (in bits) that can fit best the computed ideal word length.

Note: The selections in the “Hardware Implementation” pane pertaining to word
length constraints do not affect how this block determines output data types.

Examples

If the input is [0; 1; 2; 3], the M-ary number parameter is 4, and the Polarity
parameter is Positive, then the output is [-3; -1; 1; 3]. Changing the Polarity
parameter to Negative changes the output to [3; 1; -1; -3].

If the value for the M-ary number is 27 the block gives an output of int8.

If the value for the M-ary number is 27+1 the block gives an output of int16.

Pair Block

Bipolar to Unipolar Converter

2 Blocks — Alphabetical List

2-926

Variable Step LMS Decision Feedback Equalizer

Equalize using decision feedback equalizer that updates weights with variable-step-size
LMS algorithm

Library

Equalizers

Description

The Variable Step LMS Decision Feedback Equalizer block uses a decision feedback
equalizer and the variable-step-size LMS algorithm to equalize a linearly modulated
baseband signal through a dispersive channel. During the simulation, the block uses
the variable-step-size LMS algorithm to update the weights, once per symbol. When you
set the Number of samples per symbol parameter to 1, then the block implements
a symbol-spaced equalizer and updates the filter weights once for each symbol. When
you set the Number of samples per symbol parameter to a value greater than 1, the
weights are updated once every Nth sample, for a T/N-spaced equalizer.

Input and Output Signals

The Input port accepts a column vector input signal. The Desired port receives a
training sequence with a length that is less than or equal to the number of symbols
in the Input signal. Valid training symbols are those symbols listed in the Signal
constellation vector.

Set the Reference tap parameter so it is greater than zero and less than the value for
the Number of forward taps parameter.

The port labeled Equalized outputs the result of the equalization process.

 Variable Step LMS Decision Feedback Equalizer

2-927

You can configure the block to have one or more of these extra ports:

• Mode input, as described in “Reference Signal and Operation Modes” in
Communications System Toolbox User's Guide.

• Err output for the error signal, which is the difference between the Equalized
output and the reference signal. The reference signal consists of training symbols in
training mode, and detected symbols otherwise.

• Weights output, as described in “Adaptive Algorithms” in Communications System
Toolbox User's Guide.

Decision-Directed Mode and Training Mode

To learn the conditions under which the equalizer operates in training or decision-
directed mode, see “Adaptive Algorithms” in Communications System Toolbox User's
Guide.

Equalizer Delay

For proper equalization, you should set the Reference tap parameter so that it
exceeds the delay, in symbols, between the transmitter's modulator output and the
equalizer input. When this condition is satisfied, the total delay, in symbols, between the
modulator output and the equalizer output is equal to
1+(Reference tap-1)/(Number of samples per symbol)

Because the channel delay is typically unknown, a common practice is to set the
reference tap to the center tap of the forward filter.

2 Blocks — Alphabetical List

2-928

Dialog Box

 Variable Step LMS Decision Feedback Equalizer

2-929

Number of forward taps
The number of taps in the forward filter of the decision feedback equalizer.

Number of feedback taps
The number of taps in the feedback filter of the decision feedback equalizer.

Number of samples per symbol
The number of input samples for each symbol.

Signal constellation
A vector of complex numbers that specifies the constellation for the modulation.

Reference tap
A positive integer less than or equal to the number of forward taps in the equalizer.

Initial step size
The step size that the variable-step-size LMS algorithm uses at the beginning of the
simulation.

Increment step size
The increment by which the step size changes from iteration to iteration

Minimum step size
The smallest value that the step size can assume.

Maximum step size
The largest value that the step size can assume.

Leakage factor
The leakage factor of the variable-step-size LMS algorithm, a number between 0 and
1. A value of 1 corresponds to a conventional weight update algorithm, and a value of
0 corresponds to a memoryless update algorithm.

Initial weights
A vector that concatenates the initial weights for the forward and feedback taps.

Mode input port
When you select this check box, the block has an input port that enables you to toggle
between training and decision-directed mode. For training, the mode input must be
1, for decision directed, the mode should be 0. The equalizer will train for the length
of the Desired signal. If the mode input is not present, the equalizer will train at the
beginning of every frame for the length of the Desired signal.

Output error

2 Blocks — Alphabetical List

2-930

When you select this check box, the block outputs the error signal, which is the
difference between the equalized signal and the reference signal.

Output weights
When you select this check box, the block outputs the current forward and feedback
weights, concatenated into one vector.

References

[1] Farhang-Boroujeny, B., Adaptive Filters: Theory and Applications, Chichester,
England, Wiley, 1998.

See Also

Variable Step LMS Linear Equalizer, LMS Decision Feedback Equalizer

 Variable Step LMS Linear Equalizer

2-931

Variable Step LMS Linear Equalizer

Equalize using linear equalizer that updates weights with variable-step-size LMS
algorithm

Library

Equalizers

Description

The Variable Step LMS Linear Equalizer block uses a linear equalizer and the variable-
step-size LMS algorithm to equalize a linearly modulated baseband signal through
a dispersive channel. During the simulation, the block uses the variable-step-size
LMS algorithm to update the weights, once per symbol. When you set the Number
of samples per symbol parameter to 1, then the block implements a symbol-spaced
equalizer and updates the filter weights once for each symbol. When you set the Number
of samples per symbol parameter to a value greater than 1, the weights are updated
once every Nth sample, for a T/N-spaced equalizer.

Input and Output Signals

The Input port accepts a column vector input signal. The Desired port receives a
training sequence with a length that is less than or equal to the number of symbols
in the Input signal. Valid training symbols are those symbols listed in the Signal
constellation vector.

Set the Reference tap parameter so it is greater than zero and less than the value for
the Number of taps parameter.

The Equalized port outputs the result of the equalization process.

2 Blocks — Alphabetical List

2-932

You can configure the block to have one or more of these extra ports:

• Mode input, as described in “Reference Signal and Operation Modes” in
Communications System Toolbox User's Guide.

• Err output for the error signal, which is the difference between the Equalized
output and the reference signal. The reference signal consists of training symbols in
training mode, and detected symbols otherwise.

• Weights output, as described in “Adaptive Algorithms” in Communications System
Toolbox User's Guide.

Decision-Directed Mode and Training Mode

To learn the conditions under which the equalizer operates in training or decision-
directed mode, see “Adaptive Algorithms” in Communications System Toolbox User's
Guide.

Equalizer Delay

For proper equalization, you should set the Reference tap parameter so that it
exceeds the delay, in symbols, between the transmitter's modulator output and the
equalizer input. When this condition is satisfied, the total delay, in symbols, between the
modulator output and the equalizer output is equal to
1+(Reference tap-1)/(Number of samples per symbol)

Since the channel delay is typically unknown, a common practice is to set the reference
tap to the center tap.

 Variable Step LMS Linear Equalizer

2-933

Dialog Box

2 Blocks — Alphabetical List

2-934

Number of taps
The number of taps in the filter of the linear equalizer.

Number of samples per symbol
The number of input samples for each symbol.

Signal constellation
A vector of complex numbers that specifies the constellation for the modulation.

Reference tap
A positive integer less than or equal to the number of taps in the equalizer.

Initial step size
The step size that the variable-step-size LMS algorithm uses at the beginning of the
simulation.

Increment step size
The increment by which the step size changes from iteration to iteration

Minimum step size
The smallest value that the step size can assume.

Maximum step size
The largest value that the step size can assume.

Leakage factor
The leakage factor of the LMS algorithm, a number between 0 and 1. A value of 1
corresponds to a conventional weight update algorithm, and a value of 0 corresponds
to a memoryless update algorithm.

Initial weights
A vector that lists the initial weights for the taps.

Mode input port
When you select this check box, the block has an input port that allows you to toggle
between training and decision-directed mode. For training, the mode input must be 1,
for decision directed, the mode should be 0. For every frame in which the mode input
is 1 or not present, the equalizer trains at the beginning of the frame for the length of
the desired signal.

Output error
When you select this check box, the block outputs the error signal, which is the
difference between the equalized signal and the reference signal.

 Variable Step LMS Linear Equalizer

2-935

Output weights
When you select this check box, the block outputs the current weights.

Examples

See the Adaptive Equalization example.

References

[1] Farhang-Boroujeny, B., Adaptive Filters: Theory and Applications, Chichester,
England, Wiley, 1998.

See Also

Variable Step LMS Decision Feedback Equalizer, LMS Linear Equalizer

2 Blocks — Alphabetical List

2-936

Viterbi Decoder
Decode convolutionally encoded data using Viterbi algorithm

Library

Convolutional sublibrary of Error Detection and Correction

Description

The Viterbi Decoder block decodes input symbols to produce binary output symbols. This
block can process several symbols at a time for faster performance.

This block can output sequences that vary in length during simulation. For more
information about sequences that vary in length, or variable-size signals, see “Variable-
Size Signal Basics” in the Simulink documentation.

Input and Output Sizes

If the convolutional code uses an alphabet of 2n possible symbols, this block's input vector
length is L*n for some positive integer L. Similarly, if the decoded data uses an alphabet
of 2k possible output symbols, this block's output vector length is L*k.

This block accepts a column vector input signal with any positive integer value for L.
For variable-sized inputs, the L can vary during simulation. The operation of the block is
governed by the operation mode parameter.”

For information about the data types each block port supports, see the “Supported Data
Types” on page 2-950 table on this page.

Input Values and Decision Types

The entries of the input vector are either bipolar, binary, or integer data, depending on
the Decision type parameter.

 Viterbi Decoder

2-937

Decision type
Parameter

Possible Entries in
Decoder Input

Interpretation of
Values

Branch metric
calculation

Unquantized Real numbers Positive real: logical
zero

Negative real: logical
one

Euclidean distance

Hard Decision 0, 1 0: logical zero

1: logical one

Hamming distance

Soft Decision Integers between 0
and 2b-1, where b
is the Number of
soft decision bits
parameter.

0: most confident
decision for logical
zero

2b-1: most confident
decision for logical
one

Other values
represent less
confident decisions.

Hamming distance

To illustrate the soft decision situation more explicitly, the following table lists
interpretations of values for 3-bit soft decisions.

Input Value Interpretation

0 Most confident zero
1 Second most confident zero
2 Third most confident zero
3 Least confident zero
4 Least confident one
5 Third most confident one
6 Second most confident one
7 Most confident one

2 Blocks — Alphabetical List

2-938

Operation Modes for Inputs

The Viterbi decoder block has three possible methods for transitioning between
successive input frames. The Operation mode parameter controls which method the
block uses:

• In Continuous mode, the block saves its internal state metric at the end of each
input, for use with the next frame. Each traceback path is treated independently.

• In Truncated mode, the block treats each input independently. The traceback path
starts at the state with the best metric and always ends in the all-zeros state. This
mode is appropriate when the corresponding Convolutional Encoder block has its
Operation mode set to Truncated (reset every frame).

• In Terminated mode, the block treats each input independently, and the traceback
path always starts and ends in the all-zeros state. This mode is appropriate when
the uncoded message signal (that is, the input to the corresponding Convolutional
Encoder block) has enough zeros at the end of each input to fill all memory
registers of the feed-forward encoder. If the encoder has k input streams and
constraint length vector constr (using the polynomial description), “enough”
means k*max(constr-1). For feedback encoders, this mode is appropriate if the
corresponding Convolutional Encoder block has Operation mode set to Terminate
trellis by appending bits.

Note: When this block outputs sequences that vary in length during simulation and you
set the Operation mode to Truncated or Terminated, the block's state resets at every
input time step.

Use the Continuous mode when the input signal contains only one symbol.

Traceback Depth and Decoding Delay

The Traceback depth parameter, D, influences the decoding delay. The decoding delay
is the number of zero symbols that precede the first decoded symbol in the output.

• If you set the Operation mode to Continuous, the decoding delay consists of D zero
symbols

• If the Operation mode parameter is set to Truncated or Terminated, there is no
output delay and the Traceback depth parameter must be less than or equal to the
number of symbols in each input.

 Viterbi Decoder

2-939

If the code rate is 1/2, a typical Traceback depth value is about five times the
constraint length of the code.

Reset Port

The reset port is usable only when the Operation mode parameter is set to
Continuous. Selecting Enable reset input port gives the block an additional input
port, labeled Rst. When the Rst input is nonzero, the decoder returns to its initial state
by configuring its internal memory as follows:

• Sets the all-zeros state metric to zero.
• Sets all other state metrics to the maximum value.
• Sets the traceback memory to zero.

Using a reset port on this block is analogous to setting Operation mode in the
Convolutional Encoder block to Reset on nonzero input via port.

The reset port supports double or boolean typed signals.

Fixed-Point Signal Flow Diagram

There are three main components to the Viterbi decoding algorithm. They are branch
metric computation (BMC), add-compare and select (ACS), and traceback decoding
(TBD). The following diagram illustrates the signal flow for a k/n rate code.

code(n) bit(k)

inNT bMetNT

stMetNT

uint32 outNT
ACS

StateMet

BMC TBD

As an example of a BMC diagram, a 1/2 rate, nsdec = 3 signal flow would be as follows.

2 Blocks — Alphabetical List

2-940

inNT

castBeforeSum: true

+

+

+

+

+

+

+

+

+

-

+

-

code(2)

inNT

bMet(4)

bMetNT,

bMetFIMATH

bMetNT(0, WL, 0)

bMetFIMATH(�floor�, �saturate�)

Parallel

to Serial

Serial

to

Parallel

7

inNT

inNT

7

WL nsdec n

n WL

= + -

= fi =

1

2 4

The ACS component is generally illustrated as shown in the following diagram.

 Viterbi Decoder

2-941

stMetNT
castBeforeSum: true

stMetNT

an ACS cycle

bMetNT

stMetNT

+bMet

stateMet

Compare
Select

Add

Z
-1

stMetNT(0, WL2, 0)

stMetFIMATH(�floor�, �saturate�)

<

Where WL2 is specified on the mask by the user.

In the flow diagrams above, inNT, bMetNT , stMetNT, and outNT are “numerictype”
objects, and bMetFIMATH and stMetFIMATH, are “fimath” objects.

Puncture Pattern Examples

For some commonly used puncture patterns for specific rates and polynomials, see the
last three references.

Fixed-Point Viterbi Decoding Examples

The following two example models showcase the fixed-point Viterbi decoder block used
for both hard- and soft-decision convolutional decoding.

If you are reading this reference page in the MATLAB Help Browser, click Fixed-
point Hard-Decision Viterbi Decoding and Fixed-point Soft-Decision Viterbi Decoding

2 Blocks — Alphabetical List

2-942

to open the models. These can also be found as doc_fixpt_vitharddec.mdl and
doc_fixpt_vitsoftdec.mdl under help\toolbox\commm\examples.

The layout of the soft decision model example is also similar to the existing doc example
on Soft-Decision Decoding, which can be found at help\toolbox\comm\examples
\doc_softdecision.mdl

 Viterbi Decoder

2-943

The purpose of this model is to highlight the fixed-point modeling attributes of the
Viterbi decoder, using a familiar layout.

Overview of the Simulations

The two simulations have a similar structure and have most parameters in common. A
data source produces a random binary sequence that is convolutionally encoded, BPSK
modulated, and passed through an AWGN channel.

The Convolutional encoder is configured as a rate 1/2 encoder. For every 2 bits, the
encoder adds another 2 redundant bits. To accommodate this, and add the correct
amount of noise, the Eb/No (dB) parameter of the AWGN block is in effect halved by
subtracting 10*log10(2).

For the hard-decision case, the BPSK demodulator produces hard decisions, at the
receiver, which are passed onto the decoder.

For the soft-decision case, the BPSK demodulator produces soft decisions, at the receiver,
using the log-likelihood ratio. These soft outputs are 3-bit quantized and passed onto the
decoder.

After the decoding, the simulation compares the received decoded symbols with the
original transmitted symbols in order to compute the bit error rate. The simulation ends
after processing 100 bit errors or 1e6 bits, whichever comes first.

Fixed-Point Modeling

Fixed-point modeling enables bit-true simulations which take into account hardware
implementation considerations and the dynamic range of the data/parameters. For
example, if the target hardware is a DSP microprocessor, some of the possible word
lengths are 8, 16, or 32 bits, whereas if the target hardware is an ASIC or FPGA, there
may be more flexibility in the word length selection.

To enable fixed-point Viterbi decoding, the block input must be of type ufix1 (unsigned
integer of word length 1) for hard decisions. Based on this input (either a 0 or a 1),
the internal branch metrics are calculated using an unsigned integer of word length =
(number of output bits), as specified by the trellis structure (which equals 2 for the hard-
decision example).

For soft decisions, the block input must be of type ufixN (unsigned integer of word length
N), where N is the number of soft-decision bits, to enable fixed-point decoding. The block

2 Blocks — Alphabetical List

2-944

inputs must be integers in the range 0 to 2N-1. The internal branch metrics are calculated
using an unsigned integer of word length = (N + number of output bits - 1), as specified
by the trellis structure (which equals 4 for the soft-decision example).

The State metric word length is specified by the user and usually must be greater
than the branch metric word length already calculated. You can tune this to be the most
suitable value (based on hardware and/or data considerations) by reviewing the logged
data for the system.

Enable the logging by selecting Analysis > Fixed-Point Tool. In the Fixed-Point
Setting GUI, set the Fixed-point instruments mode to Minimums, maximums and
overflows, and rerun the simulation. If you see overflows, it implies the data did not
fit in the selected container. You could either increase the size of the word length (if your
hardware allows it) or try scaling the data prior to processing it. Based on the minimum
and maximum values of the data, you are also able to determine whether the selected
container is of the appropriate size.

Try running simulations with different values of State metric word length to get an
idea of its effect on the algorithm. You should be able to narrow down the parameter to a
suitable value that has no adverse effect on the BER results.

Comparisons with Double-Precision Data

To run the same model with double precision data, Select Analysis > Fixed-Point Tool.
In the Fixed-Point Tool GUI, select the Data type override to be Double. This selection
overrides all data type settings in all the blocks to use double precision. For the Viterbi
Decoder block, as Output type was set to Boolean, this parameter should also be set to
double.

Upon simulating the model, note that the double-precision and fixed-point BER results
are the same. They are the same because the fixed-point parameters for the model have
been selected to avoid any loss of precision while still being most efficient.

Comparisons Between Hard and Soft-Decision Decoding

The two models are set up to run from within BERTool to generate a simulation curve
that compares the BER performance for hard-decision versus soft-decision decoding.

To generate simulation results for doc_fixpt_vitharddec.mdl, do the following:

1 Type bertool at the MATLAB command prompt.

 Viterbi Decoder

2-945

2 Go to the Monte Carlo pane.
3 Set the Eb/No range to 2:5.
4 Set the Simulation model to doc_fixpt_vitharddec.mdl. Make sure that the

model is on path.
5 Set the BER variable name to BER.
6 Set the Number of errors to 100, and the Number of bits to 1e6.
7 Press Run and a plot generates.

To generate simulation results for doc_fixpt_vitsoftdec.mdl, just change the
Simulation model in step 4 and press Run.

Notice that, as expected, 3-bit soft-decision decoding is better than hard-decision
decoding, roughly to the tune of 1.7 dB, and not 2 dB as commonly cited. The difference

2 Blocks — Alphabetical List

2-946

in the expected results could be attributed to the imperfect quantization of the soft
outputs from the demodulator.

Dialog Box

Trellis structure
MATLAB structure that contains the trellis description of the convolutional encoder.
Use the same value here and in the corresponding Convolutional Encoder block.

Punctured code

 Viterbi Decoder

2-947

Select this check box to specify a punctured input code. The field, Punctured code,
appears.

Puncture vector
Constant puncture pattern vector used at the transmitter (encoder). The puncture
vector is a pattern of 1s and 0s. The 0s indicate the punctured bits. When you select
Punctured code, the Punctured vector field appears.

Enable erasures input port
When you check this box, the decoder opens an input port labeled Era. Through this
port, you can specify an erasure vector pattern of 1s and 0s, where the 1s indicate the
erased bits.

For these erasures in the incoming data stream, the decoder does not update the
branch metric. The widths and the sample times of the erasure and the input data
ports must be the same. The erasure input port can be of data type double or
Boolean.

Decision type
Specifies the use of Unquantized, Hard Decision, or Soft Decision for the
branch metric calculation.

• Unquantized decision uses the Euclidean distance to calculate the branch
metrics.

• Soft Decision and Hard Decision use the Hamming distance to calculate the
branch metrics, where Number of soft decision bits equals 1.

Number of soft decision bits
The number of soft decision bits to represent each input. This field is active only
when Decision type is set to Soft Decision.

Error if quantized input values are out of range
Select this check box to throw an error when quantized input values are out of range.
This check box is active only when Decision type is set to Soft Decision or Hard
Decision.

Traceback depth
The number of trellis branches to construct each traceback path.

Operation mode
Method for transitioning between successive input frames: Continuous,
Terminated, and Truncated.

2 Blocks — Alphabetical List

2-948

Note: When this block outputs sequences that vary in length during simulation and
you set the Operation mode to Truncated or Terminated, the block's state resets
at every input time step.

Enable reset input port
When you check this box, the decoder opens an input port labeled Rst. Providing a
nonzero input value to this port causes the block to set its internal memory to the
initial state before processing the input data.

Delay reset action to next time step
When you select this option, the Viterbi Decoder block resets after decoding the
encoded data. This option is available only when you set Operation mode to
Continuous and select Enable reset input port. You must enable this option for
HDL support.

Output data type

 Viterbi Decoder

2-949

The output signal's data type can be double, single, boolean, int8, uint8,
int16, uint16, int32, uint32, or set to 'Inherit via internal rule' or
'Smallest unsigned integer'.

When set to 'Smallest unsigned integer', the output data type is selected
based on the settings used in the Hardware Implementation pane of the
Configuration Parameters dialog box of the model. If ASIC/FPGA is selected in
the Hardware Implementation pane, the output data type is ufix(1). For all
other selections, it is an unsigned integer with the smallest specified wordlength
corresponding to the char value (e.g., uint8).

2 Blocks — Alphabetical List

2-950

When set to 'Inherit via internal rule' (the default setting), the block selects
double-typed outputs for double inputs, single-typed outputs for single inputs, and
behaves similarly to the 'Smallest unsigned integer' option for all other typed
inputs.

Supported Data Types
Port Supported Data Types

Input • Double-precision floating point
• Single-precision floating point
• Boolean for Hard decision mode
• 8-, 16-, and 32-bit signed integers (for Hard decision and Soft

decision modes)
• 8-, 16-, and 32-bit unsigned integers (for Hard decision and Soft

decision modes)
• ufix(n), where n represents the Number of soft decision bits

Output • Double-precision floating point
• Single-precision floating point
• Boolean
• 8-, 16-, and 32-bit signed integers
• 8-, 16-, and 32-bit unsigned integers
• ufix(1) for ASIC/FPGA mode

HDL Code Generation
This block supports HDL code generation using HDL Coder. HDL Coder provides
additional configuration options that affect HDL implementation and synthesized logic.
For more information on implementations, properties, and restrictions for HDL code
generation, see Viterbi Decoder in the HDL Coder documentation.

See Also
Convolutional Encoder, APP Decoder

 Viterbi Decoder

2-951

References

[1] Clark, G. C. Jr. and J. Bibb Cain., Error-Correction Coding for Digital
Communications, New York, Plenum Press, 1981.

[2] Gitlin, R. D., J. F. Hayes, and S. B. Weinstein, Data Communications Principles, New
York, Plenum, 1992.

[3] Heller, J. A. and I. M. Jacobs, “Viterbi Decoding for Satellite and Space
Communication,” IEEE Transactions on Communication Technology, Vol.
COM-19, October 1971, pp 835–848.

[4] Yasuda, Y., et. al., “High-rate punctured convolutional codes for soft decision Viterbi
decoding,” IEEE Transactions on Communications, Vol. COM-32, No. 3, pp 315–
319, March 1984.

[5] Haccoun, D., and Begin, G., “High-rate punctured convolutional codes for Viterbi and
sequential decoding,” IEEE Transactions on Communications, Vol. 37, No. 11, pp
1113–1125, Nov. 1989.

[6] Begin, G., et.al., “Further results on high-rate punctured convolutional codes for
Viterbi and sequential decoding,” IEEE Transactions on Communications, Vol.
38, No. 11, pp 1922–1928, Nov. 1990.

2 Blocks — Alphabetical List

2-952

Walsh Code Generator

Generate Walsh code from orthogonal set of codes

Library

Sequence Generators sublibrary of Comm Sources

Description

Walsh codes are defined as a set of N codes, denoted Wj, for j = 0, 1, ... , N - 1, which have
the following properties:

• Wj takes on the values +1 and -1.
• Wj[0] = 1 for all j.
• Wj has exactly j zero crossings, for j = 0, 1, ... , N - 1.
•

W W
j k

N j k
j k

T =
π

=

Ï
Ì
Ó

0

• Each code Wj is either even or odd with respect to its midpoint.

Walsh codes are defined using a Hadamard matrix of order N. The Walsh Code
Generator block outputs a row of the Hadamard matrix specified by the Walsh code
index, which must be an integer in the range [0, ..., N - 1]. If you set Walsh code index
equal to an integer j, the output code has exactly j zero crossings, for j = 0, 1, ... , N - 1.

Note, however, that the indexing in the Walsh Code Generator block is different than the
indexing in the Hadamard Code Generator block. If you set the Walsh code index in the
Walsh Code Generator block and the Code index parameter in the Hadamard Code
Generator block, the two blocks output different codes.

 Walsh Code Generator

2-953

Dialog Box

Code length
Integer scalar that is a power of 2 specifying the length of the output code.

Code index
Integer scalar in the range [0, 1, ... , N - 1], where N is the Code length, specifying
the number of zero crossings in the output code.

Sample time
A positive real scalar specifying the sample time of the output signal.

Frame-based outputs
When checked, the block outputs a frame-based signal. When cleared, the block
outputs a [1] unoriented scalar.

Samples per frame

2 Blocks — Alphabetical List

2-954

The number of samples in a frame-based output signal. This field is active only if
you select Frame-based outputs. If Samples per frame is greater than the Code
length, the code is cyclically repeated.

Output data type
The output type of the block can be specified as an int8 or double. By default, the
block sets this to double.

See Also

Hadamard Code Generator, OVSF Code Generator

 Windowed Integrator

2-955

Windowed Integrator

Integrate over time window of fixed length

Library

Comm Filters

Description

The Windowed Integrator block creates cumulative sums of the input signal values over
a sliding time window of fixed length. If the Integration period parameter is N and the
input samples are denoted by x(1), x(2), x(3),..., then the nth output sample is the sum of
the x(k) values for k between n-N+1 and n. In cases where n-N+1 is less than 1, the block
uses an initial condition of 0 to represent those samples.

Input and Output Signals

This block accepts scalar, column vector, and M-by-N matrix input signals. The block
filters an M-by-N input matrix as follows:

• When you set the Input processing parameter to Columns as channels (frame
based), the block treats each column as a separate channel. In this mode, the block
creates N instances of the same filter, each with its own independent state buffer.
Each of the N filters process M input samples at every Simulink time step.

• When you set the Input processing parameter to Elements as channels
(sample based), the block treats each element as a separate channel. In this mode,
the block creates M*N instances of the same filter, each with its own independent
state buffer. Each filter processes one input sample at every Simulink time step.

The output dimensions always equal those of the input signal. For information about
the data types each block port supports, see the “Supported Data Type” on page 2-960
table on this page.

2 Blocks — Alphabetical List

2-956

Dialog Box

Integration period
The length of the interval of integration, measured in samples.

Input processing
Specify how the block processes the input signal. You can set this parameter to one of
the following options:

• Columns as channels (frame based) — When you select this option, the
block treats each column of the input as a separate channel.

• Elements as channels (sample based) — When you select this option, the
block treats each element of the input as a separate channel.

 Windowed Integrator

2-957

Note: The Inherited (this choice will be removed - see release
notes) option will be removed in a future release. See “Frame-Based Processing” in
the Communications System Toolbox Release Notes for more information.

This parameter is available only when you set the Rate options parameter to Allow
multirate processing.

Rounding mode
Select the rounding mode for fixed-point operations. The block uses the Rounding
mode when the result of a fixed-point calculation does not map exactly to a number
representable by the data type and scaling storing the result. The filter coefficients
do not obey this parameter; they always round to Nearest. For more information,
see “Rounding Modes” in the DSP System Toolbox documentation or “Rounding
Mode: Simplest” in the Fixed-Point Designer documentation.

2 Blocks — Alphabetical List

2-958

Overflow mode
Select the overflow mode for fixed-point operations. The filter coefficients do not obey
this parameter; they are always saturated.

Coefficients
The block implementation uses a Direct-Form FIR filter with all tap weights set to
one. The Coefficients parameter controls which data type represents the taps (i.e.
ones) when the input data is a fixed-point signal.

Choose how you specify the word length and the fraction length of the filter
coefficients (numerator and/or denominator). See “Filter Structure Diagrams” in DSP
System Toolbox Reference Guide for illustrations depicting the use of the coefficient
data types in this block:

• When you select Same word length as input, the word length of the filter
coefficients match that of the input to the block. In this mode, the fraction length
of the coefficients is automatically set to the binary-point only scaling that
provides you with the best precision possible given the value and word length of
the coefficients.

• When you select Specify word length, you are able to enter the word length
of the coefficients, in bits. In this mode, the fraction length of the coefficients is
automatically set to the binary-point only scaling that provides you with the best
precision possible given the value and word length of the coefficients.

• When you select Binary point scaling, you are able to enter the word length
and the fraction length of the coefficients, in bits. If applicable, you are able to
enter separate fraction lengths for the numerator and denominator coefficients.

• When you select Slope and bias scaling, you are able to enter the word
length, in bits, and the slope of the coefficients. If applicable, you are able to
enter separate slopes for the numerator and denominator coefficients. This block
requires power-of-two slope and a bias of zero.

• The filter coefficients do not obey the Rounding mode and the Overflow mode
parameters; they are always saturated and rounded to Nearest.

Product output
Use this parameter to specify how you would like to designate the product output
word and fraction lengths. See “Filter Structure Diagrams” and “Multiplication Data
Types” in DSP System Toolbox Reference Guide for illustrations depicting the use of
the product output data type in this block:

 Windowed Integrator

2-959

• When you select Same as input, these characteristics match those of the input
to the block.

• When you select Binary point scaling, you are able to enter the word length
and the fraction length of the product output, in bits.

• When you select Slope and bias scaling, you are able to enter the word
length, in bits, and the slope of the product output. This block requires power-of-
two slope and a bias of zero.

Accumulator
Use this parameter to specify how you would like to designate the accumulator word
and fraction lengths. See “Filter Structure Diagrams” and “Multiplication Data
Types” for illustrations depicting the use of the accumulator data type in this block:

• When you select Same as input, these characteristics match those of the input
to the block.

• When you select Same as product output, these characteristics match those
of the product output.

• When you select Binary point scaling, you are able to enter the word length
and the fraction length of the accumulator, in bits.

• When you select Slope and bias scaling, you are able to enter the word
length, in bits, and the slope of the accumulator. This block requires power-of-two
slope and a bias of zero.

Output
Choose how you specify the output word length and fraction length:

• When you select Same as input, these characteristics match those of the input
to the block.

• When you select Same as accumulator, these characteristics match those of the
accumulator.

• When you select Binary point scaling, you are able to enter the word length
and the fraction length of the output, in bits.

• When you select Slope and bias scaling, you are able to enter the word
length, in bits, and the slope of the output. This block requires power-of-two slope
and a bias of zero.

Lock scaling against changes by the autoscaling tool

2 Blocks — Alphabetical List

2-960

Select this parameter to prevent any fixed-point scaling you specify in this block
mask from being overridden by the autoscaling tool in the Fixed-Point Tool.

Supported Data Type

Port Supported Data Types

In • Double-precision floating point
• Single-precision floating point
• Signed Fixed-point

Out • Double-precision floating point
• Single-precision floating point
• Signed fixed-point

Examples

If Integration period is 3 and the input signal is a ramp (1, 2, 3, 4,...), then some of the
sums that form the output of this block are as follows:

• 0+0+1 = 1
• 0+1+2 = 3
• 1+2+3 = 6
• 2+3+4 = 9
• 3+4+5 = 12
• 4+5+6 = 15
• etc.

The zeros in the first few sums represent initial conditions. With the Input processing
parameter set to Elements as channels, then the values 1, 3, 6,... are successive
values of the scalar output signal. With the Input processing parameter set to
Columns as channels, the values 1, 3, 6,... are organized into output frames that have
the same vector length as the input signal.

 Windowed Integrator

2-961

See Also

Integrate and Dump, Discrete-Time Integrator (Simulink documentation)

2-962

3

Alphabetical List

3 Alphabetical List

3-2

comm.ACPR System object
Package: comm

Adjacent Channel Power Ratio measurements

Description

The ACPR System object measures adjacent channel power ratio (ACPR) of an input
signal.

To measure adjacent channel power:

1 Define and set up your adjacent channel power object. See “Construction” on page
3-2.

2 Call step to measure the adjacent channel power ratio according to the properties of
comm.ACPR. The behavior of step is specific to each object in the toolbox.

Construction

H = comm.ACPR creates a System object, H, that measures adjacent channel power ratio
(ACPR) of an input signal.

H = comm.ACPR(Name,Value) creates object, H, with each specified property set to the
specified value. You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties

NormalizedFrequency

Assume normalized frequency values

Specify whether the frequency values are normalized. If you set this property to true,
the object assumes that frequency values are normalized (in the [-1 1] range). The default
is false. If you set this property to false, the object assumes that frequency values are
measured in Hertz.

 comm.ACPR System object

3-3

SampleRate

Sample rate of input signal

Specify the sample rate of the input signal, in samples per second, as a double-precision,
positive scalar. The default is 1e6 samples per second. This property applies when you
set the “NormalizedFrequency” property to false.

MainChannelFrequency

Main channel center frequency

Specify the main channel center frequency as a double-precision scalar. The default is 0
Hz.

When you set the “NormalizedFrequency” property to true, you must specify the
center frequency as a normalized value between -1 and 1.

When you set the “NormalizedFrequency” property to false, you must specify
the center frequency in Hertz. The object measures the main channel power in
the bandwidth that you specify in the “MainMeasurementBandwidth” property.
This measurement is taken at the center of the frequency that you specify in the
MainMeasurementBandwidth property.

MainMeasurementBandwidth

Main channel measurement bandwidth

Specify the main channel measurement bandwidth as a double-precision, positive scalar.
The default is 50e3 Hz.

When you set the “NormalizedFrequency” property to true, you must specify the
measurement bandwidth as a normalized value between 0 and 1.

When you set the NormalizedFrequency property to false, you must specify the
measurement bandwidth in Hertz. The object measures the main channel power in
the bandwidth that you specify in the “MainMeasurementBandwidth” property.
This measurement is taken at the center of the frequency that you specify in the
“MainChannelFrequency” property.

AdjacentChannelOffset

3 Alphabetical List

3-4

Adjacent channel frequency offsets

Specify the adjacent channel offsets as a double-precision scalar or as a row vector
comprising frequencies that define the location of adjacent channels of interest. The
default is [-100e3 100e3] Hz.

When you set the “NormalizedFrequency” property to true, you must
specify normalized frequency offset values between -1 and 1. When you set the
NormalizedFrequency property to false, you must specify frequency offset values in
Hertz. The offset values indicate the distance between the main channel center frequency
and adjacent channel center frequencies. Positive offsets indicate adjacent channels
to the right of the main channel center frequency. Negative offsets indicate adjacent
channels to the left of the main channel center frequency.

AdjacentMeasurementBandwidth

Adjacent channel measurement bandwidths

Specify the measurement bandwidth for each adjacent channel. The default is
the scalar, 50e3. The object assumes that each adjacent bandwidth is centered
at the frequency defined by the corresponding frequency offset. You define this
offset in the “AdjacentChannelOffset” property. Set this property to a double-
precision scalar or row vector of length equal to the number of specified offsets in the
AdjacentChannelOffset property.

When you set this property to a scalar, the object obtains all adjacent channel
power measurements within equal measurement bandwidths. When you set the
“NormalizedFrequency” property to true, you must specify normalized bandwidth
values between 0 and 1. When you set the NormalizedFrequency property to false,
you must specify the adjacent channel bandwidth values in Hertz.

MeasurementFilterSource

Source of the measurement filter

Specify the measurement filter source as one of None | Property. The default is
None. When you set this property to None the object does not apply filtering to obtain
ACPR measurements. When you set this property to Property, the object applies a
measurement filter to the main channel before measuring the average power. Each of the
adjacent channel bands also receives a measurement filter . In this case, you specify the
measurement filter coefficients in the “MeasurementFilter” property.

 comm.ACPR System object

3-5

MeasurementFilter

Measurement filter coefficients

Specify the measurement filter coefficients as a double-precision row vector containing
the coefficients of an FIR filter in descending order of powers of z. Center the response of
the filter at DC. The ACPR object automatically shifts and applies the filter response at
each of the main and adjacent channel center frequencies before obtaining the average
power measurements. The internal filter states persist and clear only when you call
the reset method. This property applies when you set the “MeasurementFilter”
property to Property. The default is 1, which is an all-pass filter that has no effect on
the measurements.

SpectralEstimation

Spectral estimation control

Specify the spectral estimation control as one of Auto | Specify frequency
resolution | Specify window parameters. The default is Auto.

When you set this property to Auto, the object obtains power measurements with a
Welch spectral estimator with zero-percent overlap, a Hamming window, and a segment
length equal to the length of the input data vector. In this setting, the spectral estimator
set should achieve the maximum frequency resolution attainable with the input data
length.

When you set this property to Specify frequency resolution, you specify the
desired spectral frequency resolution, in normalized units or in Hertz, using the
“FrequencyResolution” property. In this setting, the object uses the value in the
FrequencyResolution property to automatically compute the size of the spectral
estimator data window.

When you set this property to Specify window parameters, several spectral
estimator properties become available so that you can control the Welch spectral
estimation settings. These properties are: “SegmentLength”, “OverlapPercentage”,
“Window”, and “SidelobeAttenuation”. Sidelobe attenuation applies only when you
set the Window property to Chebyshev.

When you set the this property to Specify window parameters, the
FrequencyResolution property does not apply, and you control the resolution using
the above properties.

3 Alphabetical List

3-6

SegmentLength

Segment length

Specify the segment length, in samples, for the spectral estimator as a numeric, positive,
integer scalar. The default is 64. The length of the segment allows you to make tradeoffs
between frequency resolution and variance in the spectral estimates. A long segment
length results in better resolution. A short segment length results in more averaging and
a decrease in variance. This property applies when you set the “SpectralEstimation”
property to Specify window parameters.

OverlapPercentage

Overlap percentage

Specify the percentage of overlap between each segment in the spectral estimator as a
double-precision scalar in the [0 100] interval. This property applies when you set the
“SpectralEstimation” property to Specify window parameters. The default is 0
percent.

Window

Window function

Specify a window function for the spectral estimator as one of Bartlett | Bartlett-
Hanning | Blackman | Blackman-Harris | Bohman | Chebyshev | Flat Top |
Hamming | Hann | Nuttall | Parzen | Rectangular | Triangular. The default is
Hamming. A Hamming window has 42.5dB of sidelobe attenuation. This attenuation
may mask spectral content below this value, relative to the peak spectral content.
Choosing different windows allows you to make tradeoffs between resolution and sidelobe
attenuation. This property applies when you set the “SpectralEstimation” property to
Specify window parameters.

SidelobeAttenuation

Sidelobe attenuation for Chebyshev window

Specify the sidelobe attenuation, in decibels, for the Chebyshev window function as a
double-precision, nonnegative scalar. The default is 100 dB. This property applies when
you set the “SpectralEstimation” property to Specify window parameters and
the “Window” property to Chebyshev.

 comm.ACPR System object

3-7

FrequencyResolution

Frequency resolution

Specify the frequency resolution of the spectral estimator as a double-precision scalar.
The default is 10625 Hz.

When you set the NormalizedFrequency property to true, you must specify the
frequency resolution as a normalized value between 0 and 1. When you set the
“NormalizedFrequency” property to false, you must specify the frequency resolution
in Hertz. The object uses the value in the “FrequencyResolution” property to calculate
the size of the data window used by the spectral estimator. This property applies when
you set the “SpectralEstimation” property to Specify frequency resolution.

FFTLength

FFT length

Specify the FFT length that the Welch spectral estimator uses as one of Next power of
2 | Same as segment length | Custom. The default is Next power of 2.

When you set this property to Custom, the “CustomFFTLength” property becomes
available to specify the desired FFT length.

When you set this property to Next power of 2, the object sets the length of the FFT
to the next power of 2. This length is greater than the spectral estimator segment length
or 256, whichever is greater.

When you set this property to Same as segment length, the object sets the length of
the FFT. This length equals the spectral estimator segment length or 256, whichever is
greater.

CustomFFTLength

Custom FFT length

Specify the number of FFT points that the spectral estimator uses as a numeric, positive,
integer scalar. This property applies when you set the “FFTLength” property to Custom.
The default is 256.

MaxHold

3 Alphabetical List

3-8

Max-hold setting control

Specify the maximum hold setting. The default is false.

When you set this property to true, the object compares two vectors. One vector
compared is the current estimated power spectral density vector (obtained with the
current input data frame). The object checks this vector against the previous maximum-
hold accumulated power spectral density vector, (obtained at the previous call to the
step method). The object stores the maximum values at each frequency bin and uses
them to compute average power measurements. You clear the maximum-hold spectrum
by calling the reset method on the object. When you set this property to false,
the object obtains power measurements using instantaneous power spectral density
estimates. This property is tunable.

PowerUnits

Power units

Specify power measurement units as one of dBm | dBW | Watts. The default is dBm.

When you set this property to dBm, or dBW, the step method outputs ACPR
measurements in a dBc scale (adjacent channel power referenced to main channels
power). If you set this property to Watts, the step method outputs ACPR measurements
in a linear scale.

MainChannelPowerOutputPort

Enable main channel power measurement output

When you set this property to true, the step method outputs the main channel power
measurement. The default is false. The main channel power is the power of the input
signal measured in the band that you define with the “MainChannelFrequency”
and “MainMeasurementBandwidth” properties. The step method returns power
measurements in the units that you specify in the “PowerUnits” property.

AdjacentChannelPowerOutputPort

Enable adjacent channel power measurements output

When you set this property to true, the step method outputs a vector of adjacent
channel power measurements. The default is false. The adjacent channel powers
correspond to the input signal's power measured in the bands that you define with the

 comm.ACPR System object

3-9

“AdjacentChannelOffset” and “AdjacentMeasurementBandwidth” properties.
The step method returns power measurements in the units that you specify in the
“PowerUnits” property.

Methods

clone
Create ACPR measurement object with
same property values

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

reset
Reset states of ACPR measurement object

step
Adjacent Channel Power Ratio
measurements

Examples

Measure ACPR of a 16-QAM signal with symbol rate of 3.84 Msps

% Generate data with an alphabet size of 16 and modulate the data

 x = randi([0 16-1],5000,1);

 hMod = comm.RectangularQAMModulator(16);

 y = step(hMod,x);

 % Usample the data by L = 8 using a rectangular pulse shape

 L = 8;

3 Alphabetical List

3-10

 yPulse = rectpulse(y,L);

 % Create an ACPR measurement object and measure the modulated signal

 h = comm.ACPR(...

 'SampleRate', 3.84e6*8,...

 'MainChannelFrequency', 0,...

 'MainMeasurementBandwidth', 3.84e6,...

 'AdjacentChannelOffset', [-5e6 5e6],...

 'AdjacentMeasurementBandwidth', 3.84e6,...

 'MainChannelPowerOutputPort', true,...

 'AdjacentChannelPowerOutputPort', true);

 [ACPR,mainChnlPwr,adjChnlPwr] = step(h,yPulse)

ACPR =

 -14.3659 -14.3681

mainChnlPwr =

 38.8668

adjChnlPwr =

 24.5010 24.4988

Algorithms

Note: The following conditions must be true, otherwise power measurements fall out of
the Nyquist interval.

MainChannelFreq
MainChannelMeasBW

F

MainChannelFreq Ad

± <

+

2
max

(jjChannelOffset
AdjChannelMeasBW

F) max± <
2

Fmax = Fs/2 if NormalizedFrequency = false

 comm.ACPR System object

3-11

Fmax = 1 if NormalizedFrequency = true

See Also
comm.CCDF | comm.MER | comm.EVM

3 Alphabetical List

3-12

clone
System object: comm.ACPR
Package: comm

Create ACPR measurement object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a ACPR object C, with the same property values as H. The clone
method creates a new unlocked object with uninitialized states.

 getNumInputs

3-13

getNumInputs
System object: comm.ACPR
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of
expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H)

3 Alphabetical List

3-14

getNumOutputs
System object: comm.ACPR
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn outputs on or off are changed.

 isLocked

3-15

isLocked
System object: comm.ACPR
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the ACPR System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

3 Alphabetical List

3-16

release
System object: comm.ACPR
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H)Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 reset

3-17

reset
System object: comm.ACPR
Package: comm

Reset states of ACPR measurement object

Syntax

reset(H)

Description

reset(H) resets the states of the ACPR object, H.

3 Alphabetical List

3-18

step

System object: comm.ACPR
Package: comm

Adjacent Channel Power Ratio measurements

Syntax

A = step(H,X)

[A,MAINPOW] = step(H,X)

[A,ADJPOW] = step(H,X)

Description

A = step(H,X) returns a vector of the adjacent channel power ratio, A, measured in the
input data, X. The measurements are at the frequency bands that you specify with the
MainChannelFrequency, MainMeasurementBandwidth, AdjacentChannelOffset,
and AdjacentMeasurementBandwidth properties. Input X must be a double precision
column vector. The length of the output vector, A, equals the number of adjacent
channels that you specify in the AdjacentChannelOffset property.

[A,MAINPOW] = step(H,X) returns the measured main channel power, MAINPOW,
when you set the MainChannelPowerOutputPort property to true. The step
method outputs the main channel power measured within the main channel
frequency band of interest that you specify with the MainChannelFrequency and
MainMeasurementBandwidth properties.

[A,ADJPOW] = step(H,X) returns a vector of the measured adjacent channel powers,
ADJPOW, when you set the AdjacentChannelPowerOutputPort property to true. The
adjacent channel powers are measured at the adjacent frequency bands of interest that
you specify with the AdjacentChannelOffset and AdjacentMeasurementBandwidth
properties. The length of the output vector, ADJPOW, equals the length of the vector that
you specify in the AdjacentChannelOffset property. You can combine optional output
arguments when you set their enabling properties. Optional outputs must be listed in the
same order as the order of the enabling properties. For example,

 step

3-19

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

3 Alphabetical List

3-20

comm.AGC System object
Package: comm

Adaptively adjust gain for constant signal-level output

Description

The comm.AGC System object creates an automatic gain controller (AGC) that adaptively
adjusts its gain to achieve a constant signal level at the output.

To adaptively adjust gain for constant signal-level output:

1 Define and set up your automatic gain controller object. See “Construction” on page
3-20.

2 Call step to adaptively adjust gain and achieve a constant signal level at the output
according to the properties of comm.AGC. The behavior of step is specific to each
object in the toolbox.

Construction

H = comm.AGC creates an automatic gain controller (AGC) System object, H, that
adaptively adjusts its gain to achieve a constant signal level at the output.

H = comm.AGC(Name,Value) creates an AGC object, H, with the specified property
Name set to the specified Value. You can specify additional name-value pair arguments
in any order as (Name1,Value1,...,NameN,ValueN).

Properties

DetectorMethod

Detector method

Specify the detector method as one of Rectifier | Square Law. The default is
Rectifier.

 comm.AGC System object

3-21

When you set the DetectorMethod to Rectifier, the AGC detector outputs a voltage
value proportional to the envelope amplitude of the output signal. The detector rectifies
and then averages the input signal over the update period. The AGC adjusts the gain to
obtain unit voltage at the output of the detector.

When you set the DetectorMethod to Square law, the AGC detector outputs an
energy value that is proportional to the square of the output voltage. The detector
squares and then averages the input signal over the update period. The AGC adjusts the
gain to obtain unit energy at the output of the detector.

LoopMethod

Loop method

Specify the loop method of the AGC as one of Linear | Logarithmic. The default is
Linear.

When you set the LoopMethod to Linear, the AGC uses the direct value of the detector
output to determine the gain value. Typically, a linear loop responds quickly to increases
in the input signal level. However, the loop’s response to decreases in the input signal
level tends to be slow.

When you set the LoopMethod to Logarithmic, the AGC uses the logarithm of the
detector output to determine the gain value. Logarithmic loops respond to decreases in
the input signal level much more quickly than linear loops.

UpdatePeriod

Period of gain updates in samples

Specify the period of the gain updates as a double- or single-precision, real, integer-
valued scalar. The default is 100.

The number of input samples must be an integer multiple of update period. Setting the
period greater than 1 increases the speed of the AGC algorithm.

If you increase the update period, you may also need to increase the step size. Similarly,
if you decrease the update period, you may also need to decrease the step size.

StepSize

Step size for gain updates

3 Alphabetical List

3-22

Specify the step size for gain updates as a double- or single-precision, real, positive
scalar. The default is 0.1.

If you increase the loop gain, the AGC responds to changes at the input signal level
faster. However, gain pumping also increase.

If you increase the update period, you may also need to increase the step size. Similarly,
if you decrease the update period, you may also need to decrease the step size.

MaximumGain

Maximum gain in decibels

Specify the maximum gain of the AGC in decibels as a positive scalar. The default is 30.

If the signal at the input of the AGC has a very low signal level, the AGC gain may
increase rapidly. Use this property to limit the gain that the AGC applies to the input
signal.

GainOutputPort

Enable gain output

This port displays the gain that the AGC applies to the input signal. When you set this
property to true, the step method outputs instantaneous gain values. The default is
false.

Methods

clone
Create AGC object with same property
values

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

 comm.AGC System object

3-23

reset
Reset internal states of automatic gain
controller

step
Apply adaptive gain to input signal

Examples

Adaptively Adjust the Received Signal Amplitude Using an AGC

Modulate and amplify a QPSK signal, set the received signal amplitude to approximately
1 volt using an AGC, and then plot the output.

Create a QPSK modulated signal using the QPSK System object.

data = randi([0 3],10000,1);

hMod = comm.QPSKModulator;

modData = step(hMod, data);

Amplify the modulated signal.

txSig = 4*modData;

Create an AGC System object™ and pass the transmitted signal through it using the
step function. The AGC adjusts the received signal amplitude to approximately 1.

hAGC = comm.AGC;

rxSig = step(hAGC,txSig);

Plot the signal constellations of the transmit and received signals after the AGC reaches
steady-state.

h = scatterplot(txSig(1000:end),1,0,'*');

hold on

scatterplot(rxSig(1000:end),1,0,'or',h);

legend('Input of AGC', 'Output of AGC')

3 Alphabetical List

3-24

Measure and compare the power of the tranmitted and received signals after the AGC
has reached steady-state. The power of the transmitted signal is 16 times larger than the
power of the received signal.

txPower = var(txSig(5000:end));

 comm.AGC System object

3-25

rxPower = var(rxSig(5000:end));

[txPower rxPower]

ans =

 15.9985 0.9999

Compare the Performance of an AGC with a Rectifier Detector and a Square Law Detector

Modulate a QPSK signal, adjust the received signal level using two AGC objects, and
then plot the AGC response as a function of the number of symbols.

Create a QPSK modulated signal with an amplitude of 4.

data = randi([0 3],200,1);

hMod = comm.QPSKModulator;

modData = 4*step(hMod,data);

Create two AGC System objects to adjust the received signal level. Use a rectifier
detector and a square law detector, each with update period 10.

hAGC1 = comm.AGC('DetectorMethod','Rectifier','UpdatePeriod',10);

hAGC2 = comm.AGC('DetectorMethod','Square law','UpdatePeriod',10);

txSig1 = step(hAGC1,modData);

txSig2 = step(hAGC2,modData);

Plot AGC response as a function of the number of symbols.

plot([abs(txSig1) abs(txSig2)])

grid on

xlabel('Symbols')

ylabel('Amplitude')

legend('Rectifier detector','Square law detector')

3 Alphabetical List

3-26

Plot Effect of Step Size on AGC Performance

Create two AGC System objects™ to adjust the receive signal level using two different
step sizes with identical update periods.

Generate a 16-PSK signal having power equal to 10 W.

data = randi([0 15],1000,1);

hMod = comm.PSKModulator('ModulationOrder',16, ...

 'PhaseOffset',pi/16);

modData = sqrt(10)*step(hMod,data);

Create a set of raised cosine matched filters with their Gain property set so that they
have unity output power.

 comm.AGC System object

3-27

hTxFilt = comm.RaisedCosineTransmitFilter('Gain',sqrt(8));

hRxFilt = comm.RaisedCosineReceiveFilter('Gain',sqrt(1/8));

Filter the modulated signal through the raised cosine transmit filter object.

txSig = step(hTxFilt,modData);

Create two AGC objects to adjust the received signal level. Select a step size of 0.01 and
0.1, respectively. Set the update period to 10.

hAGC1 = comm.AGC('StepSize',0.01,'UpdatePeriod',10);

hAGC2 = comm.AGC('StepSize',0.1,'UpdatePeriod',10);

Pass the modulated signal through the two AGC objects using the step function.

rxAGC1 = step(hAGC1,txSig);

rxAGC2 = step(hAGC2,txSig);

Filter the AGC output signals using the step function associated with the raised cosine
receive filter object.

rxSig1 = step(hRxFilt,rxAGC1);

rxSig2 = step(hRxFilt,rxAGC2);

Plot the power of the filtered AGC responses. The signal with the larger step size
converges faster to the AGC target power level of 1 W.

plot([abs(rxSig1).^2 abs(rxSig2).^2])

grid on

xlabel('Symbols')

ylabel('Power (W)')

legend('Step Size 0.01','Step Size 0.1')

3 Alphabetical List

3-28

Plot the power of the steady-state filtered AGC signals by considering only the last 500
symbols. The larger AGC step size results in less accurate gain correction.

plot((501:1000),[abs(rxSig1(501:1000)).^2 abs(rxSig2(501:1000)).^2])

grid on

xlabel('Symbols')

ylabel('Power (W)')

legend('Step Size 0.01','Step Size 0.1')

 comm.AGC System object

3-29

This suggests a trade off with the StepSize property as larger values result in faster
convergence at the expense of less accurate gain control.

Show Effect of Maximum AGC Gain on QAM Signal

Pass a noisy 16-QAM signal through two AGCs having different maximum gain settings.

Generate random data symbols and apply 16-QAM modulation. The modulator object is
set so that the signal constellation has an average power of 1 W.

data = randi([0 15],100000,1);

hMod = comm.RectangularQAMModulator('NormalizationMethod','Average power');

txSig = step(hMod,data);

Attenuate the signal by 30 dB to emulate the effects of propagation loss.

3 Alphabetical List

3-30

rxSig = txSig/1000;

Add AWGN with a 20 dB signal-to-noise ratio.

rxSig = awgn(rxSig,20,'measured');

Create two AGC System objects™. Set the MaximumGain property of the first AGC to 30
dB and set the MaximumGain property of the second AGC to 25 dB. For both objects, set
the StepSize property to 5.

hAGC1 = comm.AGC('MaximumGain',30,'StepSize',5);

hAGC2 = comm.AGC('MaximumGain',25,'StepSize',5);

Pass the received signal through the two AGCs.

rxSig1 = step(hAGC1,rxSig);

rxSig2 = step(hAGC2,rxSig);

Create a Constellation Diagram System object with the reference constellation
determined by using the constellation function of the QAM modulator.

hC = comm.ConstellationDiagram;

hC.ReferenceConstellation = constellation(hMod);

Display the last 10,000 points of the received signal from the AGC with the 30 dB
maximum gain by invoking the step function. The received constellation is well aligned
with the reference points as the AGC compensated for the signal attenuation.

hC.Title = 'Maximum Gain 30 dB';

step(hC,rxSig1(end-10000:end))

 comm.AGC System object

3-31

Display the last 10,000 points of the received signal from the AGC with the 25 dB
maximum gain. The AGC with the smaller maximum gain cannot fully compensate for
the effects of the 30 dB attenuation.

hC.Title = 'Maximum Gain 25 dB';

step(hC,rxSig2(end-10000:end))

3 Alphabetical List

3-32

Algorithms

Linear Loop AGC

In a linear loop AGC, the detector uses its output directly to generate an error signal.
After applying a step size, the AGC passes the error signal to an integrator. The output of
the integrator is used as the variable gain. Linear loop AGCs are limited by their decay,

 comm.AGC System object

3-33

or slew, characteristics. In other words, they respond to input signal increases much
more quickly than they respond to input signal decreases.

y n g n x n

e n A z m

g n g n K e n

() () ();

() ();

() () ();

= ◊

= -

+ = + ◊1

where

A represents the reference value, which is 1

K represents the step size

e represents the error signal

g represents the gain

3 Alphabetical List

3-34

x represents the input signal

y represents the output signal

z represents the detector output

Logarithmic Loop AGC

In a logarithmic loop AGC, the logarithm of the ratio of the detector output and the
reference signal represents the error signal. A logarithmic loop uses the exponential of
the integrator output as the gain signal. Logarithmic-loop AGCs have the same response
time to both increases or decreases to the input signal amplitude.

 comm.AGC System object

3-35

3 Alphabetical List

3-36

The logarithmic loop has longer attack and decay times. However, the gain pumping of
the logarithmic loop is better than the linear loop.

y n e x n

e n ln A z m

g n g n K e n

g n
() ();

() () ln(());

() () ();

()
= ◊

= -

+ = + ◊1

where

A represents the reference value, which is 1

K represents the step size

e represents the error signal

g represents the gain

x represents the input signal

y represents the output signal

z represents the detector output

AGC Detector

Two AGC detectors are available:

Rectifier type detector

z = |y| when the detector represents a rectifier

z m
N

y n
n mN

m N
() ()

()
=

=

+ -

Â
1 1 1

where N represents the update period

Square law type detector

z = |y|2 represents the square law detector

 comm.AGC System object

3-37

z m
N

y n
n mN

m N
() ()

()
=

=

+ -

Â
1 21 1

where N represents the update period

Performance Considerations

There are three performance criteria for AGCs:

• Attack time: The duration it takes the AGC to respond to an increase in the input
amplitude.

• Decay time: The duration it takes the AGC to respond to a decrease in the input
amplitude.

• Gain pumping: The variation in the gain value during steady-state operation.

Increasing the step size decreases the attack time and decay times, but it also increases
gain pumping.

See Also
AGC

3 Alphabetical List

3-38

clone
System object: comm.AGC
Package: comm

Create AGC object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates an AGC object C, with the same property values as H. The clone
method creates a new unlocked object with uninitialized states.

The clone method creates an instance of an object. The property values, but not internal
states, are copied into the new instance of the object.

 isLocked

3-39

isLocked
System object: comm.AGC
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the AGC System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

3 Alphabetical List

3-40

release
System object: comm.AGC
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 reset

3-41

reset
System object: comm.AGC
Package: comm

Reset internal states of automatic gain controller

Syntax

reset(H)

Description

reset(H) resets the filter states of the automatic gain controller filter object, H, to their
initial values.

3 Alphabetical List

3-42

step
System object: comm.AGC
Package: comm

Apply adaptive gain to input signal

Syntax

Y = step(H,X)

Description

Y = step(H,X) applies an adaptive gain to the input X, to achieve a unity signal
level at the output, Y. X must be a double or single precision column vector. The AGC
determines the output signal level based on the “DetectorMethod” setting.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

 comm.AlgebraicDeinterleaver System object

3-43

comm.AlgebraicDeinterleaver System object
Package: comm

Deinterleave input symbols using algebraically derived permutation vector

Description

The AlgebraicDeinterleaver object restores the original ordering of a sequence
that was interleaved using the AlgebraicInterleaver object. In typical usage, the
properties of the two objects have the same values.

To deinterleave input symbols using an algebraically derived permutation vector:

1 Define and set up your algebraic deinterleaver object. See “Construction” on page
3-43.

2 Call step to deinterleave the input symbols according to the properties of
comm.AlgebraicDeinterleaver. The behavior of step is specific to each object in
the toolbox.

Construction

H = comm.AlgebraicDeinterleaver creates a deinterleaver System object, H. This
object restores the original ordering of a sequence from the corresponding algebraic
interleaver object.

H = comm.AlgebraicDeinterleaver(Name,Value) creates an Algebraic
deinterleaver System object, H, with each specified property set to the specified
value. You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties

Method

Algebraic method to generate permutation vector

3 Alphabetical List

3-44

Specify the algebraic method as one of Takeshita-Costello| Welch-Costas. The
default is Takeshita-Costello. The algebraic interleaver performs all computations in
modulo N, where N equals the length you set in the “Length” property.

For the Welch-Costas method, the value of (N + 1) must be a prime number,
where N equals the value you specify in the Length property. You must set the
“PrimitiveElement” property to an integer, A, between 1 and N. This integer
represents a primitive element of the finite field GF N()+1 .

For the Takeshita-Costello method, you must set the Length property to a value
equal to 2

m , for any integer m. You must also set the “MultiplicativeFactor”
property to an odd integer that is less than the value of the Length property. The
“CyclicShift” property requires a nonnegative integer which is less than the value of
the Length property. The Takeshita-Costello interleaver method uses a cycle vector
of length N, which you specify in the Length property. The cycle vector calculation uses

the equation, mod((1) ,)+1k n
n

N¥ - ¥

2
, for any integer n, between 1 and N. The object

creates an intermediate permutation function using the relationship, P c n c n(()) = (+1) .
You can shift the elements of the intermediate permutation vector to the left by the
amount specified by the CyclicShift property. Doing so produces the interleaver's
actual permutation vector.

Length

Number of elements in input vector

Specify the number of elements in the input as a positive, integer, scalar. When you set
the “Method” property to Welch-Costas, then the value of Length+1 must equal a
prime number. When you set the Method property to Takeshita-Costello, then the
value of the Length property requires a power of two. The default is 256.

MultiplicativeFactor

Cycle vector computation factor

Specify the factor the object uses to compute the interleaver's cycle vector as a
positive, integer, scalar. This property applies when you set the “Method” property to
Takeshita-Costello. The default is 13.

CyclicShift

 comm.AlgebraicDeinterleaver System object

3-45

Amount of cyclic shift

Specify the amount by which the object shifts indices, when the object creates the final
permutation vector, as a nonnegative, integer, scalar. The default is 0. This property
applies when you set the “Method” property to Takeshita-Costello.

PrimitiveElement

Primitive element

Specify the primitive element as an element of order N in the finite field GF N()+1 .
N is the value you specify in the “Length” property. You can express every nonzero
element of GF N()+1 as the value of the PrimitiveElement property raised to some
integer power. In a Welch-Costas interleaver, the permutation maps the integer k to
mod(A ,N+1)-1k , where A represents the value of the PrimitiveElement property. This
property applies when you set the “Method” property to Welch-Costas. The default is 6.

Methods

clone
Create algebraic deinterleaver object with
same property values

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

step
Deinterleave input symbols using
algebraically derived permutation vector

3 Alphabetical List

3-46

Examples

Interleave and deinterleave data using algebraic interleaving

 hInt = comm.AlgebraicInterleaver('Length', 16);

 hDeInt = comm.AlgebraicDeinterleaver('Length', 16);

 data = randi(7, 16, 1);

 intData = step(hInt, data);

 deIntData = step(hDeInt, intData);

 [data, intData, deIntData]

ans =

 6 4 6

 7 7 7

 1 7 1

 7 7 7

 5 7 5

 1 7 1

 2 1 2

 4 6 4

 7 6 7

 7 7 7

 2 2 2

 7 2 7

 7 5 7

 4 4 4

 6 1 6

 1 1 1

Algorithms

This object implements the algorithm, inputs, and outputs described on the Algebraic
Deinterleaver block reference page. The object properties correspond to the block
parameters.

See Also
comm.AlgebraicInterleaver | comm.BlockInterleaver

 clone

3-47

clone
System object: comm.AlgebraicDeinterleaver
Package: comm

Create algebraic deinterleaver object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a AlgebraicDeinterleaver object C, with the same property
values as H. The clone method creates a new unlocked object with uninitialized states.

3 Alphabetical List

3-48

getNumInputs
System object: comm.AlgebraicDeinterleaver
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) method returns a positive integer, N, representing the number
of expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H).

 getNumOutputs

3-49

getNumOutputs
System object: comm.AlgebraicDeinterleaver
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

3 Alphabetical List

3-50

isLocked
System object: comm.AlgebraicDeinterleaver
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the AlgebraicDeinterleaver
System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

 release

3-51

release
System object: comm.AlgebraicDeinterleaver
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H)Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

3 Alphabetical List

3-52

step
System object: comm.AlgebraicDeinterleaver
Package: comm

Deinterleave input symbols using algebraically derived permutation vector

Syntax

Y = step(H,X)

Description

Y = step(H,X) restores the original ordering of the sequence, X, that was interleaved
using an algebraic interleaver. An algebraically derived permutation vector based on the
algebraic method you specify in the “Method” property forms the base of the output, Y. X
must be a column vector of length specified by the “Length” property. X can be numeric,
logical, or fixed-point (fi objects). Y has the same data type as X.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

 comm.AlgebraicInterleaver System object

3-53

comm.AlgebraicInterleaver System object

Package: comm

Permute input symbols using algebraically derived permutation vector

Description

The AlgebraicInterleaver object rearranges the elements of its input vector using an
algebraically derived permutation.

To interleave input symbols using an algebraically derived permutation vector:

1 Define and set up your algebraic interleaver object. See “Construction” on page
3-53.

2 Call step to interleave the input symbols according to the properties of
comm.AlgebraicInterleaver. The behavior of step is specific to each object in
the toolbox.

Construction

H = comm.AlgebraicInterleaver creates an interleaver System object, H, that
permutes the symbols in the input signal. This permutation is based on an algebraically
derived permutation vector.

H = comm.AlgebraicInterleaver(Name,Value) creates an algebraic
interleaver object, H, with each specified property set to the specified value.
You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties

Method

Algebraic method to generate permutation vector

3 Alphabetical List

3-54

Algebraic method to generate permutation vector

Specify the algebraic method as one of Takeshita-Costello| Welch-Costas. The
default is Takeshita-Costello. The algebraic interleaver performs all computations in
modulo N, where N is the length you set in the “Length” property.

For the Welch-Costas method, the value of (N+1) must be a prime number, where N is
the value you specify in the Length property. You must set the “PrimitiveElement”
property to an integer, A, between 1 and N. This integer represents a primitive element
of the finite field GF N()+1 .

For the Takeshita-Costello method, you must set the Length property to a value
equal to 2

m , for any integer m. You must also set the MultiplicativeFactor property
to an odd integer which is less than the value of the Length property. In addition, you
must set the “CyclicShift” property to a nonnegative integer which is less than the
value of the Length property. The Takeshita-Costello interleaver method uses a
cycle vector of length N, which you specify in the Length property. The cycle vector

calculation uses the equation, mod((1) ,)+1k n
n

N¥ - ¥

2 , for any integer n, between 1
and N. The object creates an intermediate permutation function using the relationship,
P c n c n(()) = (+1) . You can shift the elements of the intermediate permutation vector to
the left by the amount specified by the CyclicShift property. Doing so produces the
actual permutation vector of the interleaver.

Length

Number of elements in input vector

Specify the number of elements in the input as a positive, integer, scalar. When you set
the “Method” property to Welch-Costas, then the value of Length+1 must equal a
prime number. When you set the Method property to Takeshita-Costello, then the
value of the Length property requires a power of two. The default is 256.

MultiplicativeFactor

Cycle vector computation method

Specify the factor the object uses to compute the cycle vector for the interleaver as a
positive, integer, scalar. This property applies when you set the “Method” property to
Takeshita-Costello. The default is 13.

 comm.AlgebraicInterleaver System object

3-55

CyclicShift

Amount of cyclic shift

Specify the amount by which the object shifts indices, when it creates the final
permutation vector, as a nonnegative, integer, scalar. This property applies when you set
the “Method” property to Takeshita-Costello. The default is 0.

PrimitiveElement

Primitive element

Specify the primitive element as an element of order N in the finite field GF N()+1 . N is
the value you specify in the “Length” property. You can express every nonzero element of
GF N()+1 as the value of the PrimitiveElement property raised to an integer power.

In a Welch-Costas interleaver, the permutation maps the integer k to mod(A ,N+1)-1k ,
where A represents the value of the PrimitiveElement property. This property applies
when you set the “Method” property to Welch-Costas. The default is 6.

Methods

clone
Create algebraic interleaver object with
same property values

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

step
Permute input symbols using an
algebraically derived permutation vector

3 Alphabetical List

3-56

Examples

Interleave and deinterleave data using algebraic interleaving

 hInt = comm.AlgebraicInterleaver('Length', 16);

 hDeInt = comm.AlgebraicDeinterleaver('Length', 16);

 data = randi(7, 16, 1);

 intData = step(hInt, data);

 deIntData = step(hDeInt, intData);

 [data, intData, deIntData]

ans =

 6 4 6

 7 7 7

 1 7 1

 7 7 7

 5 7 5

 1 7 1

 2 1 2

 4 6 4

 7 6 7

 7 7 7

 2 2 2

 7 2 7

 7 5 7

 4 4 4

 6 1 6

 1 1 1

Algorithms

This object implements the algorithm, inputs, and outputs described on the Algebraic
Interleaver block reference page. The object properties correspond to the block
parameters.

See Also
comm.AlgebraicDeinterleaver

 clone

3-57

clone
System object: comm.AlgebraicInterleaver
Package: comm

Create algebraic interleaver object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a AlgebraicInterleaver object C, with the same property
values as H. The clone method creates a new unlocked object with uninitialized states.

3 Alphabetical List

3-58

getNumInputs
System object: comm.AlgebraicInterleaver
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) method returns a positive integer, N, representing the number
of expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H).

 getNumOutputs

3-59

getNumOutputs
System object: comm.AlgebraicInterleaver
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

3 Alphabetical List

3-60

isLocked
System object: comm.AlgebraicInterleaver
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the AlgebraicInterleaver
System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

 release

3-61

release
System object: comm.AlgebraicInterleaver
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H)Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

3 Alphabetical List

3-62

step
System object: comm.AlgebraicInterleaver
Package: comm

Permute input symbols using an algebraically derived permutation vector

Syntax

Y = step(H,X)

Description

Y = step(H,X) permutes input sequence, X, and returns interleaved sequence, Y. The
object uses an algebraically derived permutation vector, based on the algebraic method
you specify in the “Method” property, to form the output. The input X must be a column
vector of length specified by the “Length” property. X can be numeric, logical, or fixed-
point (fi objects). Y has the same data type as X.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

 comm.APPDecoder System object

3-63

comm.APPDecoder System object
Package: comm

Decode convolutional code using the a posteriori probability method

Description

The APPDecoder object performs a posteriori probability (APP) decoding of a
convolutional code.

To perform a posteriori probability (APP) decoding of a convolutional code:

1 Define and set up your a posteriori probability decoder object. See “Construction” on
page 3-63.

2 Call step to perform APP decoding according to the properties of
comm.APPDecoder. The behavior of step is specific to each object in the toolbox.

Construction

H = comm.APPDecoder creates an a posteriori probability (APP) decoder System object,
H, that decodes a convolutional code using the APP method.

H = comm.APPDecoder(Name,Value) creates an APP decoder object, H, with each
specified property set to the specified value. You can specify additional name-value pair
arguments in any order as (Name1,Value1,...,NameN,ValueN).

H = comm.APPDecoder(TRELLIS,Name,Value) creates an APP decoder object, H,
with the TrellisStructure property set to TRELLIS, and the other specified properties
set to the specified values.

Properties

TrellisStructure

Trellis structure of convolutional code

3 Alphabetical List

3-64

Specify trellis as a MATLAB structure that contains the trellis description of the
convolutional code. The default is the result of poly2trellis(7, [171 133], 171).
Use the istrellis function to check if a structure is a valid trellis structure.

TerminationMethod

Termination method of encoded frame

Specify how the encoded frame is terminated as one of Truncated | Terminated. The
default is Truncated. When you set this property to Truncated, the object assumes
that the encoder stops after encoding the last symbol in the input frame. When you
set this property to Terminated the object assumes that the encoder forces the trellis
to end each frame in the all-zeros state by encoding additional symbols. If you use the
comm.ConvolutionalEncoder System object to generate the encoded frame, the
TerminationMethod values of both encoder and decoder objects must match.

Algorithm

Decoding algorithm

Specify the decoding algorithm that the object uses as one of True APP | Max* | Max.
The default is Max*. When you set this property to True APP, the object implements
true a posteriori probability decoding. When you set the property to any other value, the
object uses approximations to increase the speed of the computations.

NumScalingBits

Number of scaling bits

Specify the number of bits the decoder uses to scale the input data to avoid losing
precision during the computations. The default is 3. The decoder multiplies the input
by 2NumScalingBits and divides the pre-output by the same factor. This property must be
a scalar integer between 0 and 8. This property applies when you set the Algorithm
property to Max*.

CodedBitLLROutputPort

Enable coded-bit LLR output

Set this property to false to disable the second output of the decoding step method. The
default is true.

 comm.APPDecoder System object

3-65

Methods

clone
Create APP decoder object with same
property values with same property values

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

reset
Reset states of APP decoder object

step
Decode convolutional code using the a
posteriori probability method

Examples

Transmit a convolutionally encoded 8-PSK-modulated bit stream through an AWGN channel,
then demodulate, decode using an APP decoder, and count errors.

1 Create the Convolutional encoder, PSK Modulator, and AWGN Channel System
objects.

noiseVar = 2e-1;

frameLength = 300;

hConEnc = comm.ConvolutionalEncoder('TerminationMethod','Truncated');

hMod = comm.PSKModulator('BitInput',true, 'PhaseOffset',0);

hChan = comm.AWGNChannel('NoiseMethod', 'Variance', ...

 'Variance',noiseVar);

2 Demodulate using soft-decision decoding.

 hDemod = comm.PSKDemodulator('BitOutput',true, 'PhaseOffset',0, ...

3 Alphabetical List

3-66

 'DecisionMethod', 'Approximate log-likelihood ratio', ...

 'Variance', noiseVar);

 hAPPDec = comm.APPDecoder(...

 'TrellisStructure', poly2trellis(7, [171 133]), ...

 'Algorithm', 'True APP', 'CodedBitLLROutputPort', false);

 hError = comm.ErrorRate;

3 Decode the convolutionally encoded data. Then, convert from soft-decision to hard-
decision.

for counter = 1:5

 data = randi([0 1],frameLength,1);

 encodedData = step(hConEnc, data);

 modSignal = step(hMod, encodedData);

 receivedSignal = step(hChan, modSignal);

 demodSignal = step(hDemod, receivedSignal);

receivedSoftBits = step(hAPPDec, zeros(frameLength,1), -demodSignal)

receivedBits = double(receivedSoftBits > 0);

 errorStats = step(hError, data, receivedBits);

end

The APP decoder assumes a polarization of the soft inputs that is inverse to that of
the demodulator soft outputs. Therefore, you must change the sign of demodulated
signal, demodSignal.

4 Display the error rate information.

fprintf('Error rate = %f\nNumber of errors = %d\n', ...

 errorStats(1), errorStats(2))

Algorithms

This object implements the algorithm, inputs, and outputs described on the APP Decoder
block reference page. The object properties correspond to the block parameters.

See Also
comm.ViterbiDecoder | comm.ConvolutionalEncoder | poly2trellis

 clone

3-67

clone
System object: comm.APPDecoder
Package: comm

Create APP decoder object with same property values with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a APPDecoder object C, with the same property values as H. The
clone method creates a new unlocked object with uninitialized states.

3 Alphabetical List

3-68

getNumInputs
System object: comm.APPDecoder
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of
expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H)

 getNumOutputs

3-69

getNumOutputs
System object: comm.APPDecoder
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

3 Alphabetical List

3-70

isLocked
System object: comm.APPDecoder
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the APPDecoder System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

 release

3-71

release
System object: comm.APPDecoder
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H)Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

3 Alphabetical List

3-72

reset
System object: comm.APPDecoder
Package: comm

Reset states of APP decoder object

Syntax

reset(H)

Description

reset(H) resets the states of the APPDecoder object, H.

 step

3-73

step
System object: comm.APPDecoder
Package: comm

Decode convolutional code using the a posteriori probability method

Syntax

[LUD,LCD] = step(H,LU,LC)

Description

[LUD,LCD] = step(H,LU,LC) performs APP decoding. The input LU is the sequence of
log-likelihoods of encoder input data bits. The input LC is the sequence of log-likelihoods
of encoded bits. Negative soft inputs are considered to be zeros and positive soft inputs
are considered to be ones. The outputs, LUD and LCD, are updated versions of the input
LU and LC sequences and are obtained based on information about the encoder. The
inputs must be of the same data type, which can be double or single precision. The output
data type is the same as the input data type. If the convolutional code uses an alphabet of
2^N symbols, the LC and LCD vector lengths are multiples of N. If the decoded data uses
an alphabet of 2^K output symbols, the LU and LUD vector lengths are multiples of K.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

3 Alphabetical List

3-74

comm.AWGNChannel System object
Package: comm

Add white Gaussian noise to input signal

Description

The AWGNChannel object adds white Gaussian noise to a real or complex input signal.
When the input uses a real-valued signal, this object adds real Gaussian noise and
produces a real output signal. When the input uses a complex signal, this object adds
complex Gaussian noise and produces a complex output signal.

When the inputs to the object have a variable number of channels, the “EbNo”, “EsNo”,
“SNR”, “BitsPerSymbol”, “SignalPower”, “SamplesPerSymbol”, and “Variance”
properties must be scalars, when applicable.

To add white Gaussian noise to an input signal:

1 Define and set up your additive white Gaussian noise channel object. See
“Construction” on page 3-74.

2 Call step to add white Gaussian noise to the input signal according to the properties
of comm.AWGNChannel. The behavior of step is specific to each object in the toolbox.

Construction

H = comm.AWGNChannel creates an additive white Gaussian noise (AWGN) channel
System object, H. This object then adds white Gaussian noise to a real or complex input
signal.

H = comm.AWGNChannel(Name,Value) creates an AWGN channel object, H, with each
specified property set to the specified value. You can specify additional name-value pair
arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties

NoiseMethod

 comm.AWGNChannel System object

3-75

Method to specify noise level

Select the method to specify the noise level as one of Signal to noise ratio (Eb/
No) | Signal to noise ratio (Es/No)| Signal to noise ratio (SNR) |
Variance. The default is Signal to noise ratio (Eb/No).

EbNo

Energy per bit to noise power spectral density ratio (Eb/No)

Specify the Eb/No ratio in decibels. You can set this property to a numeric, real scalar or
row vector with a length equal to the number of channels. This property applies when
you set the “NoiseMethod” property to Signal to noise ratio (Eb/No). The
default is 10. This property is tunable.

EsNo

Energy per symbol to noise power spectral density ratio (Es/No)

Specify the Es/No ratio in decibels. You can set this property to a numeric, real scalar or
row vector with a length equal to the number of channels. This property applies when
you set the “NoiseMethod” property to Signal to noise ratio (Es/No). The
default is 10. This property is tunable.

SNR

Signal to noise ratio (SNR)

Specify the SNR value in decibels. You can set this property to a numeric, real scalar or
row vector with a length equal to the number of channels. This property applies when
you set the “NoiseMethod” property to Signal to noise ratio (SNR). The default
is 10. This property is tunable.

BitsPerSymbol

Number of bits in one symbol

Specify the number of bits in each input symbol. You can set this property to a numeric,
positive, integer scalar or row vector with a length equal to the number of channels.
This property applies when you set the “NoiseMethod” property to Signal to noise
ratio (Eb/No). The default is 1 bit.

SignalPower

Input signal power in Watts

3 Alphabetical List

3-76

Specify the mean square power of the input signal in Watts. You can set this property
to a numeric, positive, real scalar or row vector with a length equal to the number of
channels. This property applies when you set the “NoiseMethod” property to Signal to
noise ratio (Eb/No), Signal to noise ratio (Es/No), or Signal to noise
ratio (SNR). The default is 1. The object assumes a nominal impedance of 1 Ω. This
property is tunable.

SamplesPerSymbol

Number of samples per symbol

Specify the number of samples per symbol. You can set this property to a numeric,
positive, integer scalar or row vector with a length equal to the number of channels.
This property applies when you set the “NoiseMethod” property to Signal to noise
ratio (Eb/No) or Signal to noise ratio (Es/No). The default is 1.

VarianceSource

Source of noise variance

Specify the source of the noise variance as one of Property | Input port. The default
is Property. Set this property to Input port to specify the noise variance value
using an input to the step method. Set this property to Property to specify the noise
variance value using the “Variance” property. This property applies when you set the
“NoiseMethod” property to Variance.

Variance

Noise variance

Specify the variance of the white Gaussian noise. You can set this property to a numeric,
positive, real scalar or row vector with a length equal to the number of channels. This
property applies when you set the “NoiseMethod” property to Variance and the
“VarianceSource” property to Property. The default is 1. This property is tunable.

RandomStream

Source of random number stream

Specify the source of random number stream as one of Global stream | mt19937ar
with seed. The default value of this property is Global stream.

When you set this property to Global stream, the object uses the current global
random number stream for normally distributed random number generation.

 comm.AWGNChannel System object

3-77

When you set this property to mt19937ar with seed, the object uses the mt19937ar
algorithm for normally distributed random number generation. In this scenario, when
you call the reset method, the object re-initializes the random number stream to the
value of the Seed property.

Seed

Initial seed of mt19937ar random number stream

Specify the initial seed of a mt19937ar random number generator algorithm as a double-
precision, real, nonnegative integer scalar. The default value of this property is 67.

This property applies when you set the “RandomStream” property to mt19937ar with
seed. For each call to the reset method, the object re-initialize the mt19937ar random
number stream to the Seed value.

Methods

clone
Create AWGN channel object with same
property values

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

reset
Reset states of the AWGNChannel System
object

step
Add white Gaussian noise to input signal

3 Alphabetical List

3-78

Examples

Add White Gaussian Noise to An 8-PSK Signal

Modulate an 8-PSK signal, add white Gaussian noise, and plot the signal to observe the
effects of noise.

Create a PSK Modulator System object™. The default modulation order for the PSK
modulator object is 8.

hMod = comm.PSKModulator;

Modulate the signal by calling the step function of the PSK modulator.

modData = step(hMod,randi([0 7],2000,1));

Add white Gaussian noise to the modulated signal by passing the signal through an
AWGN channel.

hAWGN = comm.AWGNChannel('EbNo',20,'BitsPerSymbol',3);

Transmit the signal through the AWGN channel by calling the step function of the
AWGN channel.

channelOutput = step(hAWGN,modData);

Plot the noiseless and noisy data using scatter plots to observe the effects of noise.

scatterplot(modData)

scatterplot(channelOutput)

 comm.AWGNChannel System object

3-79

3 Alphabetical List

3-80

Change the EbNo property to 10 dB to increase the noise.

hAWGN.EbNo = 10;

Pass the modulated data through the AWGN channel by calling its step method.

 comm.AWGNChannel System object

3-81

channelOutput = step(hAWGN,modData);

Plot the channel output. You can see the effects of increased noise.

scatterplot(channelOutput)

3 Alphabetical List

3-82

Process Signals When the Number of Channels is Changed

Pass a single and multichannel signal through an AWGN channel System object™.

 comm.AWGNChannel System object

3-83

Create an AWGN channel System object with the Eb/No ratio set for a single channel
input. In this case, the EbNo property is specified as a scalar.

h = comm.AWGNChannel('EbNo',15);

Generate random data and apply QPSK modulation.

data = randi([0 3],1000,1);

modData = pskmod(data,4,pi/4);

Pass the modulated data through the AWGN channel object using the step function.

rxSig = step(h,modData);

Plot the noisy constellation.

scatterplot(rxSig)

3 Alphabetical List

3-84

Generate two-channel input data and apply QPSK modulation.

data = randi([0 3],2000,2);

modData = pskmod(data,4,pi/4);

 comm.AWGNChannel System object

3-85

Pass the modulated data through the AWGN channel object using the step function.

rxSig = step(h,modData);

Plot the noisy constellations. Each channel is represented as a single column in rxSig.
The plots are nearly identical since the same Eb/No value is applied to both channels.

scatterplot(rxSig(:,1))

title('First Channel')

scatterplot(rxSig(:,2))

title('Second Channel')

3 Alphabetical List

3-86

 comm.AWGNChannel System object

3-87

Modify the AWGN channel object to apply a different Eb/No value to each channel. This
is done by setting the EbNo property to a 1-by-2 vector.

h.EbNo = [10 20];

3 Alphabetical List

3-88

Release the AWGN channel object. This is necessary because the EbNo property must be
a scalar if the number of input channels is changed.

release(h)

Pass the data through the AWGN channel.

rxSig = step(h,modData);

Plot the noisy constellations. There is significantly more noise on the first channel due to
its lower Eb/No value.

scatterplot(rxSig(:,1))

title('First Channel')

scatterplot(rxSig(:,2))

title('Second Channel')

 comm.AWGNChannel System object

3-89

3 Alphabetical List

3-90

Add AWGN Using Noise Variance Input Port

This example shows the noise variance input as a scalar or a row vector, with a length
equal to the number of channels of the current signal input.

 comm.AWGNChannel System object

3-91

Create an AWGN Channel System object™ with the NoiseMethod property set to
Variance and the VarianceSource property set to Input port.

h = comm.AWGNChannel('NoiseMethod','Variance', ...

'VarianceSource','Input port');

Generate random data for two channels and apply 16-QAM modulation.

data = randi([0 15],10000,2);

txSig = qammod(data,16);

Pass the modulated data through the AWGN channel by calling the step function. The
AWGN channel object processes data from two channels. The variance input is a 1-by-2
vector.

rxSig = step(h,txSig,[0.01 0.1]);

Plot the constellation diagrams for the two channels. The second signal is noisier as its
variance is ten times larger.

scatterplot(rxSig(:,1))

scatterplot(rxSig(:,2))

3 Alphabetical List

3-92

 comm.AWGNChannel System object

3-93

Repeat the process where the noise variance input is a scalar. The same variance is
applied to both channels. Observe that the constellation diagrams are nearly identical.

rxSig = step(h,txSig,0.2);

scatterplot(rxSig(:,1))

3 Alphabetical List

3-94

scatterplot(rxSig(:,2))

 comm.AWGNChannel System object

3-95

Set Random Number Seed for Repeatability

This example shows how to produce the same outputs when using a random stream in
which you specify the seed.

3 Alphabetical List

3-96

Create an AWGN Channel System object™. Set the NoiseMethod property to
Variance, the RandomStream property to mt19937ar with seed, and the Seed
property to 99.

h = comm.AWGNChannel(...

 'NoiseMethod','Variance', ...

 'RandomStream','mt19937ar with seed', ...

 'Seed',99);

Pass data through the AWGN channel by calling the step function.

y1 = step(h,zeros(8,1));

Reset the AWGN channel object by calling the reset method. This resets the random
data stream to the initial seed of 99.

reset(h);

Process the same data by calling the step function.

y2 = step(h,zeros(8,1));

Compare the two signals.

[y1 y2]

ans =

 0.6762 0.6762

 -0.0536 -0.0536

 1.2949 1.2949

 -1.7988 -1.7988

 0.6081 0.6081

 0.4131 0.4131

 -0.6775 -0.6775

 -1.4166 -1.4166

Algorithms

This object implements the algorithm, inputs, and outputs described on the AWGN
Channel block reference page. The object properties correspond to the block parameters,
except for:

 comm.AWGNChannel System object

3-97

• The block uses a random number generator based on the V5 RANDN (Ziggurat)
algorithm and an initial seed, set with the Initial seed parameter to initialize the
random number generator. Every time the system that contains the block is run, the
block generates the same sequence of random numbers. Similarly, on the object, when
you set the RandomStream property to mt19937ar with seed, you can generate
reproducible numbers by resetting the object.

When you set the RandomStream property to Global stream, this object uses
the MATLAB default random stream to generate random numbers. To generate
reproducible numbers using this object, you can reset the MATLAB default random
stream using the following code.

reset(RandStream.getGlobalStream)

For more information, see help for RandStream.
• Sometimes, the input to the step method is complex. In such cases, if you try to

match the block and object’s random generator and seed by setting the random
stream of MATLAB, the random numbers do not appear in the same order.

The object creates the random data as follows:
noise = randn(lengthInput,1) + 1i ¥ randn(lengthInput,1)

The block creates random data as follows:
randData = randn(2 ¥ lengthInput,1)
noise = randData(1:2:end) + 1i ¥ randData(2:2:end)

• The Symbol period block parameter corresponds to the “SamplesPerSymbol”
property.

• The Variance from mask and Variance from port block parameter options of the
Mode parameter correspond to the “VarianceSource” property.

See Also
comm.BinarySymmetricChannel

3 Alphabetical List

3-98

clone
System object: comm.AWGNChannel
Package: comm

Create AWGN channel object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a AWGNChannel object C, with the same property values as H.
The clone method creates a new unlocked object with uninitialized states.

 getNumInputs

3-99

getNumInputs
System object: comm.AWGNChannel
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of
expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H)

3 Alphabetical List

3-100

getNumOutputs
System object: comm.AWGNChannel
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn outputs on or off are changed.

 isLocked

3-101

isLocked
System object: comm.AWGNChannel
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the AWGNChannel System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

3 Alphabetical List

3-102

release
System object: comm.AWGNChannel
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H)Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 reset

3-103

reset
System object: comm.AWGNChannel
Package: comm

Reset states of the AWGNChannel System object

Syntax

reset(H)

Description

reset(H) resets the states of the AWGNChannel object, H.

If you set the “RandomStream” property of H to Global stream, the reset method
only resets the filters. If you set RandomStream to mt19937ar with seed, the reset
method not only resets the filters but also reinitializes the random number stream to the
value of the “Seed” property.

3 Alphabetical List

3-104

step
System object: comm.AWGNChannel
Package: comm

Add white Gaussian noise to input signal

Syntax

Y = step(H,X)

Y = step(H,X,VAR)

Description

Y = step(H,X) adds white Gaussian noise to input X and returns the result in Y.
Depending on the value of the FrameBasedProcessing property, input X can be a
double or single precision data type scalar, vector, or matrix with real or complex values..

Y = step(H,X,VAR) uses input VAR as the variance of the white Gaussian noise. This
applies when you set the NoiseMethod property to Variance and the VarianceSource
property to Input port. Input VAR can be a numeric, positive scalar or row vector with
a length equal to the number of channels.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

 comm.BarkerCode System object

3-105

comm.BarkerCode System object
Package: comm

Generate Barker code

Description

The BarkerCode object generates Barker codes to perform synchronization. Barker codes
are subsets of PN sequences. They are short codes, with a length at most 13, which have
low-correlation sidelobes. A correlation sidelobe is the correlation of a codeword with a
time-shifted version of itself.

To synchronize using a Barker code:

1 Define and set up your Barker code object. See “Construction” on page 3-105.
2 Call step to synchronize according to the properties of comm.BarkerCode. The

behavior of step is specific to each object in the toolbox.

Construction

H = comm.BarkerCode creates a Barker code generator System object, H, that
generates a Barker code of a specified length.

H = comm.BarkerCode(Name,Value) creates a Barker code generator object, H, with
each specified property set to the specified value. You can specify additional name-value
pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties

Length

Length of generated code

Specify the length of the Barker code as a numeric, integer scalar in the set {1, 2, 3,
4, 5, 7, 11, 13}. The default is 7. The codes that the object generates for a specified
length are listed in the following table:

3 Alphabetical List

3-106

Length Barker code

1 [-1]

2 [-1 1]

3 [-1 -1 1]

4 [-1 -1 1 -1]

5 [-1 -1 -1 1 -1]

7 [-1 -1 -1 1 1 -1 1]

11 [-1 -1 -1 1 1 1 -1 1 1 -1 1]

13 [-1 -1 -1 -1 -1 1 1 -1 -1 1 -1 1 -1]

SamplesPerFrame

Number of output samples per frame

Specify the number of Barker code samples that the step method outputs as a numeric,
integer scalar. The default is 1. If you set this property to a value of M, then the step
method outputs M samples of a Barker code sequence of length N. N represents the
length of the code that you specify in the “Length” property.

OutputDataType

Data type of output

Specify the output data type as one of double | int8. The default is double.

Methods

clone
Create Barker code generator object with
same property values

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

 comm.BarkerCode System object

3-107

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

reset
Reset states of Barker code generator object

step
Generate Barker code

Examples

Generate 10 samples of a Barker code sequence with length 7

 hBCode = comm.BarkerCode('SamplesPerFrame', 10);

 seq = step(hBCode)

seq =

 -1

 -1

 -1

 1

 1

 -1

 1

 -1

 -1

 -1

Algorithms

This object implements the algorithm, inputs, and outputs described on the Barker
Code Generator block reference page. The object properties correspond to the block
parameters, except:

3 Alphabetical List

3-108

• The block Sample time parameter does not have a corresponding property.
• The object only implements frame based outputs.

See Also
comm.OVSFCode | comm.HadamardCode

 clone

3-109

clone
System object: comm.BarkerCode
Package: comm

Create Barker code generator object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a BarkerCode object C, with the same property values as H. The
clone method creates a new unlocked object with uninitialized states.

3 Alphabetical List

3-110

getNumInputs
System object: comm.BarkerCode
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of
expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H)

 getNumOutputs

3-111

getNumOutputs
System object: comm.BarkerCode
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

3 Alphabetical List

3-112

isLocked
System object: comm.BarkerCode
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the BarkerCode System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

 release

3-113

release
System object: comm.BarkerCode
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H)Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

3 Alphabetical List

3-114

reset
System object: comm.BarkerCode
Package: comm

Reset states of Barker code generator object

Syntax

reset(H)

Description

reset(H) resets the states of the BarkerCode object, H.

 step

3-115

step
System object: comm.BarkerCode
Package: comm

Generate Barker code

Syntax

Y = step(H)

Description

Y = step(H) outputs a frame of the Barker code in column vector Y. You specify the
frame length with the SamplesPerFrame property. The output code is in a bi-polar
format with 0 and 1 mapped to 1 and -1, respectively.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

3 Alphabetical List

3-116

comm.BCHDecoder System object
Package: comm

Decode data using BCH decoder

Description

The BCHDecoder object recovers a binary message vector from a binary BCH codeword
vector. For proper decoding, the codeword and message length values in this object must
match the properties in the corresponding BCH Encoder block.

To decode a binary message from a BCH codeword:

1 Define and set up your BCH decoder object. See “Construction” on page 3-116.
2 Call step to recover a binary message vector from a binary BCH codeword vector

according to the properties of comm.BCHDecoder. The behavior of step is specific to
each object in the toolbox.

Construction

H = comm.BCHDecoder creates a BCH decoder System object, H, that performs BCH
decoding.

H = comm.BCHDecoder(Name,Value) creates a BCH decoder object, H, with each
specified property set to the specified value. You can specify additional name-value pair
arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties

CodewordLength

Codeword length

Specify the codeword length of the BCH code as a double-precision, positive, integer
scalar. The default is 15. The values of the CodewordLength and “MessageLength”

 comm.BCHDecoder System object

3-117

properties must produce a valid narrow-sense BCH code. For a full-length BCH code
the value of the this property must take the form 2 1

M
-

.M is an integer, 3 16£ £M ,
that corresponds to the degree of the primitive polynomial that you specify with
“PrimitivePolynomialSource” and “PrimitivePolynomial”. If the this property is
less than 2 1

M
-

, the object assumes a shortened code.

MessageLength

Message length

Specify the message length as a double-precision, positive, integer scalar. The default is
5. The values of the “CodewordLength” and MessageLength properties must produce a
valid narrow-sense BCH code.

PrimitivePolynomialSource

Source of primitive polynomial

Specify the source of the primitive polynomial as one of Auto | Property. The
default is Auto. When you set this property to Auto, the object uses a primitive
polynomial of degree M=ceil(log2(“CodewordLength”+1)). The result of
fliplr(de2bi(primpoly(M))), sets the value for this polynomial. Set this property to
Property to specify a polynomial using the “PrimitivePolynomial” property.

PrimitivePolynomial

Primitive polynomial

Specify the primitive polynomial of order M, that defines the finite Galois
field GF(2) as a double-precision, binary row vector with the coefficients of the
polynomial in order of descending powers. This property applies when you set
the “PrimitivePolynomialSource” property to Property. The default is
fliplr(de2bi(primpoly(4))) = [1 0 0 1 1], which corresponds to the
polynomial x x

4
1+ + .

GeneratorPolynomialSource

Source of generator polynomial

Specify the source of the generator polynomial as one of Auto | Property. The
default is Auto. When you set this property to Auto, the object chooses the generator

3 Alphabetical List

3-118

polynomial automatically. The object calculates the generator polynomial based
on the value of the “PrimitivePolynomialSource” property. When you set the
PrimitivePolynomialSource property to Auto the object calculates the generator
polynomial as bchgenpoly(“CodewordLength”+SL,“MessageLength”+SL). When
you set the PrimitivePolynomialSource property to Property, the object computes
generator polynomial as bchgenpoly(CodewordLength+SL,MessageLength+SL,
“PrimitivePolynomial”). In both cases, SL = (2 1

M
-

)-CodewordLength is the
shortened length. and M is the degree of the primitive polynomial that you specify
with PrimitivePolynomialSource and PrimitivePolynomial. Set this property
to Property to specify a generator polynomial using the “GeneratorPolynomial”
property.

GeneratorPolynomial

Generator polynomial

Specify the generator polynomial as a binary, double-precision, row vector or as a binary
Galois field row vector that represents the coefficients of the generator polynomial in
order of descending powers. You must use “CodewordLength”–“MessageLength”+1
as the length of the generator polynomial. This property applies when you set the
“GeneratorPolynomialSource” property to Property. The default is the result of
bchgenpoly((15,5,[],'double')), which corresponds to a 15,5 code.

When you use this object to generate code, you must set the generator polynomial to a
binary, double precision row vector.

CheckGeneratorPolynomial

Enable generator polynomial checking

Set this property to true to perform a generator polynomial check the first time you
call the step method. The default is true. This check verifies that x“CodewordLength” +
1 is divisible by the generator polynomial specified in the “GeneratorPolynomial”
property. For larger codes, disabling the check reduces processing time. As a best
practice, perform the check at least once before setting this property to false. This
property applies when you set the “GeneratorPolynomialSource” property to
Property.

PuncturePatternSource

Source of puncture pattern

 comm.BCHDecoder System object

3-119

Specify the source of the puncture pattern as one of None | Property. The default is
None. Set this property to None to disable puncturing. Set this property to Property
to decode punctured codewords based on a puncture pattern vector you specify in the
“PuncturePattern” property.

PuncturePattern

Puncture pattern vector

Specify the pattern that the object uses to puncture the encoded data as a double-
precision, binary, column vector of length “CodewordLength”-“MessageLength”.
Zeros in the puncture pattern vector indicate the position of the parity bits that the
object punctures or excludes from each codeword. This property applies when you set
the “PuncturePatternSource” property to Property. The default is [ones(8,1);
zeros(2,1)].

ErasuresInputPort

Enable erasures input

Set this property to true to specify a vector of erasures as a step method input. The
default is false. The erasures vector is a double-precision or logical, binary, column
vector that indicates which bits of the input codewords to erase or ignore. The length
of the vector must equal the encoded data input, (that is, the length must be an integer
multiple of (“CodewordLength” – number of punctures)). Values of 1 in the erasures
vector correspond to erased bits in the same position of the (possibly punctured) input
codewords. Set the this property to false to disable erasures.

NumCorrectedErrorsOutputPort

Output number of corrected errors

Set this property to true so that the step method outputs the number of corrected
errors. The default is true.

Methods

clone
Create BCH decoder object with same
property values

3 Alphabetical List

3-120

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

step
Decode data using a BCH decoder

Examples

Transmit and decode a BCH signal, then count errors

% The following code transmits a BCH-encoded, 8-DPSK-modulated bit stream

% through an AWGN channel. Then, the example demodulates, decodes, and counts errors.

 hEnc = comm.BCHEncoder;

 hMod = comm.DPSKModulator('BitInput',true);

 hChan = comm.AWGNChannel(...

 'NoiseMethod','Signal to noise ratio (SNR)','SNR',10);

 hDemod = comm.DPSKDemodulator('BitOutput',true);

 hDec = comm.BCHDecoder;

 hError = comm.ErrorRate('ComputationDelay',3);

 for counter = 1:20

 data = randi([0 1], 30, 1);

 encodedData = step(hEnc, data);

 modSignal = step(hMod, encodedData);

 receivedSignal = step(hChan, modSignal);

 demodSignal = step(hDemod, receivedSignal);

 receivedBits = step(hDec, demodSignal);

 errorStats = step(hError, data, receivedBits);

 end

 fprintf('Error rate = %f\nNumber of errors = %d\n', ...

 errorStats(1), errorStats(2))

 comm.BCHDecoder System object

3-121

Error rate = 0.015075

Number of errors = 9

Algorithms

This object implements the algorithm, inputs, and outputs described on the BCH Decoder
block reference. The object properties correspond to the block parameters.

See Also
comm.RSDecoder | comm.BCHEncoder

3 Alphabetical List

3-122

clone
System object: comm.BCHDecoder
Package: comm

Create BCH decoder object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a BCHDecoder object C, with the same property values as H. The
clone method creates a new unlocked object with uninitialized states.

 getNumInputs

3-123

getNumInputs
System object: comm.BCHDecoder
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of
expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H)

3 Alphabetical List

3-124

getNumOutputs
System object: comm.BCHDecoder
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

 isLocked

3-125

isLocked
System object: comm.BCHDecoder
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the BCHDecoder System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

3 Alphabetical List

3-126

release
System object: comm.BCHDecoder
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H)Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 step

3-127

step
System object: comm.BCHDecoder
Package: comm

Decode data using a BCH decoder

Syntax

Y = step(H,X)

[Y,ERR] = step(H,X)

Y = step(H,X,ERASURES)

Description

Y = step(H,X) decodes input binary codewords in X using a
(CodewordLength,MessageLength) BCH decoder with the corresponding narrow-sense
generator polynomial. The step method returns the estimated message in Y. This syntax
applies when you set the NumCorrectedErrorsOutputPort property to false. The
input X must be a numeric or logical column vector. X must have an integer multiple of
(CodewordLength - number of punctures) elements. Specify the number of punctures
with the PuncturePatternSource and PuncturePattern properties. Each group of
(CodewordLength - number of punctures) input elements represents one codeword to
be decoded. The length of the output decoded data vector, Y, is an integer multiple of the
message length specified in the MessageLength property.

[Y,ERR] = step(H,X) returns the number of corrected errors in output ERR when you
set the NumCorrectedErrorsOutputPort property to true. A non- negative value in
the ith element of the ERR output vector denotes the number of corrected errors in the
i-th input codeword. A value of -1 in the i-th element of the ERR output indicates that
a decoding error occurred for the ith input codeword. A decoding error occurs when an
input codeword has more errors than the error correction capability of the BCH code.

Y = step(H,X,ERASURES) uses ERASURES as the erasures pattern input when you
set the ErasuresInputPort property to true. The object decodes the binary encoded
data input, X, and treats as erasures the bits of the input codewords specified by the
binary column vector, ERASURES. The length of ERASURES must equal the length of

3 Alphabetical List

3-128

X, and its elements must be of data type double or logical. Values of 1 in the erasures
vector correspond to erased bits in the same position of the (possibly punctured) input
codewords.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

 comm.BCHEncoder System object

3-129

comm.BCHEncoder System object
Package: comm

Encode data using BCH encoder

Description

The BCHEncoder object creates a BCH code with specified message and codeword
lengths.

To encode data using a BCH coding scheme:

1 Define and set up your BCH decoder object. See “Construction” on page 3-129.
2 Call step to create a BCH code with message and codeword lengths specified

according to the properties of comm.BCHEncoder. The behavior of step is specific to
each object in the toolbox.

Construction

H = comm.BCHEncoder creates a BCH encoder System object, H, that performs BCH
encoding.

H = comm.BCHEncoder(Name,Value) creates a BCH encoder object, H, with each
specified property set to the specified value. You can specify additional name-value pair
arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties

CodewordLength

Codeword length

Specify the codeword length of the BCH code as a double-precision, positive, integer
scalar. The default is 15. The values of the CodewordLength and “MessageLength”
properties, must produce a valid narrow-sense BCH code. For a full-length BCH code the

3 Alphabetical List

3-130

value of the this property must use the form 2 1
M

-
. In this case, M is an integer, and

3 16£ £M corresponds to the degree of the primitive polynomial that you specify with
the “PrimitivePolynomialSource” and “PrimitivePolynomial” properties. If the
this property is less than 2 1

M
-

, the object assumes a shortened code form.

MessageLength

Message length

Specify the message length as a double-precision, positive, integer scalar. The values of
the “CodewordLength” and MessageLength properties must produce a valid narrow-
sense BCH code. The default is 5.

PrimitivePolynomialSource

Source of primitive polynomial

Specify the source of the primitive polynomial as one of Auto | Property. The
default is Auto. When you set this property to Auto, the object uses a primitive
polynomial of degree M=ceil(log2(“CodewordLength”+1)). The result of
fliplr(de2bi(primpoly(M))) sets the value for this polynomial. Set this property to
Property to specify a polynomial using the “PrimitivePolynomial” property.

PrimitivePolynomial

Primitive polynomial

Specify the primitive polynomial of order M, that defines the finite Galois field
GF(2). Use a double-precision, binary row vector with the coefficients of the
polynomial in order of descending powers. This property applies when you set
the “PrimitivePolynomialSource” property to Property. The default is
fliplr(de2bi(primpoly(4))) = [1 0 0 1 1], which corresponds to the
polynomial x x

4
1+ + .

GeneratorPolynomialSource

Source of generator polynomial

Specify the source of the generator polynomial as one of Auto | Property. The
default is Auto. When you set this property to Auto, the object chooses the generator

 comm.BCHEncoder System object

3-131

polynomial automatically. The object computes the generator polynomial based
on the value of the “PrimitivePolynomialSource” property. When you set the
PrimitivePolynomialSource property to Auto the object computes the generator
polynomial as bchgenpoly(“CodewordLength”+SL,“MessageLength”+SL). When
you set the PrimitivePolynomialSource property to 'Property', the object computes
generator polynomial as bchgenpoly(CodewordLength+SL,MessageLength+SL,
“PrimitivePolynomial”). In both cases, SL = (2 1

M
-

)-CodewordLength is
the shortened length. M indicates the degree of the primitive polynomial that you
specify with the PrimitivePolynomialSource and PrimitivePolynomial
properties. Set this property to Property to specify a generator polynomial using the
“GeneratorPolynomial” property.

GeneratorPolynomial

Generator polynomial

Specify the generator polynomial for encoding as a binary, double-precision row vector or
as a binary Galois row vector that represents the coefficients of the generator polynomial
in order of descending powers. The length of the generator polynomial requires a value
of “CodewordLength”-“MessageLength”+1. This property applies when you set the
“GeneratorPolynomialSource” property to Property. The default is the result of
bchgenpoly(15,5,[],'double'), which corresponds to a (15,5) code.

CheckGeneratorPolynomial

Enable generator polynomial checking

Set this property to true to perform a generator polynomial check the first time you
call the step method. The default is true. This check verifies that x

“CodewordLength” +
1 is divisible by the generator polynomial specified in the “GeneratorPolynomial”
property. For larger codes, disabling the check reduces processing time. As a best
practice, perform the check at least once before setting this property to false. This
property applies when you set the “GeneratorPolynomialSource” property to
Property.

PuncturePatternSource

Source of puncture pattern

Specify the source of the puncture pattern as one of None | Property. The default is
None. Set this property to None, to disable puncturing. Set this property to Property

3 Alphabetical List

3-132

to decode punctured codewords. This decoding is based on a puncture pattern vector you
specify in the “PuncturePattern” property.

PuncturePattern

Puncture pattern vector

Specify the pattern that the object uses to puncture the encoded data. Use a double-
precision, binary, column vector of length “CodewordLength”-“MessageLength”.
Zeros in the puncture pattern vector indicate the position of the parity bits that the
object punctures or excludes from each codeword. This property applies when you set
the “PuncturePatternSource” property to Property. The default is [ones(8,1);
zeros(2,1)].

Methods

clone
Create BCH encoder object with same
property values

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

step
Encode data using a BCH encoder

Examples

Transmit and decode a BCH signal, then count errors

% The following code transmits a BCH-encoded, 8-DPSK-modulated bit stream

 comm.BCHEncoder System object

3-133

% through an AWGN channel. Then, the example demodulates, decodes, and counts errors.

 hEnc = comm.BCHEncoder;

 hMod = comm.DPSKModulator('BitInput',true);

 hChan = comm.AWGNChannel(...

 'NoiseMethod','Signal to noise ratio (SNR)','SNR',10);

 hDemod = comm.DPSKDemodulator('BitOutput',true);

 hDec = comm.BCHDecoder;

 hError = comm.ErrorRate('ComputationDelay',3);

 for counter = 1:20

 data = randi([0 1], 30, 1);

 encodedData = step(hEnc, data);

 modSignal = step(hMod, encodedData);

 receivedSignal = step(hChan, modSignal);

 demodSignal = step(hDemod, receivedSignal);

 receivedBits = step(hDec, demodSignal);

 errorStats = step(hError, data, receivedBits);

 end

 fprintf('Error rate = %f\nNumber of errors = %d\n', ...

 errorStats(1), errorStats(2))

Error rate = 0.015075

Number of errors = 9

Algorithms

This object implements the algorithm, inputs, and outputs described on the BCH Encoder
block reference page. The object properties correspond to the block parameters.

See Also
comm.RSEncoder | comm.BCHDecoder

3 Alphabetical List

3-134

clone
System object: comm.BCHEncoder
Package: comm

Create BCH encoder object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a BCHEncoder object C, with the same property values as H. The
clone method creates a new unlocked object with uninitialized states.

 getNumInputs

3-135

getNumInputs
System object: comm.BCHEncoder
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of
expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H)

3 Alphabetical List

3-136

getNumOutputs
System object: comm.BCHEncoder
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

 isLocked

3-137

isLocked
System object: comm.BCHEncoder
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the BCHEncoder System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

3 Alphabetical List

3-138

release
System object: comm.BCHEncoder
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H)Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 step

3-139

step
System object: comm.BCHEncoder
Package: comm

Encode data using a BCH encoder

Syntax

Y = step(H,X)

Description

Y = step(H,X) encodes input binary data, X, using a
(CodewordLength,MessageLength) BCH encoder with the corresponding narrow-sense
generator polynomial and returns the result in vector Y. Input X must be a numeric or
logical column vector with length equal to an integer multiple of the message length
stored in the MessageLength property. A group of MessageLength input elements
represents one message word to be encoded. The length of the encoded data output
vector, Y, is an integer multiple of (CodewordLength - number of punctures). You specify
the number of punctures with the PuncturePatternSource and PuncturePattern
properties.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

3 Alphabetical List

3-140

comm.BitToInteger System object
Package: comm

Convert vector of bits to vector of integers

Description

The BitToInteger object maps groups of bits in the input vector to integers in the
output vector.

To map bits to integers:

1 Define and set up your bit to integer object. See “Construction” on page 3-140.
2 Call step to map groups of bits in the input vector to integers in the output vector

according to the properties of comm.BitToInteger. The behavior of step is specific
to each object in the toolbox.

Construction

H = comm.BitToInteger creates a bit-to-integer converter System object, H, that maps
a vector of bits to a corresponding vector of integer values.

H = comm.BitToInteger(Name,Value) creates a bit-to-integer converter object, H,
with each specified property set to the specified value. You can specify additional name-
value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

H = comm.BitToInteger(NUMBITS,Name,Value) creates a bit-to-integer converter
System object, H This object has the “BitsPerInteger” property set to NUMBITS and
the other specified properties set to the specified values.

Properties

BitsPerInteger

Number of bits per integer

 comm.BitToInteger System object

3-141

Specify the number of input bits that the object maps to each output integer. You can set
this property to a scalar integer between 1 and 32. The default is 3.

MSBFirst

Assume first bit of input bit words is most significant bit

Set this property to true to indicate that the first bit of the input bit words is the most
significant bit (MSB). The default is true. You can set this property to false to indicate
that the first bit of the input bit words is the least significant bit (LSB).

SignedIntegerOutput

Output signed integers

Set this property to true to generate signed integer outputs. The default is false. You
can set this property to false to generate unsigned integer outputs.

When you set this property to false, the output values are integers between 0 and (2N) –
1. In this case, N is the value you specified in the “BitsPerInteger” property.

When you set this property to true, the output values are integers between -(2(N-1)) and
(2(N –1)) –1.

OutputDataType

Data type of output

Specify the output data type. The default is Full precision.

When you set the “SignedIntegerOutput” property to false, set this property as one
of Full precision | Smallest integer | Same as input | double | single |
int8 | uint8 | int16 | uint16 | int32 | uint32.

When you set this property to Same as input, and the input data type is numeric or
fixed-point (fi object), the output data has the same type as the input data.

When the input signal is an integer data type, you must have a Fixed-Point Designer
user license to use this property in Smallest unsigned integer or Full precision
mode.

3 Alphabetical List

3-142

When you set the SignedIntegerOutput property to true, specify the output data type
as one of Full precision | Smallest integer | double | single | int8 | int16
| int32.

When you set this property to Full precision, the object determines the output data
type based on the input data type. If the input data type is double or single precision, the
output data has the same type as the input data. Otherwise, the property determines the
output data type in the same way as when you set this property to Smallest unsigned
integer.

Methods

clone
Create bit to integer converter object with
same property values

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

step
Convert vector of bits to vector of integers

Examples

Convert random 4-bit words to integers

 hBitToInt = comm.BitToInteger(4);

% Generate three 4-bit words

 bitData = randi([0 1],3*hBitToInt.BitsPerInteger,1);

 intData = step(hBitToInt,bitData)

 comm.BitToInteger System object

3-143

intData =

 13

 9

 13

Algorithms

This object implements the algorithm, inputs, and outputs described on the Bit To
Integer Converter block reference page. The object properties correspond to the block
parameters.

See Also
comm.IntegerToBit | bi2de | bin2dec

3 Alphabetical List

3-144

clone
System object: comm.BitToInteger
Package: comm

Create bit to integer converter object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a BitToInteger object C, with the same property values as H.
The clone method creates a new unlocked object with uninitialized states.

 getNumInputs

3-145

getNumInputs
System object: comm.BitToInteger
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of
expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H)

3 Alphabetical List

3-146

getNumOutputs
System object: comm.BitToInteger
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

 isLocked

3-147

isLocked
System object: comm.BitToInteger
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the BitToInteger System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

3 Alphabetical List

3-148

release
System object: comm.BitToInteger
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H)Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 step

3-149

step
System object: comm.BitToInteger
Package: comm

Convert vector of bits to vector of integers

Syntax

Y = step(H,X)

Description

Y = step(H,X) converts binary input, X, to corresponding integers, Y. The input must
be a scalar or a column vector and the data type can be numeric, numerictype(0,1),
or logical. The length of input X must be an integer multiple of the value you specify in
the “BitsPerInteger” property. The object outputs a column vector with a length equal
to length(X)/BitsPerInteger. When you set the “SignedIntegerOutput” property to
false, the object maps each group of bits to an integer between 0 and (2BitsPerInteger)-1.
A group of bits contains N bits, where N is the value of the BitsPerInteger property.
If you set the SignedIntegerOutput property to true, the object maps each group of
BitsPerInteger bits to an integer between -(2(BitsPerInteger-1)) and (2(BitsPerInteger-1))-1.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

3 Alphabetical List

3-150

comm.BinarySymmetricChannel System object
Package: comm

Introduce binary errors

Description
The BinarySymmetricChannel object introduces binary errors to the signal
transmitted through this channel.

To introduce binary errors into the transmitted signal:

1 Define and set up your binary symmetric channel object. See “Construction” on page
3-150.

2 Call step to introduces binary errors into the signal transmitted through this
channel according to the properties of comm.ACPR. The behavior of step is specific to
each object in the toolbox.

Construction
H = comm.BinarySymmetricChannel creates a binary symmetric channel System
object, H, that introduces binary errors to the input signal with a prescribed probability.

H = comm.BinarySymmetricChannel(Name,Value) creates a binary
symmetric channel object, H, with each specified property set to the specified
value. You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties
ErrorProbability

Probability of binary error

Specify the probability of a binary error as a scalar with a value between 0 and 1. The
default is 0.05.

ErrorVectorOutputPort

 comm.BinarySymmetricChannel System object

3-151

Enable error vector output

When you set this property to true, the step method outputs an error signal, ERR. This
error signal, in vector form, indicates where errors were introduced in the input signal, X.
A value of 1 at the i-th element of ERR indicates that an error was introduced at the i-th
element of X. Set the property to false if you do not want the ERR vector at the output
of the step method. The default is true.

OutputDataType

Data type of output

Specify output data type as one of double | logical. The default is double.

Methods

clone
Create binary symmetric channel object
with same property values

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

step
Introduce binary errors

Examples

Add binary errors to a binary input signal

Add binary errors with a probability of 0.2 to a binary input signal

3 Alphabetical List

3-152

 H = comm.BinarySymmetricChannel('ErrorProbability',0.2);

 data = randi([0 1], 10, 1);

 [noisyData, err] = step(H, data);

 [data noisyData err]

ans =

 1 0 1

 1 1 0

 0 0 0

 1 1 0

 1 1 0

 0 1 1

 0 0 0

 1 1 0

 1 1 0

 1 1 0

Algorithms

This object implements the algorithm, inputs, and outputs described on the Binary
Symmetric Channel block reference page. The object properties correspond to the block
parameters, except:This object uses the MATLAB default random stream to generate
random numbers. The block uses a random number generator based on the V5 RANDN
(Ziggurat) algorithm. An initial seed, set with the Initial seed parameter initializes
the random number generator. For every system run that contains the block, the block
generates the same sequence of random numbers. To generate reproducible numbers
using this object, you can reset the MATLAB default random stream using the following
code.

reset(RandStream.getGlobalStream)

For more information, see help for RandStream.

See Also
comm.AWGNChannel

 clone

3-153

clone
System object: comm.BinarySymmetricChannel
Package: comm

Create binary symmetric channel object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a BinarySymmetricChannel object C, with the same property
values as H. The clone method creates a new unlocked object with uninitialized states.

3 Alphabetical List

3-154

getNumInputs
System object: comm.BinarySymmetricChannel
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of
expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H)

 getNumOutputs

3-155

getNumOutputs
System object: comm.BinarySymmetricChannel
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

3 Alphabetical List

3-156

isLocked
System object: comm.BinarySymmetricChannel
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the BinarySymmetricChannel
System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

 release

3-157

release
System object: comm.BinarySymmetricChannel
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H)Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

3 Alphabetical List

3-158

step
System object: comm.BinarySymmetricChannel
Package: comm

Introduce binary errors

Syntax

Y = step(H,X)

[Y,ERR] = step(H,X)

Description

Y = step(H,X) adds binary errors to the input signal X and returns the modified
signal, Y. The input signal can be a vector or matrix with numeric, logical, or fixed-point
(fi objects) data type elements. The step method output, Y, has the same dimensions
as the input, X. If X input contains a non-binary value, V, the object considers it to be
1 when abs(V) > 0. This syntax applies when you set the ErrorVectorOutputPort
property to false.

[Y,ERR] = step(H,X) returns the error signal vector, ERR. A value of 1 at the i-th
element of ERR indicates that an error was introduced at the i-th element of X. The
outputs, Y and ERR, have the same dimensions as the input, X. This syntax applies when
you set the ErrorVectorOutputPort property to true.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

 comm.BlockDeinterleaver System object

3-159

comm.BlockDeinterleaver System object
Package: comm

Deinterleave input symbols using permutation vector

Description

The BlockDeinterleaver object, which can process variable-sized signals, rearranges
the elements of its input vector without repeating or omitting any elements. The input
can be real or complex.

To deinterleave the input vector:

1 Define and set up your block deinterleaver object. See “Construction” on page
3-159.

2 Call step to rearrange the elements of the input vector according to the properties of
comm.BlockDeinterleaver. The behavior of step is specific to each object in the
toolbox.

Construction

H = comm.BlockDeinterleaver creates a block deinterleaver System object, H. This
object restores the original ordering of a sequence that was interleaved using the block
interleaver System object.

H = comm.BlockDeinterleaver(Name,Value) creates object, H, with the specified
property set to the specified value.

Properties

PermutationVectorSource

Permutation vector source

Specify the source of the permutation vector as either Property or Input port. The
default value is Property.

3 Alphabetical List

3-160

PermutationVector

Permutation vector

Specify the mapping used to permute the input symbol as a column vector of integers.
The default is [5;4;3;2;1]. The mapping is a column vector of integers where
the number of elements is equal to the length, N, of the input to the step method.
Each element must be an integer, between 1 and N, with no repeated values. The
PermutationVector property is available only when the PermutationVectorSource
property is set to Property.

Methods

clone
Create block deinterleaver object with same
property values

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

step
Deinterleave input symbols using
permutation vector

Examples

Interleave and deinterleave data.

 hInt = comm.BlockInterleaver([3 4 1 2]');

 hDeInt = comm.BlockDeinterleaver([3 4 1 2]');

 comm.BlockDeinterleaver System object

3-161

 data = randi(7, 4, 1);

 intData = step(hInt, data);

 deIntData = step(hDeInt, intData);

 % compare the original sequence, interleaved sequence, and restored sequence

 [data, intData, deIntData]

Interleave and deinterleave data with random interleaver.

 permVec = randperm(7)'; % Random permutation vector

 hInt = comm.BlockInterleaver(permVec);

 hDeInt = comm.BlockDeinterleaver(permVec);

 data = randi(9, 7, 1);

 intData = step(hInt, data);

 deIntData = step(hDeInt, intData);

 % compare the original sequence, interleaved sequence, and restored

 % sequence

 [data, intData, deIntData]

Algorithms

This object implements the algorithm, inputs, and outputs described on the General
Block Deinterleaver block reference page. The object properties correspond to the block
parameters.

See Also
comm.BlockInterleaver | comm.MatrixDeinterleaver

3 Alphabetical List

3-162

clone
System object: comm.BlockDeinterleaver
Package: comm

Create block deinterleaver object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a BlockDeinterleaver object C, with the same property values
as H. The clone method creates a new unlocked object with uninitialized states.

 getNumInputs

3-163

getNumInputs
System object: comm.BlockDeinterleaver
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of
expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H)

3 Alphabetical List

3-164

getNumOutputs
System object: comm.BlockDeinterleaver
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

 isLocked

3-165

isLocked
System object: comm.BlockDeinterleaver
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the BlockDeinterleaver System
object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

3 Alphabetical List

3-166

release
System object: comm.BlockDeinterleaver
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H)Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 step

3-167

step
System object: comm.BlockDeinterleaver
Package: comm

Deinterleave input symbols using permutation vector

Syntax

Y = step(H,X)

Description

Y = step(H,X) restores the original ordering of the sequence, X, that was
interleaved using a block interleaver. The step method forms the output, Y,
based on the mapping specified by the “PermutationVector” property as
Output(PermutationVector(k))=Input(k), for k = 1:N, where N is the length of the
permutation vector. The input X must be a column vector of the same length, N. The data
type of X can be numeric, logical, or fixed-point (fi objects). Y has the same data type as X.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

3 Alphabetical List

3-168

comm.BlockInterleaver System object
Package: comm

Permute input symbols using permutation vector

Description

The BlockInterleaver object permutes the symbols in the input signal. Internally, it
uses a set of shift registers, each with its own delay value. This object processes variable-
size signals.

To interleave the input signal:

1 Define and set up your block interleaver object. See “Construction” on page 3-168.
2 Call step to reorder the input symbols according to the properties of

comm.BlockInterleaver. The behavior of step is specific to each object in the
toolbox.

Construction

H = comm.BlockInterleaver creates a block interleaver System object, H This object
permutes the symbols in the input signal based on a permutation vector.

H = comm.BlockInterleaver(Name,Value) creates object, H, with specified property
set to the specified value.

Properties

PermutationVectorSource

Permutation vector source

Specify the source of the permutation vector as either Property or Input port. The
default value is Property.

PermutationVector

 comm.BlockInterleaver System object

3-169

Permutation vector

Specify the mapping used to permute the input symbols as an integer column vector. The
default is [5;4;3;2;1]. The number of elements of the permutation vector property
must equal the length of the input vector. The PermutationVector property indicates
the indices, in order, of the input elements that form the output vector. The relationship
Output(k)=Input(PermutationVector(k)) describes this order. Each integer, k, must
be between 1 and N, where N is the number of elements in the permutation vector.
The elements in the PermutationVector property must be integers between 1 and
N with no repetitions. The PermutationVector property is available only when the
PermutationVectorSource property is set to Property.

Methods

clone
Create block interleaver object with same
property values

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

step
Permute input symbols using a
permutation vector

Examples

Interleave and deinterleave data.

 hInt = comm.BlockInterleaver([3 4 1 2]');

3 Alphabetical List

3-170

 hDeInt = comm.BlockDeinterleaver([3 4 1 2]');

 data = randi(7, 4, 1);

 intData = step(hInt, data);

 deIntData = step(hDeInt, intData);

 % compare the original sequence, interleaved sequence, and restored sequence

 [data, intData, deIntData]

Interleave and deinterleave data with random interleaver.

 permVec = randperm(7)'; % Random permutation vector

 hInt = comm.BlockInterleaver(permVec);

 hDeInt = comm.BlockDeinterleaver(permVec);

 data = randi(9, 7, 1);

 intData = step(hInt, data);

 deIntData = step(hDeInt, intData);

 % compare the original sequence, interleaved sequence, and restored

 % sequence

 [data, intData, deIntData]

Algorithms

This object implements the algorithm, inputs, and outputs described on the General
Block Interleaver block reference page. The object properties correspond to the block
parameters.

See Also
comm.BlockDeinterleaver | comm.MatrixInterleaver

 clone

3-171

clone
System object: comm.BlockInterleaver
Package: comm

Create block interleaver object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a BlockInterleaver object C, with the same property values as
H. The clone method creates a new unlocked object with uninitialized states.

3 Alphabetical List

3-172

getNumInputs
System object: comm.BlockInterleaver
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of
expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H)

 getNumOutputs

3-173

getNumOutputs
System object: comm.BlockInterleaver
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

3 Alphabetical List

3-174

isLocked
System object: comm.BlockInterleaver
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the BlockInterleaver System
object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

 release

3-175

release
System object: comm.BlockInterleaver
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H)Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

3 Alphabetical List

3-176

step
System object: comm.BlockInterleaver
Package: comm

Permute input symbols using a permutation vector

Syntax

Y = step(H,X)

Description

Y = step(H,X) permutes input sequence, X, and returns interleaved sequence,
Y. The step method forms the output Y, based on the mapping defined by the
“PermutationVector” property as Output(k)=Input(PermutationVector(k)), for k
= 1:N, where N is the length of the PermutationVector property. The input X must be
a column vector of length N. The data type of X can be numeric, logical, or fixed-point (fi
objects). Y has the same data type as X.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

 comm.BPSKDemodulator System object

3-177

comm.BPSKDemodulator System object
Package: comm

Demodulate using BPSK method

Description

The BPSKDemodulator object demodulates a signal that was modulated using the
binary phase shift keying method. The input is a baseband representation of the
modulated signal.

To demodulate a binary phase shift signal:

1 Define and set up your BPSK demodulator object. See “Construction” on page
3-177.

2 Call step to demodulate a signal according to the properties of
comm.BPSKDemodulator. The behavior of step is specific to each object in the
toolbox.

Construction

H = comm.BPSKDemodulator creates a demodulator System object, H, that
demodulates the input signal using the binary phase shift keying (BPSK) method.

H = comm.BPSKDemodulator(Name,Value) creates a BPSK demodulator object, H,
with each specified property set to the specified value. You can specify additional name-
value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

H = comm.BPSKDemodulator(PHASE,Name,Value) creates a BPSK demodulator
object, H, with the PhaseOffset property set to PHASE, and the other specified
properties set to the specified values.

Properties

PhaseOffset

3 Alphabetical List

3-178

Phase of zeroth point of constellation

Specify the phase offset of the zeroth point of the constellation, in radians, as a finite,
real scalar. The default is 0.

DecisionMethod

Demodulation decision method

Specify the decision method the object uses as one of Hard decision | Log-
likelihood ratio | Approximate log-likelihood ratio. The default is Hard
decision.

VarianceSource

Source of noise variance

Specify the source of the noise variance as one of Property | Input port. The default
is Property. This property applies when you set the “DecisionMethod” property to
Log-likelihood ratio or Approximate log-likelihood ratio.

Variance

Noise variance

Specify the variance of the noise as a nonzero, real scalar. The default is 1. If this value
is very small (i.e., SNR is very high), log-likelihood ratio (LLR) computations can yield
Inf or -Inf. This variance occurs because the LLR algorithm computes the exponential
of very large or very small numbers using finite precision arithmetic. As a best practice
in such cases, use approximate LLR because this option's algorithm does not compute
exponentials. This property applies when you set the “VarianceSource” property to
Property. This property is tunable.

OutputDataType

Data type of output

Specify the output data type as one of Full precision | Smallest unsigned
integer | double | single | int8 | uint8 | int16 | uint16 | int32 | uint32
| logical. The default is Full precision. This property applies only when you
set the “DecisionMethod” property to Hard decision. Thus, when you set the
“OutputDataType” property to Full precision, and the input data type is single

 comm.BPSKDemodulator System object

3-179

or double precision, the output data has the same data type as the input. If the input
data is of a fixed-point type, then the output data type behaves as if you had set
the OutputDataType property to Smallest unsigned integer. If you set the
DecisionMethod property to Log-likelihood ratio or Approximate log-
likelihood ratio, the output data type is the same as that of the input. In this case,
that data type can only be single or double precision.

When the input signal is an integer data type, you must have a Fixed-Point Designer
user license to use this property in Smallest unsigned integer or Full precision
mode.

Fixed-Point Properties

DerotateFactorDataType

Data type of derotate factor

Specify the derotate factor data type as one of Same word length as input |
Custom. The default is Same word length as input. This property applies when you
set the “DecisionMethod” property to Hard decision. The object uses the derotate
factor in the computations only when certain conditions exist. The step method input
must be of a fixed-point type, and the “PhaseOffset” property must have a value that is

not a multiple of p

2
.

CustomDerotateFactorDataType

Fixed-point data type of derotate factor

Specify the derotate factor fixed-point type as an unscaled, numerictype object
with a Signedness of Auto. The default is numerictype([],16). This property
applies when you set the “DecisionMethod” property to Hard decision and the
“DerotateFactorDataType” property to Custom.

Methods

clone
Create BPSK demodulator object with
same property values

3 Alphabetical List

3-180

constellation
Calculate or plot ideal signal constellation

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

step
Demodulate using BPSK method

Examples

Demodulate a BPSK Signal and Calculate Errors

Generate a BPSK signal, pass it through an AWGN channel, demodulate the signal, and
compute the error statistics.

Create BPSK modulator and demodulator System objects.

hMod = comm.BPSKModulator;

hDemod = comm.BPSKDemodulator;

Create an AWGN channel object. Set the NoiseMethod property to Signal to noise
ratio (SNR) and the SNR property to 5.

hAWGN = comm.AWGNChannel('NoiseMethod', ...

 'Signal to noise ratio (SNR)','SNR',5);

Create an error rate calculator System object.

hError = comm.ErrorRate;

Generate 50-bit random data frames, apply BPSK modulation, pass the signal through
the AWGN channel, demodulate the received data, and compile the error statistics.

 comm.BPSKDemodulator System object

3-181

for counter = 1:100

 % Transmit a 50-symbol frame

 data = randi([0 1],50,1); % Generate data

 modSignal = step(hMod,data); % Modulate

 noisySignal = step(hAWGN,modSignal); % Pass through AWGN

 receivedData = step(hDemod,noisySignal); % Demodulate

 errorStats = step(hError,data,receivedData); % Collect error stats

end

Display the cumulative error statistics.

fprintf('Error rate = %f\nNumber of errors = %d\n', ...

 errorStats(1), errorStats(2))

Error rate = 0.005600

Number of errors = 28

Algorithms

This object implements the algorithm, inputs, and outputs described on the BPSK
Demodulator Baseband block reference page. The object properties correspond to the
block parameters.

See Also
comm.PSKDemodulator | comm.BPSKModulator

3 Alphabetical List

3-182

clone
System object: comm.BPSKDemodulator
Package: comm

Create BPSK demodulator object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a BPSKDemodulator object C, with the same property values as
H. The clone method creates a new unlocked object with uninitialized states.

 constellation

3-183

constellation
System object: comm.BPSKDemodulator
Package: comm

Calculate or plot ideal signal constellation

Syntax

y = constellation(h)

constellation(h)

Description

y = constellation(h) returns the numerical values of the constellation.

constellation(h) generates a constellation plot for the object.

Examples

Calculate Reference Signal Constellation for BPSK Demodulator

Create BPSK Demodulator System object™ and calculate its reference constellation.

Create a comm.BPSKDemodulator System object.

h = comm.BPSKDemodulator;

Calculate and display the reference signal constellation by calling the constellation
function.

refC = constellation(h)

refC =

 1.0000 + 0.0000i

 -1.0000 + 0.0000i

3 Alphabetical List

3-184

Plot BPSK Demodulator Reference Signal Constellation

Create a BPSK Demodulator System object™ and then plot the reference signal
constellation.

Create a comm.BPSKDemodulator System object.

h = comm.BPSKDemodulator;

Plot the reference constellation by calling the constellation function.

constellation(h)

 getNumInputs

3-185

getNumInputs
System object: comm.BPSKDemodulator
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of
expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H)

3 Alphabetical List

3-186

getNumOutputs
System object: comm.BPSKDemodulator
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

 isLocked

3-187

isLocked
System object: comm.BPSKDemodulator
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the BPSKDemodulator System
object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

3 Alphabetical List

3-188

release
System object: comm.BPSKDemodulator
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H)Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 step

3-189

step
System object: comm.BPSKDemodulator
Package: comm

Demodulate using BPSK method

Syntax

Y = step(H,X)

Y = step(H,X,VAR)

Description

Y = step(H,X) demodulates input data, X, with the BPSK demodulator System object,
H, and returns Y. Input X must be a scalar or a column vector with double or single
precision data type. When you set the DecisionMethod property to Hard decision,
the data type of the input can also be signed integer, or signed fixed point (fi objects).

Y = step(H,X,VAR) uses soft decision demodulation and noise variance VAR. This
syntax applies when you set the DecisionMethod property to Log-likelihood ratio
or Approximate log-likelihood ratio and the VarianceSource property to
Input port. The data type of input VAR must be double or single precision.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

3 Alphabetical List

3-190

comm.IQImbalanceCompensator System object
Package: comm

Compensate for I/Q imbalance

Description

The IQImbalanceCompensator System object compensates for the imbalance between
the in-phase and quadrature components of a modulated signal.

To compensate for I/Q imbalance:

1 Define and set up the IQImbalanceCompensator object. See “Construction” on
page 3-190.

2 Call step to compensate for the I/Q imbalance according to the properties of
comm.IQImbalanceCompensator. The behavior of step is specific to each object in
the toolbox.

The adaptive algorithm inherent to the I/Q imbalance compensator is compatible with M-
PSK, M-QAM, and OFDM modulation schemes, where M>2.

Note: The output of the compensator might be scaled and rotated, that is, multiplied by
a complex number, relative to the reference constellation. In practice, this is not an issue
as receivers correct for this prior to demodulation through the use of channel estimation.

Construction

H = comm.IQImbalanceCompensator creates a compensator System object, H, that
compensates for the imbalance between the in-phase and quadrature components of the
input signal.

H = comm.IQImbalanceCompensator(Name,Value) creates an I/Q imbalance
compensator object, H, with each specified property Name set to the specified
Value. You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

 comm.IQImbalanceCompensator System object

3-191

Properties

CoefficientSource

Source of compensator coefficients

Specify either Estimated from input signal or Input port. If the
CoefficientSource property is set to Estimated from input signal, the
compensator uses an adaptive algorithm to estimate the compensator coefficient from
the input signal. If the CoefficientSource property is set to Input port, all other
properties are disabled and the compensator coefficients must be provided to the step
function as an input argument. The default value is Estimated from input signal.
This property is nontunable.

InitialCoefficent

Initial coefficient used to compensate for I/Q imbalance

The initial coefficient is a complex scalar that can be either single or double precision.
The default value is 0+0i. This property is nontunable.

StepSizeSource

Source of step size for coefficient adaptation

Specify either Property or Input port. If StepSizeSource is set to Property,
you specify the step size through the StepSize property. Otherwise, the step size is
provided to the step function as an input argument. The default value is Property.
This property is nontunable.

StepSize

Adaptation step size

Specifies the step size used by the algorithm in estimating the I/Q imbalance. This
property is accessible only when StepSizeSource is set to Property. The default value
is 1e-5. This property is tunable.

AdaptInputPort

Creates input port to control compensator coefficient adaptation

3 Alphabetical List

3-192

When this logical property is true, an input port is created to enable or disable
coefficient adaptation. If AdaptInputPort is false, the coefficients update after each
output sample. The default value is false. This property is nontunable.

CoefficientOutputPort

Create port to output compensator coefficients

When this logical property is true, the I/Q imbalance compensator coefficients are made
available through an output argument of the step function. The default value is false.
This property is nontunable.

Methods

step
Compensate I/Q Imbalance

release
Allow property value and input
characteristics changes

reset
Reset states of the
IQImbalanceCompensator System object

clone
Create I/Q compensator object with same
property values

isLocked
Locked status for input attributes and
nontunable properties

Examples

Remove I/Q Imbalance from a QPSK Signal

Mitigate the impacts of amplitude and phase imbalance on a QPSK modulated signal by
using the comm.IQImbalanceCompensator System object™.

 comm.IQImbalanceCompensator System object

3-193

Create QPSK modulator and constellation diagram System objects. Use name-value pairs
to ensure that the constellation diagram displays only the last 100 data symbols.

hMod = comm.QPSKModulator;

hScope = comm.ConstellationDiagram(...

 'SymbolsToDisplaySource','Property', ...

 'SymbolsToDisplay',100);

Create an I/Q imbalance compensator.

hIQComp = comm.IQImbalanceCompensator;

Generate random data symbols and apply QPSK modulation.

data = randi([0 3],1e7,1);

txSig = step(hMod,data);

Apply amplitude and phase imbalance to the transmitted signal.

ampImb = 5; % dB

phImb = 15; % deg

gainI = 10.^(0.5*ampImb/20);

gainQ = 10.^(-0.5*ampImb/20);

imbI = real(txSig)*gainI*exp(-0.5i*phImb*pi/180);

imbQ = imag(txSig)*gainQ*exp(1i*(pi/2 + 0.5*phImb*pi/180));

rxSig = imbI + imbQ;

Plot the constellation diagram of the received signal. Observe that the received signal
experienced an amplitude and phase shift.

step(hScope,rxSig);

3 Alphabetical List

3-194

Apply the I/Q compensation algorithm and view the constellation. The compensated
signal constellation is nearly aligned with the reference constellation.

compSig = step(hIQComp,rxSig);

step(hScope,compSig)

 comm.IQImbalanceCompensator System object

3-195

Remove I/Q Imbalance from an 8-PSK Signal using External Coefficients

Compensate for an amplitude and phase imbalance on an 8-PSK signal by using the
comm.IQImbalanceCompensator System object™ with external coefficients.

Create 8-PSK modulator and constellation diagram System objects. Use name-value
pairs to ensure that the constellation diagram displays only the last 100 data symbols
and to provide the reference constellation.

hMod = comm.PSKModulator(8);

3 Alphabetical List

3-196

refC = constellation(hMod);

hScope = comm.ConstellationDiagram(...

 'SymbolsToDisplaySource','Property', ...

 'SymbolsToDisplay',100, ...

 'ReferenceConstellation',refC);

Create an I/Q imbalance compensator object with an input port for the algorithm
coefficients.

hIQComp = comm.IQImbalanceCompensator('CoefficientSource','Input port');

Generate random data symbols and apply 8-PSK modulation.

data = randi([0 7],1000,1);

txSig = step(hMod,data);

Apply amplitude and phase imbalance to the transmitted signal.

ampImb = 5; % dB

phImb = 15; % deg

gainI = 10.^(0.5*ampImb/20);

gainQ = 10.^(-0.5*ampImb/20);

imbI = real(txSig)*gainI*exp(-0.5i*phImb*pi/180);

imbQ = imag(txSig)*gainQ*exp(1i*(pi/2 + 0.5*phImb*pi/180));

rxSig = imbI + imbQ;

Plot the constellation diagram of the received signal. Observe that the received signal
experienced an amplitude and phase shift.

step(hScope,rxSig);

 comm.IQImbalanceCompensator System object

3-197

Use the iqimbal2coef function to determine the compensation coefficient given the
amplitude and phase imbalance.

compCoef = iqimbal2coef(ampImb,phImb);

Apply the compensation coefficient to the received signal using the step function of the
comm.IQImbalanceCompensator object and view the resultant constellation. You can
see that the compensated signal constellation is now nearly aligned with the reference
constellation.

compSig = step(hIQComp,rxSig,compCoef);

3 Alphabetical List

3-198

step(hScope,compSig)

Remove I/Q Imbalance from a QAM Signal

Remove an I/Q imbalance from a 64-QAM signal and to make the estimated coefficients
externally available while setting the algorithm step size from an input port.

Create 64-QAM modulator and constellation diagram System objects. Apply the
constellation function to the modulator to determine its reference constellation. Use
name-value pairs to ensure that the constellation diagram displays only the last 256 data
symbols, set the axes limits, and specify the reference constellation.

 comm.IQImbalanceCompensator System object

3-199

M = 64; % Modulation order

hMod = comm.RectangularQAMModulator(M);

refC = constellation(hMod);

hScope = comm.ConstellationDiagram(...

 'SymbolsToDisplaySource','Property', ...

 'SymbolsToDisplay',256, ...

 'XLimits',[-10 10],'YLimits',[-10 10], ...

 'ReferenceConstellation',refC);

Create an I/Q imbalance compensator System object in which the step size is specified
as an input argument to the step function and the estimated coefficients are made
available through an output port.

hIQComp = comm.IQImbalanceCompensator('StepSizeSource','Input port', ...

 'CoefficientOutputPort',true);

Generate random data symbols and apply 64-QAM modulation.

nSym = 25000;

data = randi([0 M-1],nSym,1);

txSig = step(hMod,data);

Apply amplitude and phase imbalance to the transmitted signal.

ampImb = 2; % dB

phImb = 10; % deg

gainI = 10.^(0.5*ampImb/20);

gainQ = 10.^(-0.5*ampImb/20);

imbI = real(txSig)*gainI*exp(-0.5i*phImb*pi/180);

imbQ = imag(txSig)*gainQ*exp(1i*(pi/2 + 0.5*phImb*pi/180));

rxSig = imbI + imbQ;

Plot the constellation diagram of the received signal.

step(hScope,rxSig);

3 Alphabetical List

3-200

Specify the step size parameter for the I/Q imbalance compensator.

stepSize = 1e-5;

Apply the step function to compensate for the I/Q imbalance while setting the step size
via an input argument. You can see that the compensated signal constellation is now
nearly aligned with the reference constellation.

[compSig,estCoef] = step(hIQComp,rxSig,stepSize);

step(hScope,compSig)

 comm.IQImbalanceCompensator System object

3-201

Plot the real and imaginary values of the estimated coefficients. You can see that they
reach a steady-state solution.

plot((1:nSym)'/1000,[real(estCoef),imag(estCoef)])

grid

xlabel('Symbols (thousands)')

ylabel('Coefficient Value')

legend('Real','Imag','location','best')

3 Alphabetical List

3-202

Control Adaptation Algorithm for I/Q Imbalance Compensator

Control the adaptation algorithm of the I/Q imbalance compensator using an external
argument to the step function.

Apply QPSK modulation to random data symbols.

data = randi([0 3],600,1);

txSig = pskmod(data,4,pi/4,'gray');

Create an I/Q imbalance compensator in which the adaptation algorithm is controlled
through an input port, the step size is specified through the StepSize property, and the
estimated coefficients are made available through an output port.

hIQComp = comm.IQImbalanceCompensator('AdaptInputPort',true, ...

 comm.IQImbalanceCompensator System object

3-203

 'StepSize',0.001,'CoefficientOutputPort',true);

Apply amplitude and phase imbalance to the transmitted signal.

ampImb = 5; % dB

phImb = 15; % deg

gainI = 10.^(0.5*ampImb/20);

gainQ = 10.^(-0.5*ampImb/20);

imbI = real(txSig)*gainI*exp(-0.5i*phImb*pi/180);

imbQ = imag(txSig)*gainQ*exp(1i*(pi/2 + 0.5*phImb*pi/180));

rxSig = imbI + imbQ;

Break the compensation operation into three segments in which the compensator is
enabled for the first 200 symbols, disabled for the next 200 symbols, and enabled for the
last 200 symbols. Save the coefficient data in three vectors.

[~,estCoef1] = step(hIQComp,rxSig(1:200),true);

[~,estCoef2] = step(hIQComp,rxSig(201:400),false);

[~,estCoef3] = step(hIQComp,rxSig(401:600),true);

Concatenate the complex algorithm coefficients and plot their real and imaginary parts.

estCoef = [estCoef1; estCoef2; estCoef3];

plot((1:600)',[real(estCoef) imag(estCoef)])

grid

xlabel('Symbols')

ylabel('Coefficient Value')

legend('Real','Imaginary','location','best')

3 Alphabetical List

3-204

Observe that the coefficents do not adapt during the time in which the compensator is
diabled.

Algorithms

One of the major impairments affecting direct conversion receivers is the imbalance
between the received signal’s in-phase and quadrature components. Rather than
improving the front-end, analog hardware, it is more cost effective to tolerate a certain
level of I/Q imbalance and then implement compensation methods. A circularity-based
blind compensation algorithm is used as the basis for the I/Q Imbalance Compensator.

 comm.IQImbalanceCompensator System object

3-205

A generalized I/Q imbalance model is shown, where g is the amplitude imbalance and
ϕ is the phase imbalance (ideally, g = 1 and ϕ = 0). In the figure, H(f) is the nominal
frequency response of the branches due to, for example, lowpass filters. HI(f) and HQ(f)
represent the portions of the in-phase and quadrature amplitude and phase responses
that differ from the nominal response. With perfect matching, HI(f) = HQ(f) = 1.

Let z(t) be the ideal baseband equivalent signal of the received signal, r(t), where its
Fourier transform is denoted as Z(f). Given the generalized I/Q imbalance model, the
Fourier transform of the imbalanced signal, x(t) = xI(t) + xQ(t), is

X f G f Z f G f Z f() () () () ()
*

= + -1 2

where G1(f) and G2(f) are the direct and conjugate components of the I/Q imbalance.
These components are defined as

G f H f H f g j

G f H f H f g j

I Q

I Q

1

2

2() () () exp() /

() () () exp()

= + -ÈÎ ˘̊

= +È

f

fÎÎ ˘̊ / 2

Applying the inverse Fourier transform to X(f), the signal model becomes x(t) = g1(t) * z(t)
+ g2(t) * z*(t).

3 Alphabetical List

3-206

This suggests the compensator structure as shown in which discrete-time notation is
used to express the variables. The compensated signal is expressed as y(n) = x(n) +
wx*(n).

A simple algorithm of the form

y n x n w n x n

w n w n My n

() () () ()

() () ()

*= +

+ = -

Ï
Ì
Ô

ÓÔ 1
2

is used to determine the weights, because it ensures that the output is “proper”, that
is, E[()]y n

2
0= [1]. The initial value of w is determined by the InitialCoefficient

property, which has a default value of 0 + 0i. M is the step size, as specified in the
StepSize property.

Selected Bibliography

[1] Anttila, L., M. Valkama, and M. Renfors. “Blind compensation of frequency-selective
I/Q imbalances in quadrature radio receivers: Circularity-based approach”, Proc.
IEEE ICASSP, pp.III-245–248, 2007.

 comm.IQImbalanceCompensator System object

3-207

[2] Kiayani, A., L. Anttila, Y. Zou, and M. Valkama, “Advanced Receiver Design for
Mitigating Multiple RF Impairments in OFDM Systems: Algorithms and RF
Measurements”, Journal of Electrical and Computer Engineering, Vol. 2012.

See Also
I/Q Imbalance Compensator | iqcoef2imbal | iqimbal2coef

3 Alphabetical List

3-208

step
System object: comm.IQImbalanceCompensator
Package: comm

Compensate I/Q Imbalance

Syntax

Y = step(H,X)

Y = step(H,X,COEF)

Y = step(H,X,STEPSIZE)

Y = step(H,...,ADAPT)

[Y,ESTCOEF] = step(H,X)

[Y,ESTCOEF] = step(H,X,STEPSIZE)

[Y,ESTCOEF] = step(H,X,STEPSIZE,ADAPT)

[Y,ESTCOEF] = step(H,X,ADAPT)

Description

Y = step(H,X) estimates the I/Q imbalance in the input signal, X, and returns a
compensated signal, Y. The input X can take real or complex values and can be either
a scalar or a column vector. Double- and single-precision data types are supported. The
output Y has the same properties as X.

Y = step(H,X,COEF) accepts input coefficients, COEF, instead of generating them
internally. This syntax applies when the “CoefficientSource” property of H is set
to Input port. The input coefficients, COEF, are complex and can be either double or
single precision. COEF has the same dimensions as X.

Y = step(H,X,STEPSIZE) accepts a step size input, STEPSIZE. This syntax applies
when the “StepSizeSource” property of H is set to Input port. The step size is a real
scalar supporting either double or single precision.

Y = step(H,...,ADAPT) accepts a control signal, ADAPT, to enable or disable
coefficient updates. This syntax applies when the “AdaptInputPort” property of H is
true. The adaptation control signal is a logical scalar.

 step

3-209

[Y,ESTCOEF] = step(H,X) outputs the estimated coefficients, ESTCOEF, when
the “CoefficientOutputPort” property of H is true. ESTCOEF has the same data
properties and dimensionality as the input signal, X.

[Y,ESTCOEF] = step(H,X,STEPSIZE) outputs the estimated coefficients, ESTCOEF,
and accepts a step size input, STEPSIZE. This syntax applies when the properties of H
are set so that “CoefficientOutputPort” is true and “StepSizeSource” is Input
port.

[Y,ESTCOEF] = step(H,X,STEPSIZE,ADAPT) outputs the estimated coefficients,
ESTCOEF, and accepts a step size input,STEPSIZE, and a control signal input, ADAPT.
This syntax applies when the properties of H are set so that “CoefficientOutputPort”
is true, “StepSizeSource” is Input port, and “AdaptInputPort” is true.

[Y,ESTCOEF] = step(H,X,ADAPT) outputs the estimated coefficients, ESTCOEF, and
accepts a control signal input, ADAPT. This syntax applies when the properties of H are
set so that “CoefficientOutputPort” is true and “AdaptInputPort” is true.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

3 Alphabetical List

3-210

release
System object: comm.IQImbalanceCompensator
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 reset

3-211

reset
System object: comm.IQImbalanceCompensator
Package: comm

Reset states of the IQImbalanceCompensator System object

Syntax

reset(H)

Description

reset(H) resets the states of the IQImbalanceCompensator object, H.

This method resets the windowed suffix from the last symbol in the previously processed
frame.

3 Alphabetical List

3-212

clone
System object: comm.IQImbalanceCompensator
Package: comm

Create I/Q compensator object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a IQImbalanceCompensator object, C, with the same property
values as H. The clone method creates a new unlocked object with uninitialized states.

 isLocked

3-213

isLocked
System object: comm.IQImbalanceCompensator
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the IQImbalanceCompensator
System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

3 Alphabetical List

3-214

comm.BPSKModulator System object

Package: comm

Modulate using BPSK method

Description

The BPSKModulator object modulates using the binary phase shift keying method. The
output is a baseband representation of the modulated signal.

To modulate a binary phase shift signal:

1 Define and set up your BPSK modulator object. See “Construction” on page 3-214.
2 Call step to modulate a signal according to the properties of comm.BPSKModulator.

The behavior of step is specific to each object in the toolbox.

Construction

H = comm.BPSKModulator creates a modulator System object, H, that modulates the
input signal using the binary phase shift keying (BPSK) method.

H = comm.BPSKModulator(Name,Value) creates a BPSK modulator object, H, with
each specified property set to the specified value. You can specify additional name-value
pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

H = comm.BPSKModulator(PHASE,Name,Value) creates a BPSK modulator object,
H. The object's PhaseOffset property is set to PHASE, and the other specified properties
are set to the specified values.

Properties

PhaseOffset

Phase of zeroth point of constellation

 comm.BPSKModulator System object

3-215

Specify the phase offset of the zeroth point of the constellation, in radians, as a finite,
real scalar. The default is 0.

OutputDataType

Data type of output

Specify the output data type as one of double | single | Custom. The default is
double.

Fixed-Point Properties

CustomOutputDataType

Fixed-point data type of output

Specify the output fixed-point type as a numerictype object with a Signedness of
Auto. The default is numerictype([],16). This property applies when you set the
“OutputDataType” property to Custom.

Methods

clone
Create BPSK modulator object with same
property values

constellation
Calculate or plot ideal signal constellation

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

3 Alphabetical List

3-216

step
Modulate using BPSK method

Examples

Modulate data using BPSK, then visualize the data in a scatter plot

This example creates binary data, modulates the data, and then displays the data using
a scatter plot.

% Create binary data symbols

 data = randi([0 1], 96, 1);

% Create a BPSK modulator System object

 hModulator = comm.BPSKModulator;

% Change the phase offset to pi/16

 hModulator.PhaseOffset = pi/16;

% Modulate and plot the data

 modData = step(hModulator, data);

 scatterplot(modData)

 comm.BPSKModulator System object

3-217

Algorithms
This object implements the algorithm, inputs, and outputs described on the BPSK
Modulator Baseband block reference page. The object properties correspond to the block
parameters.

3 Alphabetical List

3-218

See Also
comm.PSKModulator | comm.BPSKDemodulator

 clone

3-219

clone
System object: comm.BPSKModulator
Package: comm

Create BPSK modulator object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a BPSKModulator object C, with the same property values as H.
The clone method creates a new unlocked object with uninitialized states.

3 Alphabetical List

3-220

constellation
System object: comm.BPSKModulator
Package: comm

Calculate or plot ideal signal constellation

Syntax

y = constellation(h)

constellation(h)

Description

y = constellation(h) returns the numerical values of the constellation.

constellation(h) generates a constellation plot for the object.

Examples

Calculate BPSK Modulator Reference Constellation

Create a BPSK Modulator System object™ and calculate the reference constellation
values.

Create a comm.BPSKModulator System object.

h = comm.BPSKModulator;

Calculate and display the reference constellation values by calling the constellation
function.

refC = constellation(h)

refC =

 1.0000 + 0.0000i

 constellation

3-221

 -1.0000 + 0.0000i

Plot BPSK Modulator Reference Constellation

Create a BPSK Modulator System object™ and plot the reference constellation.

Create a comm.BPSKModulator System object.

h = comm.BPSKModulator;

Plot the reference constellation by calling the constellation function.

constellation(h)

3 Alphabetical List

3-222

getNumInputs
System object: comm.BPSKModulator
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of
expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H)

 getNumOutputs

3-223

getNumOutputs
System object: comm.BPSKModulator
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

3 Alphabetical List

3-224

isLocked
System object: comm.BPSKModulator
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the BPSKModulator System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

 release

3-225

release
System object: comm.BPSKModulator
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H)Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

3 Alphabetical List

3-226

step
System object: comm.BPSKModulator
Package: comm

Modulate using BPSK method

Syntax

Y = step(H,X)

Description

Y = step(H,X) modulates input data, X, with the BPSK modulator System object, H.
It returns the baseband modulated output, Y. The input must be a column vector of bits.
The data type of the input can be numeric, logical, or unsigned fixed point of word length
1 (fi object).

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

 comm.OFDMModulator System object

3-227

comm.OFDMModulator System object
Package: comm

Modulate using OFDM method

Description

The OFDMModulator object modulates using the orthogonal frequency division
modulation method. The output is a baseband representation of the modulated signal.

To modulate an OFDM signal:

1 Define and set up the OFDM modulator object. See “Construction” on page 3-227.
2 Call step to modulate a signal according to the properties of comm.OFDMModulator.

The behavior of step is specific to each object in the toolbox.

Construction

H = comm.OFDMModulator creates a modulator System object, H, that modulates the
input signal using the orthogonal frequency division modulation (OFDM) method.

H = comm.OFDMModulator(Name,Value) creates a OFDM modulator object, H, with
each specified property set to the specified value. You can specify additional name-value
pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

H = comm.OFDMModulator(hDemod) creates an OFDM modulator object, H, whose
properties are determined by the corresponding OFDM demodulator object, hDemod.

Properties

FFTLength

The length of the FFT, NFFT, is equivalent to the number of subcarriers used in the
modulation process. FFTLength must be ≥ 8.

Specify the number of subcarriers. The default is 64.

3 Alphabetical List

3-228

NumGuardBandCarriers

The number of guard band subcarriers allocated to the left and right guard bands.

Specify the number of left and right subcarriers as nonnegative integers in [0, NFFT/2 − 1]
where you specify the left, NleftG, and right, NrightG, guard bands independently in a 2-by-1
column vector. The default values are [6; 5].

InsertDCNull

This is a logical variable that controls whether a DC null is inserted. The default value
is false. The DC subcarrier is the center of the frequency band and has the index value
NFFT/2 + 1.

PilotInputPort

This is a logical property that controls whether you can specify the pilot carrier
indices. If true, you can assign individual subcarriers for pilot transmission; otherwise,
pilot information will be assumed to be embedded in the input data. The default value is
false.

PilotCarrierIndices

If the comm.OFDMModulator.PilotInputPort property is set to true, you can specify
the indices of the pilot subcarriers. You can assign the indices to the same or different
subcarriers for each symbol. Similarly, the pilot carrier indices can differ across multiple
transmit antennas. Depending on the desired level of control for index assignments, the
dimensions of the property vary. Valid pilot indices fall in the range

N N N N NleftG FFT FFT FFT rightG+[] + -ÈÎ ˘̊1 2 2 2, , ,∪

where the index value cannot exceed the number of subcarriers. When the pilot indices
are the same for every symbol and transmit antenna, the property has dimensions Npilot-
by-1, where Npilot is the number of pilot subcarriers. When the pilot indices vary across
symbols, the property has dimensions of Npilot-by-Nsym, where Nsym is the number of
symbols. If there is only one symbol but multiple transmit antennas, the property has
dimensions of Npilot-by-1-by-Nt, where Nt is the number of transmit antennas. If the
indices vary across the number of symbols and transmit antennas, the property has
dimensions of Npilot-by-Nsym-by-Nt. It is desirable that when the number of transmit

 comm.OFDMModulator System object

3-229

antennas is greater than one, the indices per symbol should be mutually distinct across
antennas to avoid interference. The default value is [12; 26; 40; 54].

CyclicPrefixLength

The CyclicPrefixLength property specifies the length of the OFDM cyclic prefix. If
you specify a scalar, the prefix length is the same for all symbols through all antennas.
If you specify a row vector of length Nsym, the prefix length can vary across symbols but
remains the same length through all antennas. The default value is 16.

Windowing

This is a logical property whose state enables or disables windowing. Windowing is
the process in which the OFDM symbol is multiplied by a raised cosine window before
transmission to more quickly reduce the power of out-of-band subcarriers. This serves to
reduce spectral regrowth. The default value is false.

WindowLength

This property specifies the length of the raised cosine window when
comm.OFDMModulator.Windowing is true. Use positive integers with a maximum
value no greater than the minimum cyclic prefix length. For example, in a configuration
having four symbols with cyclic prefix lengths of [12 16 14 18], the window length
cannot exceed 12. The default value is 1.

NumSymbols

This property specifies the number of symbols, Nsym. NumSymbols must be a positive
integer. The default value is 1.

NumTransmitAntennnas

This property determines the number of antennas, Nt, used to transmit the OFDM
modulated signal. The property is a positive integer such that Nt ≤ 64. The default value
is 1.

Methods

clone
Create OFDM modulator object with same
property values

3 Alphabetical List

3-230

info
Provide dimensioning information for the
OFDM method

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

reset
Reset states of the OFDMModulator System
object

showResourceMapping
Show the subcarrier mapping of the OFDM
symbols created by the OFDM modulator
System object.

step
Modulate using OFDM method

Examples

Construct and modify an OFDM modulator

An OFDM modulator System object can be constructed using default properties. Once
constructed, these properties can be modified.

Construct an OFDM modulator.

hMod = comm.OFDMModulator;

Display the properties of the modulator.

disp(hMod)

 System: comm.OFDMModulator

 Properties:

 FFTLength: 64

 comm.OFDMModulator System object

3-231

 NumGuardBandCarriers: [6;5]

 InsertDCNull: false

 PilotInputPort: false

 CyclicPrefixLength: 16

 Windowing: false

 NumSymbols: 1

 NumTransmitAntennas: 1

Modify the number of subcarriers and symbols.

hMod.FFTLength = 128;

hMod.NumSymbols = 2;

Verify that the number of subcarriers and the number of symbols changed.

disp(hMod)

 System: comm.OFDMModulator

 Properties:

 FFTLength: 128

 NumGuardBandCarriers: [6;5]

 InsertDCNull: false

 PilotInputPort: false

 CyclicPrefixLength: 16

 Windowing: false

 NumSymbols: 2

 NumTransmitAntennas: 1

The showResourceMapping method shows the mapping of data, pilot, and null
subcarriers in the time-frequency space. Apply the showResourceMapping method.

showResourceMapping(hMod)

3 Alphabetical List

3-232

Use an OFDM demodulator to construct an OFDM modulator

An OFDM modulator System object can be constructed from an existing OFDM
demodulator System object.

Construct an OFDM demodulator, hDemod and specify pilot indices for a single symbol
and two transmit antennas.

Note: You can set the PilotCarrierIndices property in the demodulator object, which
then changes the number of transmit antennas in the modulator object. The number
of receive antennas in the demodulator is uncorrelated with the number of transmit
antennas.

hDemod = comm.OFDMDemodulator;

 comm.OFDMModulator System object

3-233

hDemod.PilotOutputPort = true;

hDemod.PilotCarrierIndices = cat(3,[12; 26; 40; 54],...

 [13; 27; 41; 55]);

Use the demodulator, hDemod, to construct the OFDM modulator.

hMod = comm.OFDMModulator(hDemod);

Display the properties of the modulator and verify that they match those of the
demodulator.

disp(hMod)

disp(hDemod)

System: comm.OFDMModulator

 Properties:

 FFTLength: 64

 NumGuardBandCarriers: [6;5]

 InsertDCNull: false

 PilotInputPort: true

 PilotCarrierIndices: [4x1x2 double]

 CyclicPrefixLength: 16

 Windowing: false

 NumSymbols: 1

 NumTransmitAntennas: 2

 System: comm.OFDMDemodulator

 Properties:

 FFTLength: 64

 NumGuardBandCarriers: [6;5]

 RemoveDCCarrier: false

 PilotOutputPort: true

 PilotCarrierIndices: [4x1x2 double]

 CyclicPrefixLength: 16

 NumSymbols: 1

 NumReceiveAntennas: 1

Use the showResourceMapping method to visualize the time-frequency resource assignments

The showResourceMapping method displays the time-frequency resource mapping for
each transmit antenna.

Construct an OFDM modulator.

3 Alphabetical List

3-234

hMod = comm.OFDMModulator;

Apply the showResourceMapping method.

showResourceMapping(hMod)

Insert a DC null.

hMod.InsertDCNull = true;

Show the resource mapping after adding the DC null.

showResourceMapping(hMod)

 comm.OFDMModulator System object

3-235

Create a modulator and specify pilots

The OFDM modulator enables you to specify the subcarrier indices for the pilot signals.
The indices can be specified for each symbol and transmit antenna. When there is more
than one transmit antenna, ensure that the pilot indices for each symbol differ between
antennas.

Construct an OFDM modulator that has two symbols and insert a DC null.

hMod = comm.OFDMModulator('FFTLength',128,'NumSymbols',2,...

 'InsertDCNull',true);

Turn on the pilot input port so you can specify the pilot indices.

3 Alphabetical List

3-236

hMod.PilotInputPort = true;

Specify the same pilot indices for both symbols.

hMod.PilotCarrierIndices = [12; 56; 89; 100];

Visualize the placement of the pilot signals and nulls in the OFDM time-frequency grid
using the showResourceMapping method.

showResourceMapping(hMod)

Concatenate a second column of pilot indices to the PilotCarrierIndices property to
specify different indices for the second symbol.

 comm.OFDMModulator System object

3-237

hMod.PilotCarrierIndices = cat(2, hMod.PilotCarrierIndices, ...

 [17; 61; 94; 105]);

Verify that the pilot subcarrier indices differ between symbols.

showResourceMapping(hMod)

Increase the number of transmit antennas to two.

hMod.NumTransmitAntennas = 2;

Specify the pilot indices for each of the two transmit antennas. To provide indices for
multiple antennas while minimizing interference among the antennas, populate the

3 Alphabetical List

3-238

PilotCarrierIndices property as a 3-D array such that the indices for each symbol
differ among antennas.

hMod.PilotCarrierIndices = cat(3,[20; 50; 70; 110], ...

 [15; 60; 75; 105]);

Display the resource mapping for the two transmit antennas. The gray lines denote the
insertion of custom nulls. The nulls are created by the object to minimize interference
among the pilot symbols from different antennas.

showResourceMapping(hMod)

 comm.OFDMModulator System object

3-239

Create a modulator with varying cyclic prefix lengths

The length of the cyclic prefix can be specified for each OFDM symbol.

Construct an OFDM modulator having five symbols, four left guard-band subcarriers,
and three right guard-band subcarriers. Specify the cyclic prefix length for each OFDM
symbol.

hMod = comm.OFDMModulator('NumGuardBandCarriers',[4;3],...

 'NumSymbols',5,...

 'CyclicPrefixLength',[12 10 14 11 13]);

Display the properties of the modulator and verify that the cyclic prefix length changes
across symbols.

3 Alphabetical List

3-240

disp(hMod)

 System: comm.OFDMModulator

 Properties:

 FFTLength: 64

 NumGuardBandCarriers: [4;3]

 InsertDCNull: false

 PilotInputPort: false

 CyclicPrefixLength: [12 10 14 11 13]

 Windowing: false

 NumSymbols: 5

 NumTransmitAntennas: 1

Use the info method to determine the data dimensions required by the modulator

The OFDM modulator input data must have dimensions which meet the requirements
outlined in OFDMModulator.info.

Construct an OFDM modulator System object with user-specified pilot indices, insert a
DC null, and specify two transmit antennas.

hMod = comm.OFDMModulator('NumGuardBandCarriers',[4;3], ...

 'PilotInputPort',true, ...

 'PilotCarrierIndices',cat(3,[12; 26; 40; 54], ...

 [11; 25; 39; 53]), ...

 'InsertDCNull',true, ...

 'NumTransmitAntennas',2);

Use the info method to find the modulator input data, pilot input data, and output data
sizes.

info(hMod)

 DataInputSize: [48 1 2]

 PilotInputSize: [4 1 2]

 OutputSize: [80 2]

Use the step method to create OFDM modulated data

The step method is used with the OFDMModulator to generate OFDM modulated
symbols for use in link-level simulations.

Construct an OFDM modulator with an inserted DC null, seven guard-band subcarriers,
and two symbols having different pilot indices for each symbol.

 comm.OFDMModulator System object

3-241

hMod = comm.OFDMModulator('NumGuardBandCarriers',[4;3],...

'PilotInputPort',true, ...

'PilotCarrierIndices',[12 11; 26 27; 40 39; 54 55], ...

'NumSymbols',2, ...

'InsertDCNull',true);

Determine input data, pilot, and output data dimensions.

modDim = info(hMod);

Generate random data symbols for the OFDM modulator. The structure variable,
modDim, determines the number of data symbols.

dataIn = complex(randn(modDim.DataInputSize),randn(modDim.DataInputSize));

Create a pilot signal that has the correct dimensions.

pilotIn = complex(rand(modDim.PilotInputSize),rand(modDim.PilotInputSize));

Apply OFDM modulation to the data and pilot signals.

modData = step(hMod,dataIn,pilotIn);

Use the OFDM modulator object to create the corresponding OFDM demodulator.

hDemod = comm.OFDMDemodulator(hMod);

Demodulate the OFDM signal and output the data and pilot signals.

[dataOut, pilotOut] = step(hDemod,modData);

Verify that the input data and pilot symbols match the output data and pilot symbols.

isSame = (max(abs([dataIn(:) - dataOut(:); ...

 pilotIn(:) - pilotOut(:)])) < 1e-10);

disp(isSame)

1

Algorithms

Orthogonal frequency division modulation (OFDM) divides a high-rate transmit data
stream into N lower-rate streams, each of which has a symbol duration larger than

3 Alphabetical List

3-242

the channel delay spread. This serves to mitigate intersymbol interference (ISI). The
individual substreams are sent over N parallel subchannels which are orthogonal to
each other. Through the use of an inverse fast Fourier transform (IFFT), OFDM can
be transmitted using a single radio. Specifically, the OFDM Modulator System object
modulates an input signal using orthogonal frequency division modulation. The output is
a baseband representation of the modulated signal:

v t X e t Tk
j k ft

k

N

() , ,= £ £

=

-

Â
2

0

1

0p D

where {Xk} are data symbols, N is the number of subcarriers, and T is the OFDM symbol
time. The subcarrier spacing of Δf = 1/T makes them orthogonal over each symbol period.
This is expressed as:

1 1
0

2 2

0

2

0T
e e dt

T
e dt m nj m ft j n ftT j m n ftTp p pD D D() () = = πÚ Ú -

*
()

.for

The data symbols, Xk, are usually complex and can be from any modulation alphabet,
e.g., QPSK, 16-QAM, or 64-QAM.

The figure shows an OFDM modulator. It consists of a bank of N complex modulators,
where each corresponds to one OFDM subcarrier.

 comm.OFDMModulator System object

3-243

Guard Bands and Intervals

There are three types of OFDM subcarriers: data, pilot, and null. Data subcarriers are
used for transmitting data while pilot subcarriers are used for channel estimation.
There is no transmission on null subcarriers, which provide a DC null and provide
buffers between OFDM resource blocks. These buffers are referred to as guard bands

3 Alphabetical List

3-244

whose purpose is to prevent inter-symbol interference. The allocation of nulls and guard
bands vary depending upon the applicable standard, e.g., 802.11n differs from LTE.
Consequently, the OFDM modulator object allows the user to assign subcarrier indices.

Analogous to the concept of guard bands, the OFDM modulator object supports guard
intervals which are used to provide temporal separation between OFDM symbols so that
the signal does not lose orthogonality due to time-dispersive channels. As long as the
guard interval is longer than the delay spread, each symbol does not interfere with other
symbols. Guard intervals are created by using cyclic prefixes in which the last part of an
OFDM symbol is copied and inserted as the first part of the OFDM symbol. The benefit
of cyclic prefix insertion is maintained as long as the span of the time dispersion does
not exceed the duration of the cyclic prefix. The OFDM modulator object enables the
setting of the cyclic prefix length. The drawback in using a cyclic prefix is the penalty
from increased overhead.

 comm.OFDMModulator System object

3-245

Raised Cosine Windowing

While the cyclic prefix creates guard period in time domain to preserve orthogonality, an
OFDM symbol rarely begins with the same amplitude and phase exhibited at the end of
the prior OFDM symbol. This causes spectral regrowth, which is the spreading of signal
bandwidth due to intermodulation distortion. To limit this spectral regrowth, it is desired
to create a smooth transition between the last sample of a symbol and the first sample of
the next symbol. This can be done by using a cyclic suffix and raised cosine windowing.

To create the cyclic suffix, the first NWIN samples of a given symbol are appended to the
end of that symbol. However, in order to comply with the 802.11g standard, for example,
the length of a symbol cannot be arbitrarily lengthened. Instead, the cyclic suffix must
overlap in time and is effectively summed with the cyclic prefix of the following symbol.
This overlapped segment is where windowing is applied. Two windows are applied, one of
which is the mathematical inverse of the other. The first raised cosine window is applied
to the cyclic suffix of symbol k, and decreases from 1 to 0 over its duration. The second
raised cosine window is applied to the cyclic prefix of symbol k+1, and increases from 0 to
1 over its duration. This provides a smooth transition from one symbol to the next.

The raised cosine window, w(t), in the time domain can be expressed as:

3 Alphabetical List

3-246

w t

t
T T

T
t

T T T

W

W

W()

,

cos ,=

£ <
-

+ -
-Ê

Ë
Á

ˆ

¯
˜

È

Î
Í

˘

˚
˙

Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂

-

1 0
2

1

2
1

2

p TT
t

T TW W

2 2

0

£ £
+

Ï

Ì

Ô
Ô
Ô

Ó

Ô
Ô
Ô , otherwise

,

where

• T represents the OFDM symbol duration including the guard interval.
• TW represents the duration of the window.

Adjust the length of the cyclic suffix via the window length setting property, with suffix
lengths set between 1 and the minimum cyclic prefix length. While windowing improves
spectral regrowth, it does so at the expense of multipath fading immunity. This occurs
because redundancy in the guard band is reduced because the guard band sample values
are compromised by the smoothing.

The following figures display the application of raised cosine windowing.

 comm.OFDMModulator System object

3-247

Selected Bibliography

[1] Dahlman, E., S. Parkvall, and J. Skold. 4G LTE/LTE-Advanced for Mobile
Broadband.London: Elsevier Ltd., 2011.

[2] Andrews, J. G., A. Ghosh, and R. Muhamed. Fundamentals of WiMAX.Upper Saddle
River, NJ: Prentice Hall, 2007.

[3] Agilent Technologies, Inc., “OFDM Raised Cosine Windowing”, http://
wireless.agilent.com/rfcomms/n4010a/n4010aWLAN/onlineguide/
ofdm_raised_cosine_windowing.htm.

http://wireless.agilent.com/rfcomms/n4010a/n4010aWLAN/onlineguide/ofdm_raised_cosine_windowing.htm
http://wireless.agilent.com/rfcomms/n4010a/n4010aWLAN/onlineguide/ofdm_raised_cosine_windowing.htm
http://wireless.agilent.com/rfcomms/n4010a/n4010aWLAN/onlineguide/ofdm_raised_cosine_windowing.htm

3 Alphabetical List

3-248

[4] Montreuil, L., R. Prodan, and T. Kolze. “OFDM TX Symbol Shaping 802.3bn”, http://
www.ieee802.org/3/bn/public/jan13/montreuil_01a_0113.pdf.Broadcom, 2013.

[5] “IEEE Standard 802.16TM-2009,” New York: IEEE, 2009.

See Also
comm.QPSKModulator | comm.OFDMDemodulator |
comm.RectangularQAMModulator | OFDM Modulator Baseband

How To
• “LTE PHY Downlink with Spatial Multiplexing”
• “LTE Downlink PDSCH with Transmit Diversity”

http://www.ieee802.org/3/bn/public/jan13/montreuil_01a_0113.pdf
http://www.ieee802.org/3/bn/public/jan13/montreuil_01a_0113.pdf

 clone

3-249

clone
System object: comm.OFDMModulator
Package: comm

Create OFDM modulator object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a OFDMModulator object, C, with the same property values as H.
The clone method creates a new unlocked object with uninitialized states.

3 Alphabetical List

3-250

info
System object: comm.OFDMModulator
Package: comm

Provide dimensioning information for the OFDM method

Syntax

Y = info(H)

Description

Y = info(H) provides data dimensioning information for the OFDM modulator System
object, H. It returns the expected dimensions for the:

• Input data array
• Pilot data array
• Output data array

The output, Y, is a structure containing the following three fields.

Y.DataInputSize
Dimensions of the modulator input data, Ndata-by-Nsym-by-Nt, where Ndata is the
number of data subcarriers such that Ndata = NFFT − NleftG − NrightG − NDCNull − Npilot −
NcustNull.

Variable Description

NFFT Number of subcarriers
NleftG Number of subcarriers in the left guard band
NrightG Number of subcarriers in the right guard band
NDCNull Number of subcarriers in the DC null (either 0 or 1)
Npilot Number of pilot subcarriers

 info

3-251

Variable Description

NcustNull Number of subcarriers used for custom nulls (applies only
when the pilot indices property is a 3-D array)

Nt Number of transmit antennas

Y.PilotInputSize
Dimensions of the pilot input array, Npilot-by-Nsym-by-Nt.

Y.OutputSize
Dimensions of the modulator output data, (NFFT + NCP)×Nsym-by-Nt, where NCP is the
length of the cyclic prefix.

3 Alphabetical List

3-252

isLocked
System object: comm.OFDMModulator
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the OFDMModulator System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

 release

3-253

release
System object: comm.OFDMModulator
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

3 Alphabetical List

3-254

reset
System object: comm.OFDMModulator
Package: comm

Reset states of the OFDMModulator System object

Syntax

reset(H)

Description

reset(H) resets the states of the OFDMModulator object, H.

This method resets the windowed suffix from the last symbol in the previously processed
frame.

 showResourceMapping

3-255

showResourceMapping
System object: comm.OFDMModulator
Package: comm

Show the subcarrier mapping of the OFDM symbols created by the OFDM modulator
System object.

Syntax

showResourceMapping(H)

showResourceMapping(H,CI)

Description

showResourceMapping(H) shows a visualization of the subcarrier mapping for the
OFDM symbols used by the OFDM modulator System object, H. The subcarrier indices
are numbered from 1 to NFFT.

showResourceMapping(H,CI) shows the resource mapping where the optional
argument, CI, is used to number the subcarrier indices that will be displayed. CI is a 1x2
integer row vector such that diff(CI)= NFFT − 1.

3 Alphabetical List

3-256

step
System object: comm.OFDMModulator
Package: comm

Modulate using OFDM method

Syntax

Y = step(H,X)

Y = step(H,X,PILOT)

Description

Y = step(H,X) modulates input data, X, with the OFDM modulator System object,
H, and returns the baseband modulated output, Y, which is a double-precision, 2-D
array with complex values. The input, X, is a numeric, real or complex 3-D array of
symbols (typically created with a baseband demodulator, e.g., QPSK). Its dimensions
are a function of the number of subcarriers, the number of guard band subcarriers, the
number of pilot subcarriers, and whether or not there is a DC null. You can determine
the dimensions by using the info method.

Y = step(H,X,PILOT) maps the PILOT signal onto the subcarriers specified by the
“PilotCarrierIndices” property of H. The input PILOT is a numeric, real or complex
3-D array. This syntax applies when the “PilotInputPort” property of H is true. The
info method provides the dimensions of the PILOT array.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

 comm.OFDMDemodulator System object

3-257

comm.OFDMDemodulator System object

Package: comm

Demodulate using OFDM method

Description

The OFDMDemodulator object demodulates using the orthogonal frequency division
demodulation method. The output is a baseband representation of the modulated signal,
which was input into the OFDMModulator companion object.

To demodulate an OFDM signal:

1 Define and set up the OFDM demodulator object. See “Construction” on page 3-214.
2 Call step to demodulate a signal according to the properties of

comm.OFDMDemodulator. The behavior of step is specific to each object in the
toolbox.

Construction

H = comm.OFDMDemodulator creates a demodulator System object, H, that
demodulates an input signal by using the orthogonal frequency division demodulation
method.

H = comm.OFDMDemodulator(Name,Value) creates an OFDM demodulator object, H,
with each specified property set to the specified value. You can specify additional name-
value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

H = comm.OFDMDemodulator(hMod) creates an OFDM demodulator object, H, whose
properties are determined by the corresponding OFDM modulator object, hMod.

Properties

FFTLength

3 Alphabetical List

3-258

The length of the FFT, NFFT, is equivalent to the number of subcarriers used in the
modulation process. FFTLength must be ≥ 8.

Specify the number of subcarriers. The default is 64.

NumGuardBandCarriers

The number of guard band subcarriers allocated to the left and right guard bands.

Specify the number of left and right subcarriers as nonnegative integers in [0, NFFT/2 − 1]
where you specify the left, NleftG, and right, NrightG, guard bands independently in a 2-by-1
column vector. The default values are [6; 5].

RemoveDCCarrier

A logical variable that when true, mandates removal of a DC subcarrier. The default
value is false.

PilotOutputPort

A logical property that controls whether to separate the pilot signals and make
them available at an additional output port. The location of each pilot output symbol
is determined by the pilot subcarrier indices specified in the PilotCarrierIndices
property. When false, pilot symbols may be present but embedded in the data. The
default value is false.

PilotCarrierIndices

If the PilotOutputPort property is true, output separate pilot signals located at the
indices specified by the PilotCarrierIndices property. If the indices are a 2-D array,
the pilot carriers across all the transmit antennas per symbol are the same. If there is
more than one transmit antenna (this information is not known by the demodulator),
the pilots from different transmit antennas may interfere with each other. To avoid this,
specify the pilot carrier indices as a 3-D array with different pilot indices for each symbol
across the antennas. This avoids interference between pilots from different transmit
antennas, since, on a per-symbol basis, each transmit antenna has different pilot carriers
and the OFDM modulator creates custom nulls at the appropriate locations. The size
of the third dimension of the PilotCarrierIndices property gives the number of
transmit antennas.

CyclicPrefixLength

 comm.OFDMDemodulator System object

3-259

The cyclic prefix length property specifies the length of the OFDM cyclic prefix. If you
specify a scalar, the prefix length is the same for all symbols through all antennas. If you
specify a row vector of length Nsym, the prefix length can vary across symbols but remains
the same length through all antennas. The default value is 16.

NumSymbols

This property specifies the number of symbols, Nsym. Specify Nsym as a positive integer.
The default value is 1.

NumReceiveAntennnas

This property determines the number of antennas, Nr, used to receive the OFDM
modulated signal. Specify Nr as a positive integer such that Nr ≤ 64. The default value is
1.

Methods

clone
Create OFDM demodulator object with
same property values

info
Provide dimensioning information for the
OFDM method

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

showResourceMapping
Show the subcarrier mapping of the OFDM
symbols created by the OFDM demodulator
System object

step
Demodulate using OFDM method

3 Alphabetical List

3-260

Examples

Create and modify an OFDM demodulator

An OFDM demodulator System object can be constructed using default properties. Once
created, these properties can be modified.

Construct the OFDM demodulator.

hDemod = comm.OFDMDemodulator;

Display the properties of the modulator.

disp(hDemod)

System: comm.OFDMDemodulator

 Properties:

 FFTLength: 64

 NumGuardBandCarriers: [6;5]

 RemoveDCCarrier: false

 PilotOutputPort: false

 CyclicPrefixLength: 16

 NumSymbols: 1

 NumReceiveAntennas: 1

Modify the number of subcarriers and symbols.

hDemod.FFTLength = 128;

hDemod.NumSymbols = 2;

Verify that the number of subcarriers and the number of symbols changed.

disp(hDemod)

System: comm.OFDMDemodulator

 Properties:

 FFTLength: 128

 NumGuardBandCarriers: [6;5]

 RemoveDCCarrier: false

 PilotOutputPort: false

 CyclicPrefixLength: 16

 comm.OFDMDemodulator System object

3-261

 NumSymbols: 2

 NumReceiveAntennas: 1

Use an OFDM modulator to create an OFDM demodulator

An OFDM demodulator System object can be constructed from an existing OFDM
modulator System object.

Construct an OFDM modulator using default parameters.

hMod = comm.OFDMModulator('NumTransmitAntennas', 4);

Construct the corresponding OFDM demodulator from the modulator, hMod.

hDemod = comm.OFDMDemodulator(hMod);

Display the properties of the modulator and verify that they match those of the
demodulator.

disp(hMod)

disp(hDemod)

System: comm.OFDMModulator

 Properties:

 FFTLength: 64

 NumGuardBandCarriers: [6;5]

 InsertDCNull: false

 PilotInputPort: false

 CyclicPrefixLength: 16

 Windowing: false

 NumSymbols: 1

 NumTransmitAntennas: 4

 System: comm.OFDMDemodulator

 Properties:

 FFTLength: 64

 NumGuardBandCarriers: [6;5]

 RemoveDCCarrier: false

 PilotOutputPort: false

 CyclicPrefixLength: 16

 NumSymbols: 1

 NumReceiveAntennas: 1

3 Alphabetical List

3-262

Note that the number of transmit antennas is independent of the number of receive
antennas.

Use the showResourceMapping method to visualize the time-frequency resource assignments

The showResourceMapping method shows the time-frequency resource mapping for
each transmit antenna.

Construct an OFDM demodulator.

hDemod = comm.OFDMDemodulator;

Apply the showResourceMapping method.

showResourceMapping(hDemod)

 comm.OFDMDemodulator System object

3-263

Remove the DC subcarrier.

hDemod.RemoveDCCarrier = true;

Show the resource mapping after removing the DC subcarrier.

showResourceMapping(hDemod)

Use the step method to demodulate OFDM data

Use the step method in conjunction with the OFDMDemodulator to demodulate OFDM
symbols.

Construct an OFDM modulator with an inserted DC null, seven guard-band subcarriers,
and two symbols that have different pilot indices for each symbol.

3 Alphabetical List

3-264

hMod = comm.OFDMModulator('NumGuardBandCarriers',[4;3],...

'PilotInputPort', true, 'PilotCarrierIndices',cat(2,[12; 26; 40; 54],...

[11; 27; 39; 55]), 'NumSymbols', 2, 'InsertDCNull', true);

Determine input data, pilot, and output data dimensions.

modDim = info(hMod);

Generate random data symbols for the OFDM modulator. The structure variable,
modDim, determines the number of data symbols.

dataIn = complex(randn(modDim.DataInputSize), randn(modDim.DataInputSize));

Create a pilot signal that has the correct dimensions.

pilotIn = complex(rand(modDim.PilotInputSize), rand(modDim.PilotInputSize));

Apply OFDM modulation to the data and pilot signals.

modData = step(hMod, dataIn, pilotIn);

Use the OFDM modulator object to create the corresponding OFDM demodulator.

hDemod = comm.OFDMDemodulator(hMod);

Demodulate the OFDM signal and output the data and pilot signals.

[dataOut, pilotOut] = step(hDemod, modData);

Verify that the input data and pilot symbols match the output data and pilot symbols.

isSame = (max(abs([dataIn(:) - dataOut(:); ...

 pilotIn(:) - pilotOut(:)])) < 1e-10);

disp(isSame)

1

Algorithms

The Orthogonal Frequency Division Modulation (OFDM) Demodulator System object
demodulates an OFDM input signal by using an FFT operation that results in N parallel
data streams.

 comm.OFDMDemodulator System object

3-265

The figure shows an OFDM demodulator. It consists of a bank of N correlators with one
assigned to each OFDM subcarrier followed by a parallel-to-serial conversion.

Guard Bands and Intervals

There are three types of OFDM subcarriers: data, pilot, and null. Data subcarriers are
used for transmitting data while pilot subcarriers are used for channel estimation. There
is no transmission on null subcarriers, which are used to provide a DC null as well as to
provide buffers between OFDM resource blocks. These buffers are referred to as guard
bands whose purpose is to prevent inter-symbol interference. The allocation of nulls
and guard bands varies depending upon the standard, e.g., 802.11n differs from LTE.
Consequently, the OFDM modulator object allows the user to assign subcarrier indices as
required.

3 Alphabetical List

3-266

Analogous to the concept of guard bands, the OFDM modulator object supports guard
intervals that provide temporal separation between OFDM symbols so that the signal
does not lose orthogonality due to time-dispersive channels. As long as the guard interval
is longer than the delay spread, each symbol does not interfere with other symbols.
Guard intervals are created by using cyclic prefixes in which the last part of an OFDM
symbol is copied and inserted as the first part of the OFDM symbol. The benefit of cyclic
prefix insertion is maintained as long as the span of the time dispersion does not exceed
the duration of the cyclic prefix. The OFDM modulator object enables the cyclic prefix
length to be set. The drawback in using a cyclic prefix is increased overhead.

 comm.OFDMDemodulator System object

3-267

Selected Bibliography

[1] Dahlman, E., S. Parkvall, and J. Skold. 4G LTE/LTE-Advanced for Mobile
Broadband.London: Elsevier Ltd., 2011.

[2] Andrews, J. G., A. Ghosh, and R. Muhamed, Fundamentals of WiMAX, Upper Saddle
River, NJ: Prentice Hall, 2007.

[3] I. E. E. E., “IEEE Standard 802.16TM-2009.”

See Also
comm.QPSKDemodulator | OFDM Demodulator Baseband | comm.OFDMModulator |
comm.RectangularQAMDemodulator

How To
• “LTE PHY Downlink with Spatial Multiplexing”
• “LTE Downlink PDSCH with Transmit Diversity”

3 Alphabetical List

3-268

clone
System object: comm.OFDMDemodulator
Package: comm

Create OFDM demodulator object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a OFDMDemodulator object, C, with the same property values as
H. The clone method creates a new unlocked object with uninitialized states.

 info

3-269

info
System object: comm.OFDMDemodulator
Package: comm

Provide dimensioning information for the OFDM method

Syntax

Y = info(H)

Description

Y = info(H) provides data dimensioning information for the OFDM demodulator
System object, H. It returns the expected dimensions for data input into the OFDM
demodulator, for the pilot output, and for the data output from the demodulator. The
output, Y, is a structure containing three fields: InputSize, DataOutputSize, and
PilotOutputSize.

Y.InputSize
Gives the dimensions of the demodulator input data, [(NFFT + NCP) × Nsym]-by-Nr,
where NFFT is the number of subcarriers, NCP is the length of the cyclic prefix, Nsym is
the number of symbols, and Nr is the number of receive antennas.

Y.DataOutputSize
Shows the dimensions of the demodulator output data, Ndata-by-Nsym-by-Nr, where
Ndata is the number of data subcarriers such that Ndata = NFFT − NleftG − NrightG −
NDCNull − Npilot − NcustNull. The variables are defined as follows:

NFFT Number of subcarriers
NleftG Number of subcarriers in the left guard

band
NrightG Number of subcarriers in the right guard

band
NDCNull Number of subcarriers in the DC null

(either 0 or 1)

3 Alphabetical List

3-270

Npilot Number of pilot subcarriers
NcustNull Number of subcarriers used for custom

nulls

Y.PilotOutputSize
Provides the dimensions of the pilot signal output array, Npilot-by-Nsym-by-Nr or Npilot-
by-Nsym-by-Nt-by-Nr, depending on the number of transmit antennas.

 isLocked

3-271

isLocked
System object: comm.OFDMDemodulator
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the OFDMDemodulator System
object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

3 Alphabetical List

3-272

release
System object: comm.OFDMDemodulator
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 showResourceMapping

3-273

showResourceMapping
System object: comm.OFDMDemodulator
Package: comm

Show the subcarrier mapping of the OFDM symbols created by the OFDM demodulator
System object

Syntax

showResourceMapping(H)

showResourceMapping(H,CI)

Description

showResourceMapping(H) shows a visualization of the subcarrier mapping for the
OFDM symbols used by the OFDM demodulator System object, H. The subcarrier indices
are numbered from 1 to NFFT.

showResourceMapping(H,CI) shows the resource mapping where the optional
argument, CI, is used to number the subcarrier indices that will be displayed. CI is a 1x2
integer row vector such that diff(CI)= NFFT − 1.

3 Alphabetical List

3-274

step
System object: comm.OFDMDemodulator
Package: comm

Demodulate using OFDM method

Syntax

Y = step(H,X)

[Y,PILOT] = step(H,X)

Description

Y = step(H,X) demodulates input data, X, with the OFDM demodulator System
object, H, and returns the baseband demodulated output, Y. The input is a double-
precision, real or complex, 2-D matrix of symbols whose dimensions are a function of the
number of subcarriers, the cyclic prefix length, and the number of receive antennas. You
can determine the dimensions by using the info method. The output, Y, is a double-
precision, complex, 3-D array.

[Y,PILOT] = step(H,X) separates the PILOT signal on the subcarriers specified
by the “PilotCarrierIndices” property value of H. This syntax applies when the
“PilotOutputPort” property of H is true. PILOT is a double-precision, complex, 3-D
array.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

 comm.CCDF System object

3-275

comm.CCDF System object
Package: comm

Measure complementary cumulative distribution function

Description

The CCDF object measures the probability of a signal's instantaneous power to be a
specified level above its average power.

To measure complementary cumulative distribution of a signal:

1 Define and set up your CCDF object. See “Construction” on page 3-275 .
2 Call step to measure complementary cumulative distribution according to the

properties of comm.CCDF. The behavior of step is specific to each object in the
toolbox.

Construction

H = comm.CCDF creates a complementary cumulative distribution function
measurement (CCDF) System object, H, that measures the probability of a signal's
instantaneous power to be a specified level above its average power.

H = comm.CCDF(Name,Value) creates a CCDF object, H, with each specified property
set to the specified value. You can specify additional name-value pair arguments in any
order as (Name1,Value1,...,NameN,ValueN).

Properties

NumPoints

Number of CCDF points

Specify the number of CCDF points that the object calculates. This property requires
a numeric, positive, integer scalar. The default is 1000. Use this property with the

3 Alphabetical List

3-276

“MaximumPowerLimit” property to control the size of the histogram bins. The object uses
these bins to estimate CCDF curves. This controls the resolution of the curves. All input
channels must have the same number of CCDF points.

MaximumPowerLimit

Maximum expected input signal power

Specify the maximum expected input signal power limit for each input channel. The
default is 50. Set this property to a numeric scalar or row vector length equal to the
number of input channels. When you set the this property to a scalar, the object assumes
that the signals in all input channels have the same expected maximum power. When
you set this property to a row vector length equal to the number of input channels, the
object assumes that the i-th element of the vector is the maximum expected power for
the signal at the i-th input channel. When you call the step method, the object displays
the value of this property is in the units that you specify in the “PowerUnits” property.
For each input channel, the object obtains CCDF results by integrating a histogram of
instantaneous input signal powers. The object sets the bins of the histogram so that the
last bin collects all power occurrences that are equal to, or greater than the power that
you specify in this property. The object issues a warning if any input signal exceeds its
specified maximum power limit. Use this property with the “NumPoints” property to
control the size of the histogram bins that the object uses to estimate CCDF curves (such
as control the resolution of the curves).

PowerUnits

Power units

Specify the power measurement units as one of dBm | dBW | Watts. The default is
dBm. The step method outputs power measurements in the units specified in the
“PowerUnits” property. When you set this property to dBm or dBW, the step method
outputs relative power values in a dB scale. When you set this property to Watts, the
step method outputs relative power values in a linear scale. When you call the step
method, the object assumes that the units of “MaximumPowerLimit” have the same
value you specified in the PowerUnits property.

AveragePowerOutputPort

Enable average power measurement output

When you set this property to true, the step method outputs running average power
measurements. The default is false.

 comm.CCDF System object

3-277

PeakPowerOutputPort

Enable peak power measurement output

When you set this property to true, the step method outputs running peak power
measurements. The default is false.

PAPROutputPort

Enable PAPR measurement output

When you set this property to true, the step method outputs running peak-to-average-
power measurements. The default is false.

Methods

clone
Create CCDF measurement object with
same property values

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

getPercentileRelativePower
Get relative power value for a given
probability

getProbability
Get the probability for a given relative
power value

isLocked
Locked status for input attributes and
nontunable properties

plot
Plot CCDF curves

release
Allow property value and input
characteristics changes

3 Alphabetical List

3-278

reset
Reset states of CCDF measurement object

step
Measure complementary cumulative
distribution function

Examples

Obtain CCDF curves for 16-QAM and QPSK signals

% Create a rectangular QAM modulator, a QPSK modulator, and an AWGN Channel

 hQAM = comm.RectangularQAMModulator(16);

 hQPSK = comm.QPSKModulator;

 hChan = comm.AWGNChannel('NoiseMethod',...

 'Signal to noise ratio (SNR)', 'SNR', 15);

 % Create a CCDF System object and request average power and peak

 % power measurement outputs

 hCCDF = comm.CCDF('AveragePowerOutputPort', true, ...

 'PeakPowerOutputPort', true);

 % Modulate signals

 sQAM = step(hQAM,randi([0 16-1],20e3,1));

 sQPSK = step(hQPSK,randi([0 4-1],20e3,1));

 % Pass signals through an AWGN channel

 hChan.SignalPower = 10;

 sQAMNoisy = step(hChan,sQAM);

 hChan.SignalPower = 1;

 sQPSKNoisy = step(hChan,sQPSK);

 % Obtain CCDF measurements

 [CCDFy,CCDFx,AvgPwr,PeakPwr] = step(hCCDF,[sQAMNoisy sQPSKNoisy]);

 % plot CCDF curves using the plot method of the CCDF object

 plot(hCCDF)

 legend('16-QAM','QPSK')

 comm.CCDF System object

3-279

See Also
comm.ACPR | comm.MER | comm.EVM

3 Alphabetical List

3-280

clone
System object: comm.CCDF
Package: comm

Create CCDF measurement object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a CCDF object C, with the same property values as H. The clone
method creates a new unlocked object with uninitialized states.

 getNumInputs

3-281

getNumInputs
System object: comm.CCDF
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) method returns a positive integer, N, representing the number
of expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H).

3 Alphabetical List

3-282

getNumOutputs
System object: comm.CCDF
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn outputs on or off are changed.

 getPercentileRelativePower

3-283

getPercentileRelativePower
System object: comm.CCDF
Package: comm

Get relative power value for a given probability

Syntax

R = getPercentileRelativePower(H,P)

Description

R = getPercentileRelativePower(H,P) finds the relative power values, R. The
power of the signal of interest is above its average power by R dB (if PowerUnits equals
'dBW', or 'dBm') or by a factor of R (in linear scale if PowerUnits equals 'Watts') with a
probability P.

The method output R, is a column vector with the i-th element corresponding to the
relative power for the i-th input channel. The method input P can be a double precision
scalar, or a vector with a number of elements equal to the number of input channels. If
P is a scalar, then all the relative powers in R correspond to the same probability value
specified in P. If P is a vector, then the i-th element of R corresponds to a power value
that occurs in the i-th input channel, with a probability specified in the i-th element of P.

For the i-th input channel, this method evaluates the inverse CCDF curve at probability
value P(i).

Examples

Obtain CCDF curves for a unit variance AWGN signal and a dual- one signal. The
AWGN signal is RPW1 dB above its average power one percent of the time, and the dual-
tone signal is RPW2 dB above its average power 10 percent of the time. This example
finds the values of RPW1 and RPW2.

 n = [0:5e3-1].';

 s1 = randn(5e3,1); % AWGN signal

3 Alphabetical List

3-284

 s2 = sin(0.01*pi*n)+sin(0.03*pi*n); % dual-tone signal

 hCCDF = comm.CCDF; % create a CCDF object

 step(hCCDF,[s1 s2]); % step the CCDF measurements

 plot(hCCDF) % plot CCDF curves

 legend('AWGN','Dual-tone')

 RPW = getPercentileRelativePower(hCCDF,[1 10]);

 RPW1 = RPW(1)

 RPW2 = RPW(2)

 getProbability

3-285

getProbability
System object: comm.CCDF
Package: comm

Get the probability for a given relative power value

Syntax

P = getProbability(H,R)

Description

P = getProbability(H,R) finds the probability, P, of the power level of the signal
of interest being R dBs (if PowerUnits equals 'dBW', or 'dBm') or Watts (if PowerUnits
equals 'Watts') above its average power. P is a column vector with the i-th element
corresponding to the probability value for the i-th input channel. Input R can be a
double precision scalar or a vector with a number of elements equal to the number of
input channels. If R is a scalar, then all the probability values in P correspond to the
same relative power specified in R. If R is a vector, then the ith element of P contains
a probability value for the i-th channel and for the relative power specified in the i-th
element of R.

For the i-th input channel, this method evaluates the CCDF curve at relative power
value R(i)

Examples

Obtain CCDF curves for a unit variance AWGN signal and a dual- tone signal. Find the
probability that the AWGN signal power is 5 dB above its average power and that the
dual-tone signal power is 3 dB above its average power.

 n = [0:5e3-1].';

 s1 = randn(5e3,1); % AWGN signal

 s2 = sin(0.01*pi*n)+sin(0.03*pi*n); % dual-tone signal

 hCCDF = comm.CCDF;

 step(hCCDF,[s1 s2]);

3 Alphabetical List

3-286

 plot(hCCDF) % plot CCDF curves

 legend('AWGN','Dual-tone')

 P = getProbability(hCCDF,[5 3]) % get probabilities

 isLocked

3-287

isLocked
System object: comm.CCDF
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the CCDF System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

3 Alphabetical List

3-288

plot
System object: comm.CCDF
Package: comm

Plot CCDF curves

Syntax

D = plot(H)

Description

D = plot(H) plots CCDF measurements in the CCDF System object, H. The plot
method returns the plot handles as an output, D. This method plots the same number
of curves as there are input channels. The H input can be followed by parameter-value
pairs to specify additional properties of the curves. For example, plot(H,LineWidth,2)
will create curves with line widths of 2 points.

The comm.CCDF System object does not support C code generation for this method.

 release

3-289

release
System object: comm.CCDF
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

3 Alphabetical List

3-290

reset
System object: comm.CCDF
Package: comm

Reset states of CCDF measurement object

Syntax

reset(H)

Description

reset(H) resets the states of the CCDF object, H.

 step

3-291

step
System object: comm.CCDF
Package: comm

Measure complementary cumulative distribution function

Syntax

[CCDFY,CCDFX] = step(H,X)

[CCDFY,CCDFX,AVG] = step(H,X)

[CCDFY,CCDFX,PEAK] = step(H,X)

[CCDFY,CCDFX,PAPR] = step(H,X)

Description

[CCDFY,CCDFX] = step(H,X) updates CCDF, average power, and peak power
measurements for input X using the CCDF System object, H. It outputs the y-axis, CCDFY,
and x-axis, CCDFX, CCDF points. X must be a double precision, M-by-N matrix, where
M is the number of time samples and N is the number of input channels. The step
method outputs CCDFY as a matrix whose i-th column contains updated probability
values measured from the i-th column of input matrix X. CCDFY contains the y-axis
points of the CCDF curves of each channel. The step method outputs CCDFX as a matrix
containing, in its i-th column, the corresponding updated instantaneous-to-average power
ratios for the ith column of input matrix X. CCDFX contains the x-axis points of the CCDF
curves of each channel. The object sets the number of rows in CCDFY and CCDFX equal
to NumPoints property + 1. The probability values are percentages in the [0 100]
interval. When you set the PowerUnits property to dBW or dBm, the relative powers are
in dB scale. When you set the PowerUnits property to Watts, the relative powers are
in linear scale. Measurements are updated each time you call the step method until you
reset the object. You call the plot method to plot CCDF curves for each channel.

[CCDFY,CCDFX,AVG] = step(H,X) returns updated average power measurements,
AVG, when you set the AveragePowerOutputPort property to true. The step method
outputs AVG as a column vector with the ith element corresponding to an updated
average power measurement for the signal available in the ith column of input matrix X.
You specify the units for AVG in the PowerUnits property.

3 Alphabetical List

3-292

[CCDFY,CCDFX,PEAK] = step(H,X) returns updated peak power measurements,
PEAK, when you set the PeakPowerOutputPort property to true. The step method
outputs PEAK as a column vector with the ith element corresponding to an updated peak
power measurement for the signal available in the ith column of input matrix X. You
specify the units for PEAK in the PowerUnits property.

[CCDFY,CCDFX,PAPR] = step(H,X) returns updated peak-to-average power ratio
measurements, PAPR, when you set the PAPROutputPort property to true. The step
methods outputs PAPR as a column vector with the ith element corresponding to an
updated peak-to-average power ratio measurement for the signal available in the ith
column of input matrix X. When you set the PowerUnits property to dBW or dBm, the
method outputs PAPR in a dB scale. When you set the PowerUnits property to Watts,
the method outputs PAPR in a linear scale. You can combine optional output arguments
when you set their enabling properties. Optional outputs must be listed in the same
order as the order of the enabling properties. For example,

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

 comm.ConstellationDiagram System object

3-293

comm.ConstellationDiagram System object
Package: comm

Display a constellation diagram for input signals

Description

The ConstellationDiagram System object plots constellation diagrams, plots signal
trajectory, and provides the ability to perform EVM and MER measurements.

To plot constellation diagrams:

1 Define and set up your constellation diagram object. See “Construction” on page
3-293.

2 Call step to display a constellation diagram figure according to the properties of
comm.ConstellationDiagram. The behavior of step is specific to each object in
the toolbox.

Construction

H = comm.ConstellationDiagram returns a System object, H, that displays real and
complex-valued floating and fixed-point signals in the I/Q plane.

H = comm.ConstellationDiagram(Name,Value, ...) returns a Constellation
Diagram System object, H, with each specified property Name set to the specified
Value. You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties

Name

Caption to display on Constellation Diagram window

Specify the caption that the Constellation Diagram window displays as a string. The
default value of this property is Constellation Diagram. This property is tunable.

3 Alphabetical List

3-294

SamplesPerSymbol

Number of samples used to represent a symbol

Specify the number of samples that represent a symbol. The default value of this
property is 1. When the SamplesPerSymbol property is greater than 1, the object
downsamples and plots the input signal.

SampleOffset

Number of samples to skip before plotting points

Specify the number of samples to skip when decimating the input signal. The default
value of this property is 0. This property is tunable. This value must be a nonnegative
integer less than the number of samples per symbol.

SymbolsToDisplaySource

Specify the source of symbols to display as one of Input frame length | Property].
When you set the SymbolsToDisplaySource to Input frame length, the object
calculates the number of symbols to display as the input frame length divided by the
value of the “SamplesPerSymbol” property. When you set this property to Property, the
maximum number of symbols to display is the value of the “SymbolsToDisplay” property.
The default is Input frame length. This property is tunable.

SymbolsToDisplay

The maximum number of symbols that can be displayed when input signal is long.

This property is applicable when you set the “SymbolsToDisplaySource” property to
Property. Always plot the latest SymbolsToDisplay symbols. The default value of this
property is 256. This property is tunable.

ReferenceConstellation

The ideal constellation of the input signal

The object can display the ReferenceConstellation with its own marker. To obtain the
signal quality measurement, you must set the ReferenceConstellation property to a valid
value. The default value of this property is [0.7071+0.7071i -0.7071+0.7071i
-0.7071-0.7071i 0.7070-0.7071i]. This property is tunable.

ReferenceMarker

 comm.ConstellationDiagram System object

3-295

Specify the marker for reference display

The default value of this property is '+'. This property is tunable.

ReferenceColor

Specify the color for reference display constellation

The default value of this property is [1 0 0] (red). This property is tunable.

ShowReferenceConstellation

Option to turn on the reference constellation

Set this property to true to show reference constellation on the display. The default
value of this property is true. This property is tunable.

ShowTrajectory

Option to turn on the signal trajectory plot.

Set this property to true to display a plot of the signal trajectory. The signal trajectory is
a plot of the in-phase component versus the quadrature component of a modulated signal.
The default value of this property is false. This property is tunable.

Position

Scope window position in pixels

Specify the size and location of the scope window in pixels, as a four-element double
vector of the form: [left bottom width height]. The default value of this property is
dependent on the screen resolution, and is such that the window is positioned in the
center of the screen, with a width and height of 410 and 300 pixels respectively. This
property is tunable.

ShowGrid

Option to turn on grid

Set this property to true to turn on the grid or false to turn off the grid. The default
value of this property is true. This property is tunable.

ShowLegend

Option to turn on legend

3 Alphabetical List

3-296

Set this property to true to turn on the legend. The default is false. This property is
tunable.

ColorFading

Option to add color fading effect

When you set this property to true, the points in the display fade as the interval of time
after they are first plotted increases. This is for animation that resembles an oscilloscope.
The default value of this property is false. This property is tunable.

Title

Display title

Specify the display title as a string. The default value of this property is an empty string.
This property is tunable.

XLimits

X-axis limits

Specify the x-axis limits as a two-element numeric vector: [xmin xmax]. The default
value of this property is [-1.375 1.375]. This property is tunable.

YLimits

Y-axis limits

Specify the y-axis limits as a two-element numeric vector: [ymin ymax]. The default
value of this property is [-1.375 1.375]. This property is tunable

XLabel

X-axis label

Specify the x-axis label as a string. The default value of this property is In-phase
Amplitude. This property is tunable.

YLabel

Y-axis label

Specify the y-axis label as a string. The default value of this property is Quadrature
Amplitude. This property is tunable.

 comm.ConstellationDiagram System object

3-297

MeasurementInterval

The measurement interval

When the input signal contains one sample per symbol and the reference constellation is
provided, this System object can measure the signal quality in terms of EVM and MER.
The measurement panel can be evoked by clicking on the Signal Quality button. This
property specifies the window length for the measurement. The value of this property
must be greater than one and less than or equal to the value of SymbolesToDisplay
property. If the number of data input is less than MeasurementInterval, it will wait
for more data before measurement can be calculated. The default value of this property is
2. This property is tunable.

EVMNormalization

EVM normalization

Specify the normalization method that the object uses in the EVM calculation as one of
Average constellation power or Peak constellation power. The default value
of this property is Average constellation power. This property is tunable.

Methods

clone
Create scope object with same property
values

hide
Hide scope window

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

reset
Reset internal states of the scope object

show
Make scope window visible

3 Alphabetical List

3-298

step
Display constellation diagram of signal in
scope figure

Examples

Plot 16-QAM Constellation

This example shows how to create a 16-QAM modulator, transmit data using an AWGN
channel, and plot the signal constellation.

Create a Rectangular QAM Modulator System object, hMod, and set the modulation order
to 16. Find the constellation reference points using the constellation function.

hMod = comm.RectangularQAMModulator('ModulationOrder',16);

refC = constellation(hMod);

Create an AWGN channel while specifying the noise level using the signal-to-noise ratio
method.

hAWGN = comm.AWGNChannel('NoiseMethod','Signal to noise ratio (SNR)', ...

 'SNR',15);

Create a constellation diagram System object and specify the constellation reference
points and axes limits using name-value pairs.

hScope = comm.ConstellationDiagram('ReferenceConstellation',refC, ...

 'XLimits',[-4 4],'YLimits',[-4 4]);

Generate random, 16-ary data symbols.

d = randi([0 15],1000,1);

Apply 16-QAM modulation.

sym = step(hMod,d);

Pass the modulated signal through the AWGN channel.

rcv = step(hAWGN,sym);

Display the constellation diagram.

step(hScope,rcv)

 comm.ConstellationDiagram System object

3-299

Plot Amplitude Imbalanced QPSK Constellation

This example shows how to modulate random data symbols, apply an amplitude
imbalance, pass the signal through a noisy channel, and plot the resultant constellation.

Create a QPSK modulator object.

hMod = comm.QPSKModulator;

3 Alphabetical List

3-300

Create a constellation diagram object. Because the default reference constellation for
the comm.ConstellationDiagram System object is QPSK, it is not necessary to set
additional properties.

hScope = comm.ConstellationDiagram;

Create an AWGN channel.

hAWGN = comm.AWGNChannel('NoiseMethod','Signal to noise ratio (Es/No)', ...

 'EsNo',20);

Generate random data symbols and apply QPSK modulation.

data = randi([0 3],1000,1);

modData = step(hMod,data);

Apply an I/Q amplitude imbalance to the modulated signal.

ampImb = 10; % dB

txReal = exp(0.5*ampImb/20)*real(modData);

txImag = exp(-0.5*ampImb/20)*imag(modData);

txSig = complex(txReal,txImag);

Pass the transmitted signal through the AWGN channel and display the constellation
diagram. Observe that the data points have shifted from their ideal locations.

rxSig = step(hAWGN,txSig);

step(hScope,rxSig)

 comm.ConstellationDiagram System object

3-301

Signal Display

To change the signal display settings, select View > Configuration Properties to bring
up the Visuals—Constellation Properties dialog box. Then, modify the values for the
Samples per symbol, Offset, Symbols to display and Reference Constellation
parameters on the Main tab.

3 Alphabetical List

3-302

To communicate simulation data that corresponds to the current display, the scope uses
the Frames indicator on the scope window. The following figure highlights important
aspects of the Constellation Diagram window.

Toolbar

Axes Control Buttons

Tools >
Zoom In

N/A When this tool is active, you can zoom in on the
scope window. To do so, click in the center of your
area of interest, or click and drag your cursor to

 comm.ConstellationDiagram System object

3-303

draw a rectangular area of interest inside the
scope window.

Tools >
Zoom X

N/A When this tool is active, you can zoom in on the
x-axis. To do so, click inside the scope window, or
click and drag your cursor along the x-axis over
your area of interest.

Tools >
Zoom Y

N/A When this tool is active, you can zoom in on the
y-axis. To do so, click inside the scope window, or
click and drag your cursor along the y-axis over
your area of interest.

Tools >
Pan

N/A When this tool is active, you can pan on the scope
window. To do so, click in the center of your area
of interest and drag your cursor to the left, right,
up, or down, to move the position of the display.

Tools >
Scale Axes
Limits

Ctrl+A Click this button to scale the axes in the active
scope window.

Alternatively, you can enable automatic axes
scaling by selecting one of the following options
from the Tools menu:

• Automatically Scale Axes Limits — When
you select this option, the scope scales the
axes as needed during simulation.

• Scale Axes Limits after 10 Updates —
When you select this option, the scope scales
the axes after 10 updates.

• Scale Axes Limits at Stop — When you
select this option, the scope scales the axes
each time the simulation is stopped.

Tools >
Measurements
>
Signal Quality

N/A Click this button to display Error Vector
Measurement (EVM) and Modulation Error Ratio
(MER) measurement results.

3 Alphabetical List

3-304

View >
Configuration
Properties

N/A Show the signal trajectory of a modulated signal.
You can view the signal trajectory by using
the Show Signal Trajectory button on the
toolbar or by opening the display pane in the
constellation properties dialog and enabling the
Show signal trajectory option.

Measurements Panels

Measurements Panel Buttons

Each of the Measurements panels contains the following buttons that enable you to
modify the appearance of the current panel.

Button Description

Move the current panel to the top. When you are displaying more than one
panel, this action moves the current panel above all the other panels.
Collapse the current panel. When you first enable a panel, by default, it
displays one or more of its panes. Click this button to hide all of its panes to
conserve space. After you click this button, it becomes the expand button .
Expand the current panel. This button appears after you click the collapse
button to hide the panes in the current panel. Click this button to display
the panes in the current panel and show measurements again. After you
click this button, it becomes the collapse button again.
Undock the current panel. This button lets you move the current panel into
a separate window that can be relocated anywhere on your screen. After you
click this button, it becomes the dock button in the new window.
Dock the current panel. This button appears only after you click the undock
button. Click this button to put the current panel back into the right side of
the Scope window. After you click this button, it becomes the undock button

 again.
Close the current panel. This button lets you remove the current panel from
the right side of the Scope window.

 comm.ConstellationDiagram System object

3-305

Some panels have their measurements separated by category into a number of panes.
Click the pane expand button to show each pane that is hidden in the current panel.
Click the pane collapse button to hide each pane that is shown in the current panel.

Settings Pane

The Settings pane enables you to define the measurement interval and normalization
method the scope uses when obtaining signal measurements.

• Measurement interval — Specify the duration of the EVM or MER measurement.
For more information see “MeasurementInterval”.

• EVM normalization — For the EVM calculations, you may use one of two
normalization methods: average constellation power or peak constellation power.
The scope performs EVM calculations using the comm.EVM System object. For more
information, see comm.EVM.

Signal Quality Panel

The Signal Quality panel displays Error Vector Measurement (EVM) and Modulation
Error Ratio (MER) measurement results.

3 Alphabetical List

3-306

You can choose to hide or display the Signal Quality panel. In the Scope menu, select
Tools > Measurements > Signal Quality.

Signal Quality Pane

The Signal Quality pane displays the calculation results.

• EVM — An error vector is a vector in the I-Q plane between the ideal constellation
point and the actual point at the receiver. EVM is measured in two formats: root
mean square (RMS) or normalized Peak. Typically, EVM is reported in decibels. For
more information, see comm.EVM.

• MER — MER is the ratio of the average power of the error vector and the average
power of the transmitted signal. The scope indicates the measurement result in
decibels. For more information, see comm.MER.

Visuals — Constellation Properties

Main Pane

Samples per symbol

Number of samples used to represent a symbol. This value must be a positive number.

Offset (samples)

Number of samples to skip before plotting points. The offset must be a nonnegative
integer value less than the value of the samples per symbol.

Symbols to display

The maximum number of symbols that can be displayed. Must be a positive integer
value.

Reference constellation

The ideal constellation of the input signal. When the Measurements tool is on, the
reference constellation is used to detect the ideal signal input. Therefore, this property

 comm.ConstellationDiagram System object

3-307

cannot be empty when the Measurements tool is on. (When the Measurements tool is not
on, this property can be empty.)

Display Pane

Show grid

Select this check box to turn on the grid.

Show legend

Select this check box to display a legend for the graph.

Color fading

When you set select this check box, the points in the display fade as the interval of time
after they are first plotted increases. The default value of this property is false. This
property is tunable.

Show signal trajectory

Select this check box to display the trajectory of a modulated signal by plotting its in-
phase component versus its quadrature component.

Show reference constellation

Select this check box to display the points comprising the reference constellation.

Reference marker

Select the symbol that represents the points on the reference constellation.

Reference color

Select the color of the points on the reference constellation. Refer to the following table
for the binary values and their corresponding colors.

Color Binary Code

Black 000
Blue 001

3 Alphabetical List

3-308

Color Binary Code

Green 010
Cyan 011
Red 100
Magenta 101
White 111

X-limits (Minimum)

Specify the minimum value of the x-axis.

X-limits (Maximum)

Specify the maximum value of the x-axis.

Y-limits (Minimum)

Specify the minimum value of the y-axis.

Y-limits (Maximum)

Specify the maximum value of the y-axis.

Title

Specify a label that appears above the constellation diagram plot. By default, there is no
title.

X-axis label

Specify the text the scope displays along the x-axis

Y-axis label

Specify the text the scope displays along the y-axis

Style Dialog Box

In the Style dialog box, you can customize the style of displays. You are able to change
the color of the figure containing the displays, the background and foreground colors of

 comm.ConstellationDiagram System object

3-309

display axes, and properties of lines in a display. From the scope menu, select View >
Style to open this dialog box.

Properties

The Style dialog box allows you to modify the following properties of the scope figure:

Figure color

Specify the color that you want to apply to the background of the scope figure. By default,
the figure color is gray.

Axes colors

Specify the color that you want to apply to the background of the axes for the active
display.

Line

Specify the line style, line width, and line color for the selected signal on the active
display. The Line property is always set to no line when the signal trajectory plot is
disabled.

3 Alphabetical List

3-310

Marker

Specify marks for the selected signal on the active display to show at data points. This
parameter is similar to the Marker property for the MATLAB Handle Graphics plot
objects. You can choose any of the marker symbols from the following table. The Marker
property cannot be set to No marker unless the signal trajectory plot is enabled.

Specifier Marker Type

none No marker
Circle
Square
Cross
Point (default)
Plus sign
Asterisk
Diamond
Downward-pointing triangle
Upward-pointing triangle
Left-pointing triangle
Right-pointing triangle
Five-pointed star (pentagram)
Six-pointed star (hexagram)

Tools: Plot Navigation Properties

Properties

The Tools—Axes Scaling Properties dialog box appears as follows.

 comm.ConstellationDiagram System object

3-311

Axes scaling

Specify when the scope should automatically scale the axes. You can select one of the
following options:

• Manual — When you select this option, the scope does not automatically scale the
axes. You can manually scale the axes in any of the following ways:

• Select Tools > Axes Scaling Properties.
• Press one of the Scale Axis Limits toolbar buttons.
• When the scope figure is the active window, press Ctrl and A simultaneously.

• Auto — When you select this option, the scope scales the axes as needed, both during
and after simulation. Selecting this option shows the Do not allow Y-axis limits to
shrink check box.

• After N Updates — Selecting this option causes the scope to scale the axes after
a specified number of updates. Selecting this option shows the Number of updates
edit box.

By default, this property is set to Auto. This property is “Tunable”.

Do not allow Y-axis limits to shrink

3 Alphabetical List

3-312

When you select this property, the y-axis is allowed only to grow during axes scaling
operations. If you clear this check box, the y-axis or color limits may shrink during axes
scaling operations.

This property appears only when you select Auto for the Axis scaling property. When
you set the Axes scaling property to Manual or After N Updates, the y-axis or color
limits are allowed to shrink. “Tunable”.

Number of updates

Specify as a positive integer the number of updates after which to scale the axes.
This property appears only when you select After N Updates for the Axes scaling
property. “Tunable”.

Scale axes limits at stop

Select this check box to scale the axes when the simulation stops. The y-axis is always
scaled. The x-axis limits are only scaled if you also select the Scale X-axis limits check
box.

Y-axis Data range (%)

Set the percentage of the y-axis that the scope should use to display the data when
scaling the axes. Valid values are between 1 and 100. For example, if you set this
property to 100, the Scope scales the y-axis limits such that your data uses the entire y-
axis range. If you then set this property to 30, the scope increases the y-axis range such
that your data uses only 30% of the y-axis range. “Tunable”.

Y-axis Align

Specify where the scope should align your data with respect to the y-axis when it scales
the axes. You can select Top, Center, or Bottom. “Tunable”.

Autoscale X-axis limits

Check this box to allow the scope to scale the x-axis limits when it scales the axes. If
Axes scaling is set to Auto, checking Scale X-axis limits only scales the data currently
within the axes, not the entire signal in the data buffer. “Tunable”.

X-axis Data range (%)

Set the percentage of the x-axis that the Scope should use to display the data when
scaling the axes. Valid values are between 1 and 100. For example, if you set this

 comm.ConstellationDiagram System object

3-313

property to 100, the Scope scales the x-axis limits such that your data uses the entirex-
axis range. If you then set this property to 30, the Scope increases the x-axis range such
that your data uses only 30% of the x-axis range. Use the x-axis Align property to specify
data placement with respect to the x-axis.

This property appears only when you select the Scale X-axis limits check box.
“Tunable”.

X-axis Align

Specify how the Scope should align your data with respect to the x-axis: Left, Center,
or Right. This property appears only when you select the Scale X-axis limits check box.
“Tunable”.

See Also
Constellation Diagram

3 Alphabetical List

3-314

clone
System object: comm.ConstellationDiagram
Package: comm

Create scope object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a scope object C, with the same property values as H. The clone
method creates a new unlocked object with uninitialized states.

 hide

3-315

hide
System object: comm.ConstellationDiagram
Package: comm

Hide scope window

Syntax

hide(H)

Description

hide(H) hides the scope window associated with System object, H.

See Also
comm.ConstellationDiagram.show

3 Alphabetical List

3-316

isLocked
System object: comm.ConstellationDiagram
Package: comm

Locked status for input attributes and nontunable properties

Syntax

isLocked(H)

Description

isLocked(H) returns the locked state of the scope object H.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

 release

3-317

release
System object: comm.ConstellationDiagram
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) releases system resources, such as memory, file handles, and hardware
connections. This method lets you change any properties or input characteristics.

You should call the release method after calling the step method when there is no new
data for the simulation. When you call the release method, the axes will automatically
scale in the scope figure window. After calling the release method, any non-tunable
properties can be set once again.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

Algorithms

In operation, the release method is similar to the mdlTerminate function.

See Also
comm.ConstellationDiagram.reset

3 Alphabetical List

3-318

reset
System object: comm.ConstellationDiagram
Package: comm

Reset internal states of the scope object

Syntax

reset(H)

Description

reset(H) sets the internal states of the scope object H to their initial values.

You should call the reset method after calling the step method when you want to clear
the scope figure displays, prior to releasing system resources. This action enables you to
start a simulation from the beginning. When you call the reset method, the displays will
become blank again. In this sense, its functionality is similar to that of the MATLAB clf
function. Do not call the reset method after calling the release method.

Algorithms

In operation, the reset method is similar to a consecutive execution of the
mdlTerminate function and the mdlInitializeConditions function.

See Also
comm.ConstellationDiagram.release | comm.ConstellationDiagram

 show

3-319

show
System object: comm.ConstellationDiagram
Package: comm

Make scope window visible

Syntax

show(H)

Description

show(H) makes the scope window associated with System object, H, visible.

See Also
comm.ConstellationDiagram.hide

3 Alphabetical List

3-320

step
System object: comm.ConstellationDiagram
Package: comm

Display constellation diagram of signal in scope figure

Syntax

step(H,X)

step(H,X1,X2,...,XN)

Description

step(H,X) displays the signal, X, in the scope figure.

step(H,X1,X2,...,XN) displays the signals X1, X2,...,XN in the scope figure when you
set the NumInputPorts property to N. In this case, X1, X2,...,XN can have different data
types and dimensions.

 comm.ConvolutionalDeinterleaver System object

3-321

comm.ConvolutionalDeinterleaver System object
Package: comm

Restore ordering of symbols using shift registers

Description

The ConvolutionalDeinterleaver object recovers a signal that was interleaved using
the convolutional Interleaver object. The parameters in the two blocks should have the
same values.

To recover convolutionally interleaved binary data:

1 Define and set up your convolutional deinterleaver object. See “Construction” on
page 3-321.

2 Call step to convolutionally deinterleave according to the properties of
comm.ConvolutionalDeinterleaver. The behavior of step is specific to each
object in the toolbox.

Construction

H = comm.ConvolutionalDeinterleaver creates a convolutional deinterleaver
System object, H. This object restores the original ordering of a sequence that was
interleaved using the convolutional interleaver System object.

H = comm.ConvolutionalDeinterleaver(Name,Value) creates a convolutional
deinterleaver System object, H, with each specified property set to the specified
value. You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties

NumRegisters

Number of internal shift registers

3 Alphabetical List

3-322

Specify the number of internal shift registers as a scalar, positive integer. The default is
6.

RegisterLengthStep

Symbol capacity difference of each successive shift register

Specify the difference in symbol capacity of each successive shift register, where the last
register holds zero symbols as a positive, scalar integer. The default is 2.

InitialConditions

Initial conditions of shift registers

Specify the values that are initially stored in each shift register as a numeric scalar
or vector, except the first shift register, which has zero delay. If you set this property
to a scalar, then all shift registers, except the first one, store the same specified value.
You can also set this property to a column vector with length equal to the value of
the “NumRegisters” property. With this setting, the i-th shift register stores the i-
th element of the specified vector. The value of the first element of this property is
unimportant because the first shift register has zero delay.

Methods

clone
Create convolutional deinterleaver object
with same property values

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

 comm.ConvolutionalDeinterleaver System object

3-323

reset
Reset states of the convolutional
deinterleaver object

step
Restore ordering of symbols using shift
registers

Examples

Interleave and deinterleave random data.

 hInt = comm.ConvolutionalInterleaver('NumRegisters', 3, ...

 'RegisterLengthStep', 2, ...

 'InitialConditions', [-1 -2 -3]');

 hDeInt = comm.ConvolutionalDeinterleaver('NumRegisters', 3, ...

 'RegisterLengthStep', 2, ...

 'InitialConditions', [-1 -2 -3]');

 data = (0:20)';

 intrlvData = step(hInt, data);

 deintrlvData = step(hDeInt, intrlvData);

 % compare the original sequence, interleaved sequence and restored sequence.

 [data, intrlvData, deintrlvData]

Algorithms

This object implements the algorithm, inputs, and outputs described on the
Convolutional Deinterleaver block reference page. The object properties correspond to the
block parameters.

See Also
comm.ConvolutionalInterleaver | comm.MultiplexedInterleaver

3 Alphabetical List

3-324

clone
System object: comm.ConvolutionalDeinterleaver
Package: comm

Create convolutional deinterleaver object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a ConvolutionalDeinterleaver object C, with the same
property values as H. The clone method creates a new unlocked object with uninitialized
states.

 getNumInputs

3-325

getNumInputs
System object: comm.ConvolutionalDeinterleaver
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of
expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H)

3 Alphabetical List

3-326

getNumOutputs
System object: comm.ConvolutionalDeinterleaver
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

 isLocked

3-327

isLocked
System object: comm.ConvolutionalDeinterleaver
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the
ConvolutionalDeinterleaver System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

3 Alphabetical List

3-328

release
System object: comm.ConvolutionalDeinterleaver
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H)Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 reset

3-329

reset
System object: comm.ConvolutionalDeinterleaver
Package: comm

Reset states of the convolutional deinterleaver object

Syntax

reset(H)

Description

reset(H) resets the states of the ConvolutionalDeinterleaver object, H.

3 Alphabetical List

3-330

step
System object: comm.ConvolutionalDeinterleaver
Package: comm

Restore ordering of symbols using shift registers

Syntax

Y = step(H,X)

Description

Y = step(H,X) restores the original ordering of the sequence, X, that was interleaved
using a convolutional interleaver and returns Y. The input X must be a column vector.
The data type can be numeric, logical, or fixed-point (fi objects). Y has the same data type
as X. The convolutional deinterleaver object uses a set of N shift registers, where N is the
value specified by the “NumRegisters” property. The object sets the delay value of the
k-th shift register to the product of (k-1) and “RegisterLengthStep” property value.
With each new input symbol, a commutator switches to a new register and the new
symbol shifts in while the oldest symbol in that register shifts out. When the commutator
reaches the N-th register and the next new input occurs, it returns to the first register.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

 comm.ConvolutionalEncoder System object

3-331

comm.ConvolutionalEncoder System object
Package: comm

Convolutionally encode binary data

Description
The ConvolutionalEncoder object encodes a sequence of binary input vectors to
produce a sequence of binary output vectors.

To convolutionally encode a binary signal:

1 Define and set up your convolutional encoder object. See “Construction” on page
3-331.

2 Call step to encode a sequence of binary input vectors to produce a sequence of
binary output vectors according to the properties of comm.ConvolutionalEncoder.
The behavior of step is specific to each object in the toolbox.

Construction
H = comm.ConvolutionalEncoder creates a System object, H, that convolutionally
encodes binary data.

H = comm.ConvolutionalEncoder(Name,Value) creates a convolutional
encoder object, H, with each specified property set to the specified value.
You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

H = comm.ConvolutionalEncoder(TRELLIS,Name,Value) creates a convolutional
encoder object, H This object has the “TrellisStructure” property set to TRELLIS, and
the other specified properties set to the specified values.

Properties

TrellisStructure

Trellis structure of convolutional code

3 Alphabetical List

3-332

Specify the trellis as a MATLAB structure that contains the trellis description of the
convolutional code. Use the istrellis function to check if a structure is a valid trellis
structure. The default is the result of poly2trellis(7, [171 133]).

TerminationMethod

Termination method of encoded frame

Specify how the encoded frame is terminated as one of Continuous | Truncated |
Terminated. The default is Continuous. When you set this property to Continuous,
the object retains the encoder states at the end of each input vector for use with the next
input vector. When you set this property to Truncated, the object treats each input
vector independently. The encoder states are reset at the start of each input vector. If
you set the “InitialStateInputPort” property to false, the object resets its states to
the all-zeros state. If you set the InitialStateInputPort property to true, the object
resets the states to the values you specify in the initial states step method input. When
you set this property to Terminated, the object treats each input vector independently.
For each input vector, the object uses extra bits to set the encoder states to all-zeros
states at the end of the vector. For a rate K/N code, the step method outputs a vector

with length N L S
K

¥
+() , where S = constraintLength–1 (or, in the case of multiple

constraint lengths, S = sum(constraintLength(i)–1)). L is the length of the input to the
step method.

ResetInputPort

Enable encoder reset input

Set this property to true to enable an additional input to the step method. The default
is false. When this additional reset input is a nonzero value, the internal states of
the encoder reset to their initial conditions. This property applies when you set the
“TerminationMethod” property to Continuous.

DelayedResetAction

Delay output reset

Set this property to true to delay resetting the object output. The default is false.
When you set this property to true, the reset of the internal states of the encoder occurs
after the object computes the encoded data. When you set this property to false, the
reset of the internal states of the encoder occurs before the object computes the encoded
data. This property applies when you set the “ResetInputPort” property to true.

 comm.ConvolutionalEncoder System object

3-333

InitialStateInputPort

Enable initial state input

Set this property to true to enable a step method input that allows the specification of
the initial state of the encoder for each input vector. The default is false. This property
applies when you set the “TerminationMethod” property to Truncated.

FinalStateOutputPort

Enable final state output

Set this property to true to obtain the final state of the encoder via a step
method output. The default is false. This property applies when you set the
“TerminationMethod” property to Continuous or Truncated.

PuncturePatternSource

Source of puncture pattern

Specify the source of the puncture pattern as one of None | Property. The default is
None. When you set this property to None the object does not apply puncturing. When
you set this property to Property, the object punctures the code. This puncturing
is based on the puncture pattern vector that you specify in the “PuncturePattern”
property. This property applies when you set the “TerminationMethod” property to
Continuous or Truncated.

PuncturePattern

Puncture pattern vector

Specify the puncture pattern used to puncture the encoded data as a column
vector. The default is [1; 1; 0; 1; 0; 1]. The vector contains 1s and 0s, where
the 0 indicates the punctured, or excluded, bits. This property applies when you
set the “TerminationMethod” property to Continuous or Truncated and the
“PuncturePatternSource” property to Property.

Methods
clone

Create convolutional encoder object with
same property values

3 Alphabetical List

3-334

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

reset
Reset states of the convolutional encoder
object

step
Convolutionally encode binary data

Examples

Transmit a convolutionally encoded 8-DPSK-modulated bit stream.

 hConEnc = comm.ConvolutionalEncoder;

 hMod = comm.DPSKModulator('BitInput',true);

 hChan = comm.AWGNChannel('NoiseMethod', ...

 'Signal to noise ratio (SNR)',...

 'SNR',10);

 hDemod = comm.DPSKDemodulator('BitOutput',true);

 hDec = comm.ViterbiDecoder('InputFormat','Hard');

 hError = comm.ErrorRate('ComputationDelay',3,'ReceiveDelay', 34);

 for counter = 1:20

 data = randi([0 1],30,1);

 encodedData = step(hConEnc, data);

 modSignal = step(hMod, encodedData);

 receivedSignal = step(hChan, modSignal);

 demodSignal = step(hDemod, receivedSignal);

 receivedBits = step(hDec, demodSignal);

 errors = step(hError, data, receivedBits);

 end

 disp(errors)

 comm.ConvolutionalEncoder System object

3-335

Algorithms

This object implements the algorithm, inputs, and outputs described on the
Convolutional Encoder block reference page. The object properties correspond to the
block parameters, except:
The operation mode Reset on nonzero input via port block parameter corresponds to
the “ResetInputPort” property.

See Also
comm.APPDecoder | comm.ViterbiDecoder

3 Alphabetical List

3-336

clone
System object: comm.ConvolutionalEncoder
Package: comm

Create convolutional encoder object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a ConvolutionalEncoder object C, with the same property
values as H. The clone method creates a new unlocked object with uninitialized states.

 getNumInputs

3-337

getNumInputs
System object: comm.ConvolutionalEncoder
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of
expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H)

3 Alphabetical List

3-338

getNumOutputs
System object: comm.ConvolutionalEncoder
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

 isLocked

3-339

isLocked
System object: comm.ConvolutionalEncoder
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the ConvolutionalEncoder
System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

3 Alphabetical List

3-340

release
System object: comm.ConvolutionalEncoder
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H)Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 reset

3-341

reset
System object: comm.ConvolutionalEncoder
Package: comm

Reset states of the convolutional encoder object

Syntax

reset(H)

Description

reset(H) resets the states of the ConvolutionalEncoder object, H.

3 Alphabetical List

3-342

step

System object: comm.ConvolutionalEncoder
Package: comm

Convolutionally encode binary data

Syntax

Y = step(H,X)

Y = step(H,X,INITSTATE)

Y = step(H,X,R)

[Y,FSTATE] = step(H,X)

Description

Y = step(H,X) encodes the binary data, X, using the convolutional encoding that you
specify in the “TrellisStructure” property. It returns the encoded data, Y. Both X and
Y are column vectors of data type numeric, logical, or unsigned fixed point of word length
1 (fi object). When the convolutional encoder represents a rate K/N code, the length of the
input vector equals K ¥ L, for some positive integer, L. The step method sets the length of
the output vector, Y, to L ¥ N.

Y = step(H,X,INITSTATE) uses the initial state specified in the INITSTATE
input when you set the TerminationMethod property to 'Truncated' and the
“InitialStateInputPort” property to true. INITSTATE must be an integer scalar.

Y = step(H,X,R) resets the internal states of the encoder when you input a non-zero
reset signal, R. R must be a double precision or logical scalar. This syntax applies when
you set the “TerminationMethod” property to Continuous and the “ResetInputPort”
property to true.

[Y,FSTATE] = step(H,X) returns the final state of the encoder in the integer scalar
output FSTATE when you set the FinalStateOutputPort property to true. This
syntax applies when you set the TerminationMethod property to Continuous or
Truncated.

 step

3-343

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

3 Alphabetical List

3-344

comm.ConvolutionalInterleaver System object
Package: comm

Permute input symbols using shift registers with same property values

Description

The ConvolutionalInterleaver object permutes the symbols in the input signal.
Internally, this class uses a set of shift registers.

To convolutionally interleave binary data:

1 Define and set up your convolutional interleaver object. See “Construction” on page
3-344.

2 Call step to convolutionally interleave according to the properties of
comm.ConvolutionalInterleaver. The behavior of step is specific to each object
in the toolbox.

Construction

H = comm.ConvolutionalInterleaver creates a convolutional interleaver System
object, H, that permutes the symbols in the input signal using a set of shift registers.

H = comm.ConvolutionalInterleaver(Name,Value) creates a convolutional
interleaver System object, H. This object has each specified property set to the
specified value. You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties

NumRegisters

Number of internal shift registers

Specify the number of internal shift registers as a scalar, positive integer. The default is
6.

 comm.ConvolutionalInterleaver System object

3-345

RegisterLengthStep

Number of additional symbols that fit in each successive shift register

Specify the number of additional symbols that fit in each successive shift register as a
positive, scalar integer. The default is 2. The first register holds zero symbols.

InitialConditions

Initial conditions of shift registers

Specify the values that are initially stored in each shift register as a numeric scalar or
vector. You do not need to specify a value for the first shift register, which has zero delay.
The default is 0. The value of the first element of this property is unimportant because
the first shift register has zero delay. If you set this property to a scalar, then all shift
registers, except the first one, store the same specified value. If you set it to a column
vector with length equal to the value of the “NumRegisters” property, then the i-th shift
register stores the i-th element of the specified vector.

Methods

clone
Create convolutional interleaver object with
same property values

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

reset
Reset states of the convolutional
interleaver object

3 Alphabetical List

3-346

step
Permute input symbols using shift registers

Examples

Interleave and deinterleave random data.

 hInt = comm.ConvolutionalInterleaver('NumRegisters', 3, ...

 'RegisterLengthStep', 2, ...

 'InitialConditions', [-1 -2 -3]');

 hDeInt = comm.ConvolutionalDeinterleaver('NumRegisters', 3, ...

 'RegisterLengthStep', 2, ...

 'InitialConditions', [-1 -2 -3]');

 data = (0:20)';

 intrlvData = step(hInt, data);

 deintrlvData = step(hDeInt, intrlvData);

 % compare the original sequence, interleaved sequence and restored sequence.

 [data, intrlvData, deintrlvData]

Algorithms

This object implements the algorithm, inputs, and outputs described on the
Convolutional Interleaver block reference page. The object properties correspond to the
block parameters.

See Also
comm.ConvolutionalDeinterleaver | comm.MultiplexedInterleaver

 clone

3-347

clone
System object: comm.ConvolutionalInterleaver
Package: comm

Create convolutional interleaver object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a ConvolutionalInterleaver object C, with the same
property values as H. The clone method creates a new unlocked object with uninitialized
states.

3 Alphabetical List

3-348

getNumInputs
System object: comm.ConvolutionalInterleaver
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of
expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H)

 getNumOutputs

3-349

getNumOutputs
System object: comm.ConvolutionalInterleaver
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

3 Alphabetical List

3-350

isLocked
System object: comm.ConvolutionalInterleaver
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the ConvolutionalInterleaver
System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

 release

3-351

release
System object: comm.ConvolutionalInterleaver
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H)Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

3 Alphabetical List

3-352

reset
System object: comm.ConvolutionalInterleaver
Package: comm

Reset states of the convolutional interleaver object

Syntax

reset(H)

Description

reset(H) resets the states of the ConvolutionalInterleaver object, H.

 step

3-353

step
System object: comm.ConvolutionalInterleaver
Package: comm

Permute input symbols using shift registers

Syntax

Y = step(H,X)

Description

Y = step(H,X) permutes input sequence, X, and returns interleaved sequence, Y. The
input X must be a column vector. The data type can be numeric, logical, or fixed-point
(fi objects). Y has the same data type as X. The convolutional interleaver object uses a
set of N shift registers, where N is the value specified by the “NumRegisters” property.
The object sets the delay value of the k-th shift register to the product of (k-1) and the
“RegisterLengthStep” property value. With each new input symbol, a commutator
switches to a new register and the new symbol shifts in while the oldest symbol in that
register shifts out. When the commutator reaches the N-th register and the next new
input occurs , it returns to the first register.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

3 Alphabetical List

3-354

comm.CPFSKDemodulator System object
Package: comm

Demodulate using CPFSK method and Viterbi algorithm

Description
The CPFSKDemodulator object demodulates a signal that was modulated using the
continuous phase frequency shift keying method. The input is a baseband representation
of the modulated signal.

To demodulate a signal that was modulated using the continuous phase frequency shift
keying method:

1 Define and set up your CPFSK demodulator object. See “Construction” on page
3-354 .

2 Call step to demodulate the signal according to the properties of
comm.CPFSKDemodulator. The behavior of step is specific to each object in the
toolbox.

Construction
H = comm.CPFSKDemodulator creates a demodulator System object, H. This object
demodulates the input continuous phase frequency shift keying (CPFSK) modulated data
using the Viterbi algorithm.

H = comm.CPFSKDemodulator(Name,Value) creates a CPFSK demodulator object, H,
with each specified property set to the specified value. You can specify additional name-
value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

H = comm.CPFSKDemodulator(M,Name,Value) creates a CPFSK demodulator object,
H. This object has the ModulationOrder property set to M, and the other specified
properties set to the specified values.

Properties
ModulationOrder

 comm.CPFSKDemodulator System object

3-355

Size of symbol alphabet

Specify the size of the symbol alphabet. The value of this property requires a power of
two, real, integer scalar. The default is 4.

BitOutput

Output data as bits

Specify whether the output consists of groups of bits or integer values. The default is
false.

When you set this property to false, the step method outputs a column vector of
length equal to N/“SamplesPerSymbol” and with elements that are integers between –
(“ModulationOrder”–1) and ModulationOrder–1. In this case, N, is the length of the
input signal, which indicates the number of input baseband modulated symbols.

When you set this property to true, the step method outputs a binary column vector
of length equal to P ¥ (N/SamplesPerSymbol), where P = log2(ModulationOrder).
The output contains length-P bit words. In this scenario, the object first maps each
demodulated symbol to an odd integer value, K, between –(ModulationOrder-1)
and ModulationOrder–1. The object then maps K to the nonnegative integer
(K+ModulationOrder–1)/2. Finally, the object maps each nonnegative integer to a
length-P binary word, using the mapping specified in the “SymbolMapping” property.

SymbolMapping

Symbol encoding

Specify the mapping of the modulated symbols as one of Binary | Gray. The default is
Binary. This property determines how the object maps each demodulated integer symbol
value (in the range 0 and “ModulationOrder”–1) to a P-length bit word, where P =
“ModulationOrder”(ModulationOrder).

When you set this property to Binary, the object uses a natural binary-coded ordering.

When you set this property to Gray, the object uses a Gray-coded ordering.

This property applies when you set the “BitOutput” property to true.

ModulationIndex

3 Alphabetical List

3-356

Modulation index

Specify the modulation index. The default is 0.5. The value of this property can be a
scalar, h, or a column vector, [h0, h1, …. hH-1]

where H-1 represents the length of the column vector.

When hi varies from interval to interval, the object operates in multi-h. When the object
operates in multi-h, hi must be a rational number.

InitialPhaseOffset

Initial phase offset

Specify the initial phase offset of the input modulated waveform in radians as a real,
numeric scalar. The default is 0.

SamplesPerSymbol

Number of samples per input symbol

Specify the expected number of samples per input symbol as a positive, integer scalar.
The default is 8.

TracebackDepth

Traceback depth for Viterbi algorithm

Specify the number of trellis branches that the Viterbi algorithm uses to construct each
traceback path as a positive, integer scalar. The default is 16. The value of this property
is also the value of the output delay. That value is the number of zero symbols that
precede the first meaningful demodulated symbol in the output.

OutputDataType

Data type of output

Specify the output data type as one of int8 | int16 | int32 | double, when you set
the “BitOutput” property to false. The default is double.

When you set the BitOutput property to true, specify the output data type as one of
logical | double.

 comm.CPFSKDemodulator System object

3-357

Methods

clone
Create CPFSK demodulator object with
same property values

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

reset
Reset states of CPFSK demodulator object

step
Demodulate using CPFSK method and
Viterbi algorithm

Examples

Demodulate a signal using CPFSK modulation with Gray mapping

% Create a CPFSK modulator, an AWGN channel, and a CPFSK demodulator

 hMod = comm.CPFSKModulator(8, 'BitInput', true, ...

 'SymbolMapping', 'Gray');

 hAWGN = comm.AWGNChannel('NoiseMethod', ...

 'Signal to noise ratio (SNR)','SNR',0);

 hDemod = comm.CPFSKDemodulator(8, 'BitOutput', true, ...

 'SymbolMapping', 'Gray');

 % Create an error rate calculator, account for the delay caused by the Viterbi algorithm.

 delay = log2(hDemod.ModulationOrder)*hDemod.TracebackDepth;

 hError = comm.ErrorRate('ReceiveDelay', delay);

 for counter = 1:100

 % Transmit 100 3-bit words

3 Alphabetical List

3-358

 data = randi([0 1],300,1);

 modSignal = step(hMod, data);

 noisySignal = step(hAWGN, modSignal);

 receivedData = step(hDemod, noisySignal);

 errorStats = step(hError, data, receivedData);

 end

 fprintf('Error rate = %f\nNumber of errors = %d\n', ...

 errorStats(1), errorStats(2))

Error rate = 0.004006

Number of errors = 120

Algorithms

This object implements the algorithm, inputs, and outputs described on the CPFSK
Demodulator Baseband block reference page. The object properties correspond to the
block parameters.

See Also
comm.CPMModulator | comm.CPFSKModulator | comm.CPMDemodulator

 clone

3-359

clone
System object: comm.CPFSKDemodulator
Package: comm

Create CPFSK demodulator object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a CPFSKDemodulator object C, with the same property values as
H. The clone method creates a new unlocked object with uninitialized states.

3 Alphabetical List

3-360

getNumInputs
System object: comm.CPFSKDemodulator
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of
expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H)

 getNumOutputs

3-361

getNumOutputs
System object: comm.CPFSKDemodulator
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

3 Alphabetical List

3-362

isLocked
System object: comm.CPFSKDemodulator
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the CPFSKDemodulator System
object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

 release

3-363

release
System object: comm.CPFSKDemodulator
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H)Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

3 Alphabetical List

3-364

reset
System object: comm.CPFSKDemodulator
Package: comm

Reset states of CPFSK demodulator object

Syntax

reset(H)

Description

reset(H) resets the states of the CPFSKDemodulator object, H.

 step

3-365

step
System object: comm.CPFSKDemodulator
Package: comm

Demodulate using CPFSK method and Viterbi algorithm

Syntax

Y = step(H,X)

Description

Y = step(H,X) demodulates input data, X, with the CPFSK demodulator System
object, H, and returns Y. Input X must be a double or single precision, column vector with
a length equal to an integer multiple of the number of samples per symbol specified in
the SamplesPerSymbol property. Depending on the BitOutput property value, output
Y can be integer or bit valued.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

3 Alphabetical List

3-366

comm.CPFSKModulator System object
Package: comm

Modulate using CPFSK method

Description

The CPFSKModulator object modulates using the continuous phase frequency shift
keying method. The output is a baseband representation of the modulated signal.

To modulate a signal using the continuous phase frequency shift keying method:

1 Define and set up your CPFSK modulator object. See “Construction” on page
3-366.

2 Call step to modulate the signal according to the properties of
comm.CPFSKModulator. The behavior of step is specific to each object in the
toolbox.

Construction

H = comm.CPFSKModulator creates a modulator System object, H. This object
modulates the input signal using the continuous phase frequency shift keying (CPFSK)
modulation method.

H = comm.CPFSKModulator(Name,Value) creates a CPFSK modulator object, H, with
each specified property set to the specified value. You can specify additional name-value
pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

H = comm.CPFSKModulator(M,Name,Value) creates a CPFSK modulator object,
H. This object has the ModulationOrder property set to M, and the other specified
properties set to the specified values.

Properties

ModulationOrder

 comm.CPFSKModulator System object

3-367

Size of symbol alphabet

Specify the size of the symbol alphabet. The value of this property requires a power of
two, real, integer scalar. The default is 4.

BitInput

Assume bit inputs

Specify whether the input is bits or integers. The default is false. When you set
this property to false, the step method input must be a double-precision or signed
integer data type column vector. This vector comprises odd integer values between –
(“ModulationOrder”–1) and ModulationOrder–1.

When you set this property to true, the step method input must be a column vector
of P-length bit words, where P = log2(ModulationOrder). The input data must
have a doubleprecision or logical data type. The object maps each bit word to an
integer K between 0 and ModulationOrder–1, using the mapping specified in the
“SymbolMapping” property. The object then maps the integer K to the intermediate
value 2K–(ModulationOrder–1) and proceeds as in the case when you set the
“BitInput” property to false.

SymbolMapping

Symbol encoding

Specify the mapping of bit inputs as one of Binary | Gray. The default is Binary.
This property determines how the object maps each input P-length bit word, where P =
log2(“ModulationOrder”), to an integer between 0 and ModulationOrder–1.

When you set this property to Binary, the object uses a natural binary-coded ordering.

When you set this property to Gray, the object uses a Gray-coded ordering.

This property applies when you set the “BitInput” property to true.

ModulationIndex

Modulation index

Specify the modulation index. The default is 0.5. The value of this property can be a
scalar, h, or a column vector, [h0, h1, …. hH-1]

where H-1 represents the length of the column vector.

3 Alphabetical List

3-368

When hi varies from interval to interval, the object operates in multi-h. When the object
operates in multi-h, hi must be a rational number.

InitialPhaseOffset

Initial phase offset

Specify the initial phase of the modulated waveform in radians as a real, numeric scalar.
The default is 0.

SamplesPerSymbol

Number of samples per output symbol

Specify the upsampling factor at the output as a real, positive, integer scalar. The default
is 8. The upsampling factor is the number of output samples that the step method
produces for each input sample.

OutputDataType

Data type of output

Specify output data type as one of double | single. The default is double.

Methods

clone
Create CPFSK modulator object with same
property values

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

 comm.CPFSKModulator System object

3-369

reset
Reset states of CPFSK modulator object

step
Modulate using CPFSK method

Examples

Demodulate a signal using CPFSK modulation with Gray mapping

% Create a CPFSK modulator, an AWGN channel, and a CPFSK demodulator

 hMod = comm.CPFSKModulator(8, 'BitInput', true, ...

 'SymbolMapping', 'Gray');

 hAWGN = comm.AWGNChannel('NoiseMethod', ...

 'Signal to noise ratio (SNR)','SNR',0);

 hDemod = comm.CPFSKDemodulator(8, 'BitOutput', true, ...

 'SymbolMapping', 'Gray');

 % Create an error rate calculator, account for the delay caused by the Viterbi algorithm.

 delay = log2(hDemod.ModulationOrder)*hDemod.TracebackDepth;

 hError = comm.ErrorRate('ReceiveDelay', delay);

 for counter = 1:100

 % Transmit 100 3-bit words

 data = randi([0 1],300,1);

 modSignal = step(hMod, data);

 noisySignal = step(hAWGN, modSignal);

 receivedData = step(hDemod, noisySignal);

 errorStats = step(hError, data, receivedData);

 end

 fprintf('Error rate = %f\nNumber of errors = %d\n', ...

 errorStats(1), errorStats(2))

Error rate = 0.004006

Number of errors = 120

Algorithms

This object implements the algorithm, inputs, and outputs described on the CPFSK
Modulator Baseband block reference page. The object properties correspond to the block
parameters.

3 Alphabetical List

3-370

See Also
comm.CPMModulator | comm.CPFSKDemodulator | comm.CPMDemodulator

 clone

3-371

clone
System object: comm.CPFSKModulator
Package: comm

Create CPFSK modulator object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a CPFSKModulator object C, with the same property values as H.
The clone method creates a new unlocked object with uninitialized states.

3 Alphabetical List

3-372

getNumInputs
System object: comm.CPFSKModulator
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of
expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H)

 getNumOutputs

3-373

getNumOutputs
System object: comm.CPFSKModulator
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

3 Alphabetical List

3-374

isLocked
System object: comm.CPFSKModulator
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the CPFSKModulator System
object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

 release

3-375

release
System object: comm.CPFSKModulator
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H)Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

3 Alphabetical List

3-376

reset
System object: comm.CPFSKModulator
Package: comm

Reset states of CPFSK modulator object

Syntax

reset(H)

Description

reset(H) resets the states of the CPFSKModulator object, H.

 step

3-377

step
System object: comm.CPFSKModulator
Package: comm

Modulate using CPFSK method

Syntax

Y = step(H,X)

Description

Y = step(H,X) modulates input data, X, with the CPFSK modulator System object, H.
It returns the baseband modulated output, Y. Depending on the value of the BitInput
property, input X can be an integer or bit valued column vector with data types double,
signed integer, or logical. The length of output vector, Y, is equal to the number of input
samples times the number of samples per symbol specified in the SamplesPerSymbol
property.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

3 Alphabetical List

3-378

comm.CPMCarrierPhaseSynchronizer System object
Package: comm

Recover carrier phase of baseband CPM signal

Description
The CPMCarrierPhaseSynchronizer object recovers the carrier phase of the input
signal using the 2P-Power method. This feedforward method is clock aided, but not data
aided. The method is suitable for systems that use certain types of baseband modulation.
These types include: continuous phase modulation (CPM), minimum shift keying (MSK),
continuous phase frequency shift keying (CPFSK), and Gaussian minimum shift keying
(GMSK).

To recover the carrier phase of the input signal:

1 Define and set up your CPM carrier phase synchronizer object. See “Construction” on
page 3-378.

2 Call step to recover the carrier phase of the input signal using the 2P-Power
method according to the properties of comm.CPMCarrierPhaseSynchronizer. The
behavior of step is specific to each object in the toolbox.

Construction
H = comm.CPMCarrierPhaseSynchronizer creates a CPM carrier phase synchronizer
System object, H. This object recovers the carrier phase of a baseband continuous phase
modulation (CPM), minimum shift keying (MSK), continuous phase frequency shift
keying (CPFSK), or Gaussian minimum shift keying (GMSK) modulated signal using the
2P-power method.

H = comm.CPMCarrierPhaseSynchronizer(Name,Value) creates a CPM
carrier phase synchronizer object, H This object has each specified property set to the
specified value. You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

H = comm.CPMCarrierPhaseSynchronizer(HALFPOW,Name,Value) creates a CPM
carrier phase synchronizer object, H. This object has the “P” property set to HALFPOW,
and the other specified properties set to the specified values.

 comm.CPMCarrierPhaseSynchronizer System object

3-379

Properties

P

Denominator of CPM modulation index

Specify the denominator of the CPM modulation index of the input signal as a real
positive scalar integer value of data type single or double. The default is 2. This property
is tunable.

ObservationInterval

Number of symbols where carrier phase assumed constant

Specify the observation interval as a real positive scalar integer value of data type single
or double. The default is 100.

Methods

clone
Create CPM carrier phase synchronizer
object with same values

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

reset
Reset states of the CPM carrier phase
synchronizer object

step
Recover carrier phase of baseband CPM
signal

3 Alphabetical List

3-380

Examples

Recover carrier phase of a CPM signal using 2P-power method.

M = 16;

P = 2;

phOffset = 10 *pi/180; % in radians

numSamples = 100;

% Create CPM modulator System object

 hMod = comm.CPMModulator(M, 'InitialPhaseOffset',phOffset, ...

 'BitInput',true, 'ModulationIndex',1/P, 'SamplesPerSymbol',1);

% Create CPM carrier phase synchronizer System object

 hSync = comm.CPMCarrierPhaseSynchronizer(P,...

 'ObservationInterval',numSamples);

% Generate random binary data

 data = randi([0 1],numSamples*log2(M),1);

% Modulate random data and add carrier phase

 modData = step(hMod, data);

% Recover the carrier phase

 [recSig phEst] = step(hSync, modData);

 fprintf('The carrier phase is estimated to be %g degrees.\n', phEst);

Algorithms

This object implements the algorithm, inputs, and outputs described on the CPM Phase
Recovery block reference page. The object properties correspond to the block parameters.

See Also
comm.CPMModulator | comm.PSKCarrierPhaseSynchronizer

 clone

3-381

clone
System object: comm.CPMCarrierPhaseSynchronizer
Package: comm

Create CPM carrier phase synchronizer object with same values

Syntax

C = clone(H)

Description

C = clone(H) creates a CPMCarrierPhaseSynchronizer object C, with the same
property values as H. The clone method creates a new unlocked object with uninitialized
states.

3 Alphabetical List

3-382

getNumInputs
System object: comm.CPMCarrierPhaseSynchronizer
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of
expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H)

 getNumOutputs

3-383

getNumOutputs
System object: comm.CPMCarrierPhaseSynchronizer
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

3 Alphabetical List

3-384

isLocked
System object: comm.CPMCarrierPhaseSynchronizer
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the
CPMCarrierPhaseSynchronizer System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

 release

3-385

release
System object: comm.CPMCarrierPhaseSynchronizer
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H)Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

3 Alphabetical List

3-386

reset
System object: comm.CPMCarrierPhaseSynchronizer
Package: comm

Reset states of the CPM carrier phase synchronizer object

Syntax

reset(H)

Description

reset(H) resets the states of the CPMCarrierPhaseSynchronizer object, H.

 step

3-387

step
System object: comm.CPMCarrierPhaseSynchronizer
Package: comm

Recover carrier phase of baseband CPM signal

Syntax

[Y,PH] = step(H,X)

Description

[Y,PH] = step(H,X) recovers the carrier phase of the input signal, X, and returns the
phase corrected signal, Y, and the carrier phase estimate (in degrees), PH. X must be a
complex scalar or column vector input signal of data type single or double.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

3 Alphabetical List

3-388

comm.CPMDemodulator System object
Package: comm

Demodulate using CPM method and Viterbi algorithm

Description

The CPMDemodulator object demodulates a signal that was modulated using continuous
phase modulation. The input is a baseband representation of the modulated signal.

To demodulate a signal that was modulated using continuous phase modulation:

1 Define and set up your CPM demodulator object. See “Construction” on page
3-388.

2 Call step to demodulate a signal according to the properties of
comm.CPMDemodulator. The behavior of step is specific to each object in the
toolbox.

Construction

H = comm.CPMDemodulator creates a demodulator System object, H. This object
demodulates the input continuous phase modulated (CPM) data using the Viterbi
algorithm.

H = comm.CPMDemodulator(Name,Value) creates a CPM demodulator object, H, with
each specified property set to the specified value. You can specify additional name-value
pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

H = comm.CPMDemodulator(M,Name,Value) creates a CPM demodulator object, H,
with the ModulationOrder property set to M, and the other specified properties set to
the specified values.

Properties

ModulationOrder

 comm.CPMDemodulator System object

3-389

Size of symbol alphabet

Specify the size of the symbol alphabet. The value of this property requires a power of
two, real, integer scalar. The default is 4.

BitOutput

Output data as bits

Specify whether the output consists of groups of bits or integer values. The default is
false.

When you set this property to false, the step method outputs a column vector of
length equal to N/“SamplesPerSymbol” and with elements that are integers between -
(“ModulationOrder”-1) and ModulationOrder–1. Here, N, is the length of the input
signal which indicates the number of input baseband modulated symbols.

When you set this property to true, the step method outputs a binary column vector
of length equal to P ¥ (N/SamplesPerSymbol), where P = log2(ModulationOrder).
The output contains length-P bit words. In this scenario, the object first maps each
demodulated symbol to an odd integer value, K, between –(ModulationOrder–
1) and ModulationOrder–1. The object then maps K to the nonnegative integer
(K+ModulationOrder–1)/2. Finally, the object maps each nonnegative integer to a
length-P binary word, using the mapping specified in the “SymbolMapping” property.

SymbolMapping

Symbol encoding

Specify the mapping of the demodulated symbols as one of Binary | Gray. The default
is Binary. This property determines how the object maps each demodulated integer
symbol value (in the range 0 and “ModulationOrder”–1) to a P-length bit word, where P
= log2(ModulationOrder).

When you set this property to Binary, the object uses a natural binary-coded ordering.

When you set this property to Gray, the object uses a Gray-coded ordering.

This property applies when you set the “BitOutput” property to true.

ModulationIndex

Modulation index

3 Alphabetical List

3-390

Specify the modulation index. The default is 0.5. The value of this property can be a
scalar, h, or a column vector, [h0, h1, …. hH-1]

where H-1 represents the length of the column vector.

When hi varies from interval to interval, the object operates in multi-h. When the object
operates in multi-h, hi must be a rational number.

FrequencyPulse

Frequency pulse shape

Specify the type of pulse shaping that the modulator has used to smooth the phase
transitions of the input modulated signal as one of Rectangular | Raised Cosine |
Spectral Raised Cosine | Gaussian | Tamed FM. The default is Rectangular.

MainLobeDuration

Main lobe duration of spectral raised cosine pulse

Specify, in number of symbol intervals, the duration of the largest lobe of the spectral
raised cosine pulse. This value is the value that the modulatorused to pulse-shape the
input modulated signal. The default is 1. This property requires a real, positive, integer
scalar. This property applies when you set the “FrequencyPulse” property to Spectral
Raised Cosine.

RolloffFactor

Rolloff factor of spectral raised cosine pulse

Specify the roll off factor of the spectral raised cosine pulse. This value is the value that
the modulator used to pulse-shape the input modulated signal. The default is 0.2. This
property requires a real scalar between 0 and 1. This property applies when you set the
“FrequencyPulse” property to Spectral Raised Cosine.

BandwidthTimeProduct

Product of bandwidth and symbol time of Gaussian pulse

Specify the product of bandwidth and symbol time for the Gaussian pulse shape. This
value is the value that the modulator used to pulse-shape the input modulated signal.
The default is 0.3. This property requires a real, positive scalar. This property applies
when you set the “FrequencyPulse” property to Gaussian.

 comm.CPMDemodulator System object

3-391

PulseLength

Pulse length

Specify the length of the frequency pulse shape in symbol intervals. The value of this
property requires a real positive integer. The default is 1.

SymbolPrehistory

Symbol prehistory

Specify the data symbols used by the modulator prior to the first call to the step method.
The default is 1. This property requires a scalar or vector with odd integer elements
between –(“ModulationOrder”–1) and (ModulationOrder–1). If the value is a vector,
then its length must be one less than the value in the “PulseLength” property.

InitialPhaseOffset

Initial phase offset

Specify the initial phase offset of the input modulated waveform in radians as a real,
numeric scalar. The default is 0.

SamplesPerSymbol

Number of samples per input symbol

Specify the expected number of samples per input symbol as a positive, integer scalar.
The default is 8.

TracebackDepth

Traceback depth for Viterbi algorithm

Specify the number of trellis branches that the Viterbi algorithm uses to construct each
traceback path as a positive, integer scalar. The default is 16. The value of this property
is also the output delay, which is the number of zero symbols that precede the first
meaningful demodulated symbol in the output.

OutputDataType

Data type of output

3 Alphabetical List

3-392

Specify the output data type as one of int8 | int16 | int32 | double, when you set
the “BitOutput” property to false. When you set the BitOutput property to true,
specify the output data type as one of logical | double. The default is double.

Methods

clone
Create CPM demodulator object with same
property values

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

reset
Reset states of CPM demodulator object

step
Demodulate using CPM method and Viterbi
algorithm

Examples

Demodulate a CPM signal with Gray mapping and bit inputs

% Create a CPM modulator, an AWGN channel, and a CPM demodulator.

 hMod = comm.CPMModulator(8, 'BitInput', true, ...

 'SymbolMapping', 'Gray');

 hAWGN = comm.AWGNChannel('NoiseMethod', ...

 'Signal to noise ratio (SNR)','SNR',0);

 hDemod = comm.CPMDemodulator(8, 'BitOutput', true, ...

 'SymbolMapping', 'Gray');

 comm.CPMDemodulator System object

3-393

% Create an error rate calculator, account for the delay caused by the Viterbi algorithm.

 delay = log2(hDemod.ModulationOrder)*hDemod.TracebackDepth;

 hError = comm.ErrorRate('ReceiveDelay', delay);

 for counter = 1:100

 % Transmit 100 3-bit words

 data = randi([0 1],300,1);

 modSignal = step(hMod, data);

 noisySignal = step(hAWGN, modSignal);

 receivedData = step(hDemod, noisySignal);

 errorStats = step(hError, data, receivedData);

 end

 fprintf('Error rate = %f\nNumber of errors = %d\n', ...

 errorStats(1), errorStats(2))

Error rate = 0.004006

Number of errors = 120

Algorithms

This object implements the algorithm, inputs, and outputs described on the CPM
Demodulator Baseband block reference page. The object properties correspond to the
block parameters.

See Also
comm.MSKDemodulator | comm.CPMModulator | comm.CPFSKDemodulator |
comm.GMSKDemodulator

3 Alphabetical List

3-394

clone
System object: comm.CPMDemodulator
Package: comm

Create CPM demodulator object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a CPMDemodulator object C, with the same property values as H.
The clone method creates a new unlocked object with uninitialized states.

 getNumInputs

3-395

getNumInputs
System object: comm.CPMDemodulator
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of
expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H)

3 Alphabetical List

3-396

getNumOutputs
System object: comm.CPMDemodulator
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

 isLocked

3-397

isLocked
System object: comm.CPMDemodulator
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the CPMDemodulator System
object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

3 Alphabetical List

3-398

release
System object: comm.CPMDemodulator
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H)Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 reset

3-399

reset
System object: comm.CPMDemodulator
Package: comm

Reset states of CPM demodulator object

Syntax

reset(H)

Description

reset(H) resets the states of the CPMDemodulator object, H.

3 Alphabetical List

3-400

step
System object: comm.CPMDemodulator
Package: comm

Demodulate using CPM method and Viterbi algorithm

Syntax

Y = step(H,X)

Description

Y = step(H,X) demodulates input data, X, with the CPM demodulator System object,
H, and returns Y. X must be a double or single precision, column vector with a length
equal to an integer multiple of the number of samples per symbol specified in the
SamplesPerSymbol property. Depending on the BitOutput property value, output Y
can be integer or bit valued.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

 comm.CPMModulator System object

3-401

comm.CPMModulator System object

Package: comm

Modulate using CPM method

Description

The CPMModulator object modulates using continuous phase modulation. The output is
a baseband representation of the modulated signal.

To modulate a signal using continuous phase modulation:

1 Define and set up your CPM modulator object. See “Construction” on page 3-401.
2 Call step to modulate a signal according to the properties of comm.CPMModulator.

The behavior of step is specific to each object in the toolbox.

Construction

H = comm.CPMModulator creates a modulator System object, H. This object modulates
the input signal using the continuous phase modulation (CPM) method.

H = comm.CPMModulator(Name,Value) creates a CPM modulator object, H. This
object has each specified property set to the specified value. You can specify additional
name-value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

H = comm.CPMModulator(M,Name,Value) creates a CPM modulator object, H, with
the ModulationOrder property set to M and the other specified properties set to the
specified values.

Properties

ModulationOrder

Size of symbol alphabet

3 Alphabetical List

3-402

Specify the size of the symbol alphabet. The value of this property must be a power of
two, real, integer scalar. The default is 4.

BitInput

Assume bit inputs

Specify whether the input is bits or integers. The default is false.

When you set this property to false, the step method input requires double-precision
or signed integer data type column vector. This vector must comprise odd integer values
between –(“ModulationOrder”–1) and ModulationOrder–1.

When you set this property to true, the step method input requires a column vector
of P-length bit words, where P = log2(ModulationOrder). The input data must
have a double-precision or logical data type. The object maps each bit word to an
integer K between 0 and ModulationOrder–1, using the mapping specified in the
“SymbolMapping” property. The object then maps the integer K to the intermediate
value 2K-(ModulationOrder–1) and proceeds as in the case when BitInput is false.

SymbolMapping

Symbol encoding

Specify the mapping of bit inputs as one of Binary | Gray. The default is Binary.
This property determines how the object maps each input P-length bit word, where P =
log2(“ModulationOrder”), to an integer between 0 and ModulationOrder–1.

When you set this property to Binary, the object uses a natural binary-coded ordering.

When you set this property to Gray, the object uses a Gray-coded ordering.

This property applies when you set the “BitInput” property to true.

ModulationIndex

Modulation index

Specify the modulation index. The default is 0.5. The value of this property can be a
scalar, h, or a column vector, [h0, h1, …. hH-1]

 comm.CPMModulator System object

3-403

where H-1 represents the length of the column vector.

When hi varies from interval to interval, the object operates in multi-h. When the object
operates in multi-h, hi must be a rational number.

FrequencyPulse

Frequency pulse shape

Specify the type of pulse shaping that the modulator uses to smooth the phase
transitions of the modulated signal. Choose from Rectangular | Raised Cosine |
Spectral Raised Cosine | Gaussian | Tamed FM. The default is Rectangular.

MainLobeDuration

Main lobe duration of spectral raised cosine pulse

Specify, in number of symbol intervals, the duration of the largest lobe of the spectral
raised cosine pulse. The default is 1. This property requires a real, positive, integer
scalar. This property applies when you set the “FrequencyPulse” property to Spectral
Raised Cosine.

RolloffFactor

Rolloff factor of spectral raised cosine pulse

Specify the rolloff factor of the spectral raised cosine pulse. The default is 0.2. This
property requires a real scalar between 0 and 1. This property applies when you set the
“FrequencyPulse” property to Spectral Raised Cosine.

BandwidthTimeProduct

Product of bandwidth and symbol time of Gaussian pulse

Specify the product of bandwidth and symbol time for the Gaussian pulse shape. The
default is 0.3. This property requires a real, positive scalar. This property applies when
you set the “FrequencyPulse” property to Gaussian.

PulseLength

Pulse length

3 Alphabetical List

3-404

Specify the length of the frequency pulse shape in symbol intervals. The value of this
property requires a real, positive integer. The default is 1.

SymbolPrehistory

Symbol prehistory

Specify the data symbols used by the modulator prior to the first call to the step method
in reverse chronological order. The default is 1. This property requires a scalar or vector
with odd integer elements between –(“ModulationOrder”–1) and (ModulationOrder–
1). If the value is a vector, then its length must be one less than the value in the
“PulseLength” property.

InitialPhaseOffset

Initial phase offset

Specify the initial phase of the modulated waveform in radians as a real, numeric scalar.
The default is 0.

SamplesPerSymbol

Number of samples per output symbol

Specify the upsampling factor at the output as a real, positive, integer scalar. The default
is 8. The upsampling factor is the number of output samples that the step method
produces for each input sample.

OutputDataType

Data type of output

Specify output data type as one of double | single. The default is double.

Methods

clone
Create CPM modulator object with same
property values

 comm.CPMModulator System object

3-405

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

reset
Reset states of CPM modulator object

step
Modulate using CPM method

Examples

Modulate a CPM signal with Gray mapping and bit inputs

% Create a CPM modulator, an AWGN channel, and a CPM demodulator.

 hMod = comm.CPMModulator(8, 'BitInput', true, ...

 'SymbolMapping', 'Gray');

 hAWGN = comm.AWGNChannel('NoiseMethod', ...

 'Signal to noise ratio (SNR)','SNR',0);

 hDemod = comm.CPMDemodulator(8, 'BitOutput', true, ...

 'SymbolMapping', 'Gray');

% Create an error rate calculator, account for the delay caused by the Viterbi algorithm.

 delay = log2(hDemod.ModulationOrder)*hDemod.TracebackDepth;

 hError = comm.ErrorRate('ReceiveDelay', delay);

 for counter = 1:100

 % Transmit 100 3-bit words

 data = randi([0 1],300,1);

 modSignal = step(hMod, data);

 noisySignal = step(hAWGN, modSignal);

 receivedData = step(hDemod, noisySignal);

 errorStats = step(hError, data, receivedData);

 end

 fprintf('Error rate = %f\nNumber of errors = %d\n', ...

 errorStats(1), errorStats(2))

3 Alphabetical List

3-406

Error rate = 0.004006

Number of errors = 120

Algorithms

This object implements the algorithm, inputs, and outputs described on the CPM
Modulator Baseband block reference page. The object properties correspond to the block
parameters.

See Also
comm.CPFSKModulator | comm.GMSKModulator | comm.CPMDemodulator |
comm.MSKModulator

 clone

3-407

clone
System object: comm.CPMModulator
Package: comm

Create CPM modulator object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a CPMModulator object C, with the same property values as H.
The clone method creates a new unlocked object with uninitialized states.

3 Alphabetical List

3-408

getNumInputs
System object: comm.CPMModulator
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of
expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H)

 getNumOutputs

3-409

getNumOutputs
System object: comm.CPMModulator
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

3 Alphabetical List

3-410

isLocked
System object: comm.CPMModulator
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the CPMModulator System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

 release

3-411

release
System object: comm.CPMModulator
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H)Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

3 Alphabetical List

3-412

reset
System object: comm.CPMModulator
Package: comm

Reset states of CPM modulator object

Syntax

reset(H)

Description

reset(H) resets the states of the CPMModulator object, H.

 step

3-413

step
System object: comm.CPMModulator
Package: comm

Modulate using CPM method

Syntax

Y = step(H,X)

Description

Y = step(H,X) modulates input data, X, with the CPM modulator System object, H.
It returns the baseband modulated output, Y. Depending on the value of the BitInput
property, input X can be an integer or bit valued column vector with data types double,
signed integer, or logical. The length of output vector, Y, is equal to the number of input
samples times the number of samples per symbol specified in the SamplesPerSymbol
property.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

3 Alphabetical List

3-414

comm.CRCDetector System object
Package: comm

Detect errors in input data using CRC

Description
The CRCDetector object computes checksums for its entire input frame.

To detect errors in the input data using cyclic redundancy code:

1 Define and set up your CRC detector object. See “Construction” on page 3-414.
2 Call step to detect errors according to the properties of comm.CRCDetector. The

behavior of step is specific to each object in the toolbox.

Construction
H = comm.CRCDetector creates a cyclic redundancy code (CRC) detector System
object, H. This object detects errors in the input data according to a specified generator
polynomial.

H = comm.CRCDetector(Name,Value) creates a CRC detector object, H, with each
specified property set to the specified value. You can specify additional name-value pair
arguments in any order as (Name1,Value1,...,NameN,ValueN).

H = comm.CRCDetector(POLY,Name,Value) creates a CRC detector object, H. This
object has the Polynomial property set to POLY, and the other specified properties set to
the specified values.

Properties
Polynomial

Generator polynomial

Specify the generator polynomial as a binary or integer row vector, with coefficients in
descending order of powers. The default is [1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1],
which is equivalent to vector [16 12 5 0]. If you set this property to a binary vector,

 comm.CRCDetector System object

3-415

its length must equal the degree of the polynomial plus 1. If you set this property to an
integer vector, its value must contain the powers of the nonzero terms of the polynomial.
For example, [1 0 0 0 0 0 1 0 1] and [8 2 0] represent the same polynomial,
g z z z() = + +

8 2
1 . The following table lists commonly used generator polynomials.

CRC method Generator polynomial

CRC-32 [32 26 23 22 16 12 11 10 8 7 5 4 2 1 0]

CRC-24 [24 23 14 12 8 0]

CRC-16 [16 15 2 0]

Reversed
CRC-16

[16 14 1 0]

CRC-8 [8 7 6 4 2 0]

CRC-4 [4 3 2 1 0]

InitialConditions

Initial conditions of shift register

Specify the initial conditions of the shift register as a binary, double or single precision
data type scalar or vector. The default is 0. The vector length is the degree of the
generator polynomial that you specify in the “Polynomial” property. When you specify
initial conditions as a scalar, the object expands the value to a row vector of length equal
to the degree of the generator polynomial.

DirectMethod

Direct method (logical)

When you set this property to true, the object uses the direct algorithm for CRC
checksum calculations. When you set this property to false, the object uses the non-
direct algorithm for CRC checksum calculations. The default value for this property is
false.

Refer to the Communications System Toolbox -> System Design -> Error Detection and
Correction -> Cyclic Redundancy Check Coding -> CRC Algorithm section to learn more
about the direct and non-direct algorithms.

ReflectInputBytes

Reflect input bytes

3 Alphabetical List

3-416

Set this property to true to flip the input data on a bytewise basis prior to entering
the data into the shift register. When you set this property to true, the input frame
length divided by the “ChecksumsPerFrame” property value minus the degree of the
generator polynomial, which you specify in the “Polynomial” property, must be an
integer multiple of 8. The default value of this property is false.

ReflectChecksums

Reflect checksums before final XOR

When you set this property to true, the object flips the CRC checksums around their
centers after the input data are completely through the shift register. The default value
of this property is false.

FinalXOR

Final XOR value

Specify the value with which the CRC checksum is to be XORed as a binary scalar or
vector. The object applies the XOR operation just prior to appending the input data.
The vector length is the degree of the generator polynomial that you specify in the
“Polynomial” property. When you specify the final XOR value as a scalar, the object
expands the value to a row vector with a length equal to the degree of the generator
polynomial. The default value of this property is 0, which is equivalent to no XOR
operation.

ChecksumsPerFrame

Number of checksums per input frame

Specify the number of checksums available at each input frame. The default is 1.
If the length of the input frame to the step method equals N and the degree of
the generator polynomial equals P, then N - CheckSumsPerFrame¥ P must be
divisible by ChecksumsPerFrame. The object sets the size of the message word as
N - CheckSumsPerFrame¥ P, after the checksum bits have been removed from the input
frame. This message word corresponds to the first output of the step method. The step
method then outputs a vector, with length equal to the value that you specify in the this
property.

For example, you can set the input codeword size to 16 and the generator polynomial to
a degree of 3. Then, you can set the “InitialConditions” property to 0 and the this
property to 2 When you do so, the system object:

 comm.CRCDetector System object

3-417

1 Computes two checksums of size 3. One checksum comes from the first half of the
received codeword, and the other from the second half of the received codeword.

2 Concatenates the two halves of the message word as a single vector of length 10.
Then, outputs this vector through the first output of the step method.

3 Outputs a length 2 binary vector through the second output of the step method.

The vector values depend on whether the computed checksums are zero. A 1 in the i-th
element of the vector indicates that an error occurred in transmitting the corresponding
i-th segment of the input codeword.

Methods

clone
Create CRC detector object with same
property values

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

reset
Reset states of CRC detector object

step
Detect errors in input data using CRC

Examples

Encode a signal and then detect the errors.

 % Transmit two message words of length 6

3 Alphabetical List

3-418

 x = logical([1 0 1 1 0 1 0 1 1 1 0 1]');

 % Encode the message words using a CRC generator

 hGen = comm.CRCGenerator([1 0 0 1], 'ChecksumsPerFrame',2);

 codeword = step(hGen, x);

 % Add one bit error to each codeword

 errorPattern = randerr(2,9,1).';

 codewordWithError = xor(codeword, errorPattern(:));

 % Decode messages with and without errors using a CRC decoder

 hDetect = comm.CRCDetector([1 0 0 1], 'ChecksumsPerFrame',2);

 [tx, err] = step(hDetect, codeword);

 [tx1, err1] = step(hDetect, codewordWithError);

 disp(err) % err is [0;0], no errors in transmitted message words

 disp(err1) % err1 is [1;1], errors in both transmitted message words

Algorithms

This object implements the algorithm, inputs, and outputs described on the CRC-N
Syndrome Detector block reference page. The object properties correspond to the block
parameters.

See Also
comm.CRCGenerator

 clone

3-419

clone
System object: comm.CRCDetector
Package: comm

Create CRC detector object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a CRCDetector object C, with the same property values as H.
The clone method creates a new unlocked object with uninitialized states.

3 Alphabetical List

3-420

getNumInputs
System object: comm.CRCDetector
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of
expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H)

 getNumOutputs

3-421

getNumOutputs
System object: comm.CRCDetector
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

3 Alphabetical List

3-422

isLocked
System object: comm.CRCDetector
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the CRCDetector System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

 release

3-423

release
System object: comm.CRCDetector
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H)Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

3 Alphabetical List

3-424

reset
System object: comm.CRCDetector
Package: comm

Reset states of CRC detector object

Syntax

reset(H)

Description

reset(H) resets the states of the CRCDetector object, H.

 step

3-425

step
System object: comm.CRCDetector
Package: comm

Detect errors in input data using CRC

Syntax

[Y,ERR] = step(H,X)

Description

[Y,ERR] = step(H,X) computes checksums for the entire input frame, X. X must
be a binary column vector and the data type can be double or logical. The step method
outputs a row vector ERR, with size equal to the number of checksums that you specify
in the CheckSumsPerFrame property. The elements of ERR are 0 if the checksum
computation yields a zero value, and 1 otherwise. The method outputs Y, with the set of
CheckSumsPerFrame message words concatenated after removing the checksums bits.
The object sets the length of output Y as length(X) - P ¥ CheckSumsPerFrame, where P is
the order of the polynomial that you specify in the Polynomial property.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

3 Alphabetical List

3-426

comm.CRCGenerator System object

Package: comm

Generate CRC code bits and append to input data

Description

The CRCGenerator object generates cyclic redundancy code (CRC) bits for each input
data frame and appends them to the frame. The input must be a binary column vector.

To generate cyclic redundancy code bits and append them to the input data:

1 Define and set up your CRC generator object. See “Construction” on page 3-426.
2 Call step to generate cyclic redundancy code (CRC) bits for each input data frame

according to the properties of comm.CRCDetector. The behavior of step is specific
to each object in the toolbox.

Construction

H = comm.CRCGenerator creates a cyclic redundancy code (CRC) generator System
object, H. This object generates CRC bits according to a specified generator polynomial
and appends them to the input data.

H = comm.CRCGenerator(Name,Value) creates a CRC generator object, H, with each
specified property set to the specified value. You can specify additional name-value pair
arguments in any order as (Name1,Value1,...,NameN,ValueN).

H = comm.CRCGenerator(POLY,Name,Value) creates a CRC generator object, H.
This object has the Polynomial property set to POLY, and the other specified properties
set to the specified values.

Properties

Polynomial

 comm.CRCGenerator System object

3-427

Generator polynomial

Specify the generator polynomial as a binary or integer row vector, with coefficients in
descending order of powers. The default is [1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1],
which is equivalent to vector [16 12 5 0]. If you set this property to a binary vector,
its length must equal the degree of the polynomial plus 1. If you set this property to an
integer vector, its value must contain the powers of the nonzero terms of the polynomial.
For example, [1 0 0 0 0 0 1 0 1] and [8 2 0] represent the same polynomial,
g z z z() = + +

8 2
1 . The following table lists commonly used generator polynomials.

CRC
method

Generator polynomial

CRC-32 [32 26 23 22 16 12 11 10 8 7 5 4 2 1 0]

CRC-24 [24 23 14 12 8 0]

CRC-16 [16 15 2 0]

Reversed
CRC-16

[16 14 1 0]

CRC-8 [8 7 6 4 2 0]

CRC-4 [4 3 2 1 0]

InitialConditions

Initial conditions of shift register

Specify the initial conditions of the shift register as a scalar or vector with a binary,
double- or single-precision data type. The default is 0. The vector length must equal the
degree of the generator polynomial that you specify in the “Polynomial” property. When
you specify initial conditions as a scalar, the object expands the value to a row vector of
length equal to the degree of the generator polynomial.

DirectMethod

Direct method (logical)

When you set this property to true, the object uses the direct algorithm for CRC
checksum calculations. When you set this property to false, the object uses the non-
direct algorithm for CRC checksum calculations. The default value for this property is
false.

3 Alphabetical List

3-428

Refer to the Communications System Toolbox -> System Design -> Error Detection and
Correction -> Cyclic Redundancy Check Coding -> CRC Algorithm section to learn more
about the direct and non-direct algorithms.

ReflectInputBytes

Reflect input bytes

Set this property to true to flip the input data on a bytewise basis prior to entering the
data into the shift register. When you set this property to true, the input frame length
divided by the “ChecksumsPerFrame” property value must be an integer multiple of 8.
The default value of this property is false.

ReflectChecksums

Reflect checksums before final XOR

When you set this property to true, the object flips the CRC checksums around their
centers after the input data are completely through the shift register. The default value
of this property is false.

FinalXOR

Final XOR value

Specify the value with which the CRC checksum is to be XORed as a binary scalar or
vector. The object applies the XOR operation just prior to appending the input data.
The vector length is the degree of the generator polynomial that you specify in the
“Polynomial” property. When you specify the final XOR value as a scalar, the object
expands the value to a row vector with a length equal to the degree of the generator
polynomial. The default value of this property is 0, which is equivalent to no XOR
operation.

ChecksumsPerFrame

Number of checksums per input frame

Specify the number of checksums that the object calculates for each input frame as a
positive integer. The default is 1. The integer must divide the length of each input frame
evenly. The object performs the following actions:

1 Divides each input frame into ChecksumsPerFrame subframes of equal size.
2 Prefixes the initial conditions vector to each of the subframes.

 comm.CRCGenerator System object

3-429

3 Applies the CRC algorithm to each augmented subframe.
4 Appends the resulting checksums at the end of each subframe.
5 Outputs concatenated subframes.

For example, you can set an input frame size to 10, the degree of the generator
polynomial to 3, “InitialConditions” property set to 0, and the ChecksumsPerFrame
property set to 2. When you do so, the object divides each input frame into two subframes
of size 5 and appends a checksum of size 3 to each subframe. In this example, the output
frame has a size 10 2 3 16+ ¥ = .

Methods

clone
Create CRC generator object with same
property values

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

reset
Reset states of CRC generator object

step
Generate CRC code bits and append to
input data

Examples

Encode a signal and then detect the errors.

3 Alphabetical List

3-430

 % Transmit two message words of length 6

 x = logical([1 0 1 1 0 1 0 1 1 1 0 1]');

 % Encode the message words using a CRC generator

 hGen = comm.CRCGenerator([1 0 0 1], 'ChecksumsPerFrame',2);

 codeword = step(hGen, x);

 % Add one bit error to each codeword

 errorPattern = randerr(2,9,1).';

 codewordWithError = xor(codeword, errorPattern(:));

 % Decode messages with and without errors using a CRC decoder

 hDetect = comm.CRCDetector([1 0 0 1], 'ChecksumsPerFrame',2);

 [tx, err] = step(hDetect, codeword);

 [tx1, err1] = step(hDetect, codewordWithError);

 disp(err) % err is [0;0], no errors in transmitted message words

 disp(err1) % err1 is [1;1], errors in both transmitted message words

Algorithms

This object implements the algorithm, inputs, and outputs described on the CRC-
N Generator block reference page. The object properties correspond to the block
parameters.

See Also
comm.CRCDetector

 clone

3-431

clone
System object: comm.CRCGenerator
Package: comm

Create CRC generator object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a CRCGenerator object C, with the same property values as H.
The clone method creates a new unlocked object with uninitialized states.

3 Alphabetical List

3-432

getNumInputs
System object: comm.CRCGenerator
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of
expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H)

 getNumOutputs

3-433

getNumOutputs
System object: comm.CRCGenerator
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

3 Alphabetical List

3-434

isLocked
System object: comm.CRCGenerator
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the CRCGenerator System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

 release

3-435

release
System object: comm.CRCGenerator
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H)Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

3 Alphabetical List

3-436

reset
System object: comm.CRCGenerator
Package: comm

Reset states of CRC generator object

Syntax

reset(H)

Description

reset(H) resets the states of the CRCGenerator object, H.

 step

3-437

step
System object: comm.CRCGenerator
Package: comm

Generate CRC code bits and append to input data

Syntax

Y = step(H,X)

Description

Y = step(H,X) generates CRC checksums for an input message X and appends the
checksums to X. The input X must be a binary column vector and the data type can be
double or logical. The length of output Y is length(X) + P ¥ CheckSumsPerFrame, where P
is the order of the polynomial that you specify in the Polynomial property.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

3 Alphabetical List

3-438

comm.DBPSKDemodulator System object
Package: comm

Demodulate using DBPSK method

Description

The DBPSKDemodulator object demodulates a signal that was modulated using the
differential binary phase shift keying method. The input is a baseband representation of
the modulated signal.

To demodulate a signal that was modulated using differential binary phase shift keying:

1 Define and set up your DBPSK demodulator object. See “Construction” on page
3-438.

2 Call step to demodulate a signal according to the properties of
comm.DBPSKDemodulator. The behavior of step is specific to each object in the
toolbox.

Construction

H = comm.DBPSKDemodulator creates a demodulator System object, H. This object
demodulates the input signal using the differential binary phase shift keying (DBPSK)
method.

H = comm.DBPSKDemodulator(Name,Value) creates a DBPSK demodulator object, H,
with each specified property set to the specified value. You can specify additional name-
value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

H = comm.DBPSKDemodulator(PHASE,Name,Value) creates a DBPSK demodulator
object, H. This object has the PhaseRotation property set to PHASE and the other
specified properties set to the specified values.

Properties

PhaseRotation

 comm.DBPSKDemodulator System object

3-439

Additional phase shift

Specify the additional phase difference between previous and current modulated bits in
radians as a real scalar. The default is 0. This value corresponds to the phase difference
between previous and current modulated bits when the input is zero.

OutputDataType

Data type of output

Specify output data type as one of Full precision | Smallest unsigned integer
| double | single | int8 | uint8 | int16 | uint16 | int32 | uint32 | logical.
The default is Full precision. When you set this property to Full precision, the
output data type has the same data type as the input. In this case, that value must be a
double- or single-precision data type.

Methods

clone
Create DBPSK demodulator object with
same property values

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

reset
Reset states of DBPSK demodulator object

step
Demodulate using DBPSK method

3 Alphabetical List

3-440

Examples

Modulate and demodulate a signal using DBPSK modulation.

 hMod = comm.DBPSKModulator(pi/4);

 hAWGN = comm.AWGNChannel('NoiseMethod', ...

 'Signal to noise ratio (SNR)','SNR',15);

 hDemod = comm.DBPSKDemodulator(pi/4);

% Create an error rate calculator, account for the one bit transient caused by the differential modulation

 hError = comm.ErrorRate('ComputationDelay',1);

 for counter = 1:100

 % Transmit a 50-symbol frame

 data = randi([0 1],50,1);

 modSignal = step(hMod, data);

 noisySignal = step(hAWGN, modSignal);

 receivedData = step(hDemod, noisySignal);

 errorStats = step(hError, data, receivedData);

 end

 fprintf('Error rate = %f\nNumber of errors = %d\n', ...

 errorStats(1), errorStats(2))

Algorithms

This object implements the algorithm, inputs, and outputs described on the DBPSK
Demodulator Baseband block reference page. The object properties correspond to the
block parameters.

See Also
comm.DQPSKModulator | comm.DBPSKModulator

 clone

3-441

clone
System object: comm.DBPSKDemodulator
Package: comm

Create DBPSK demodulator object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a DBPSKDemodulator object C, with the same property values as
H. The clone method creates a new unlocked object with uninitialized states.

3 Alphabetical List

3-442

getNumInputs
System object: comm.DBPSKDemodulator
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of
expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H)

 getNumOutputs

3-443

getNumOutputs
System object: comm.DBPSKDemodulator
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

3 Alphabetical List

3-444

isLocked
System object: comm.DBPSKDemodulator
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

dTF = isLocked(H) returns the locked status, TF of the DBPSKDemodulator System
object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

 release

3-445

release
System object: comm.DBPSKDemodulator
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H)Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

3 Alphabetical List

3-446

reset
System object: comm.DBPSKDemodulator
Package: comm

Reset states of DBPSK demodulator object

Syntax

reset(H)

Description

reset(H) resets the states of the DBPSKDemodulator object, H.

 step

3-447

step
System object: comm.DBPSKDemodulator
Package: comm

Demodulate using DBPSK method

Syntax

Y = step(H,X)

Description

Y = step(H,X) demodulates input data, X, with the DBPSK demodulator System
object, H, and returns Y. Input X must be a double or single precision data type scalar or
column vector.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

3 Alphabetical List

3-448

comm.DBPSKModulator System object
Package: comm

Modulate using DBPSK method

Description

The DBPSKModulator object modulates using the differential binary phase shift keying
method. The output is a baseband representation of the modulated signal.

To modulate a signal using differential binary phase shift keying:

1 Define and set up your DBPSK modulator object. See “Construction” on page
3-448.

2 Call step to modulate a signal according to the properties of
comm.DBPSKModulator. The behavior of step is specific to each object in the
toolbox.

Construction

H = comm.DBPSKModulator creates a modulator System object, H. This object
modulates the input signal using the differential binary phase shift keying (DBPSK)
method.

H = comm.DBPSKModulator(Name,Value) creates a DBPSK modulator object, H, with
each specified property set to the specified value. You can specify additional name-value
pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

H = comm.DBPSKModulator(PHASE,Name,Value) creates a DBPSK modulator object,
H. This object has the PhaseRotation property set to PHASE, and the other specified
properties set to the specified values.

Properties

PhaseRotation

 comm.DBPSKModulator System object

3-449

Additional phase shift

Specify the additional phase difference between previous and current modulated bits
in radians as a real scalar value. The default is 0. This value corresponds to the phase
difference between previous and current modulated bits when the input is zero.

OutputDataType

Data type of output

Specify output data type as one of double | single. The default is double.

Methods

clone
Create DBPSK modulator object with same
property values

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

reset
Reset states of DBPSK modulator object

step
Modulate using DBPSK method

Examples

Modulate data using DBPSK modulation, and visualize the data in a scatter plot.

% Create binary data symbols

3 Alphabetical List

3-450

 data = randi([0 1], 96, 1);

% Create a DBPSK modulator System object and set the phase rotation to pi/4

 hModulator = comm.DBPSKModulator(pi/4);

% Modulate and plot the data

 modData = step(hModulator, data);

 scatterplot(modData)

Algorithms

This object implements the algorithm, inputs, and outputs described on the DBPSK
Modulator Baseband block reference page. The object properties correspond to the block
parameters.

See Also
comm.DQPSKModulator | comm.DBPSKDemodulator

 clone

3-451

clone
System object: comm.DBPSKModulator
Package: comm

Create DBPSK modulator object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a DBPSKModulator object C, with the same property values as H.
The clone method creates a new unlocked object with uninitialized states.

3 Alphabetical List

3-452

getNumInputs
System object: comm.DBPSKModulator
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of
expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H)

 getNumOutputs

3-453

getNumOutputs
System object: comm.DBPSKModulator
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

3 Alphabetical List

3-454

isLocked
System object: comm.DBPSKModulator
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the DBPSKModulator System
object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

 release

3-455

release
System object: comm.DBPSKModulator
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H)Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

3 Alphabetical List

3-456

reset
System object: comm.DBPSKModulator
Package: comm

Reset states of DBPSK modulator object

Syntax

reset(H)

Description

reset(H) resets the states of the DBPSKModulator object, H.

 step

3-457

step
System object: comm.DBPSKModulator
Package: comm

Modulate using DBPSK method

Syntax

Y = step(H,X)

Description

Y = step(H,X) modulates input data, X, with the DBPSK modulator System object,
H. It returns the baseband modulated output, Y. The input must be a numeric or logical
data type column vector of bits.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

3 Alphabetical List

3-458

comm.Descrambler System object
Package: comm

Descramble input signal

Description

The Descrambler object descrambles a scalar or column vector input signal. The
Descrambler object is the inverse of the Scrambler object. If you use the Scrambler object
in a transmitter, then you use the Descrambler object in the related receiver.

To descramble a scalar or column vector input signal:

1 Define and set up your descrambler object. See “Construction” on page 3-458.
2 Call step to descramble an input signal according to the properties of

comm.Descrambler. The behavior of step is specific to each object in the toolbox.

Construction

H = comm.Descrambler creates a descrambler System object, H. This object
descrambles the input data using a linear feedback shift register that you specify with
the Polynomial property.

H = comm.Descrambler(Name,Value) creates a descrambler object, H, with each
specified property set to the specified value. You can specify additional name-value pair
arguments in any order as (Name1,Value1,...,NameN,ValueN).

H = comm.Descrambler(N,POLY,COND,Name,Value) creates a descrambler object,
H. This object has the CalculationBase property set to N, the Polynomial property
set to POLY, the InitialConditions property set to COND, and the other specified
properties set to the specified values.

Properties

CalculationBase

 comm.Descrambler System object

3-459

Range of input data

Specify calculation base as a positive, integer, scalar value. The step method input and
output integers are in the range [0, CalculationBase–1]. The default is 4.

Polynomial

Linear feedback shift register connections

Specify the polynomial that determines the shift register feedback connections. The
default is [1 1 1 0 1]. You can specify the generator polynomial as a numeric, binary
vector that lists the coefficients of the polynomial in order of ascending powers of z-1,
where p(z–1) = 1 + p1z–1 + p2z-2 + ... is the generator polynomial. The first and last
elements must be 1. Alternatively, you can specify the generator polynomial as a numeric
vector. This vector contains the exponents of z-1 for the nonzero terms of the polynomial,
in order of ascending powers of z–1. In this case, the first vector element must be 0. For
example, both [1 0 0 0 0 0 1 0 1] and [0 -6 -8] specify the same polynomial
p z z z()

- - -
= + +

1 6 8
1 .

InitialConditionsSource

Source of initial conditions

Specify the source of the InitialConditions property as either Property or Input
port. If set to Input port, the initial conditions are provided as an input argument to
the step function. The default value is Property.

InitialConditions

Initial values of linear feedback shift register

Specify the initial values of the linear feedback shift register as an integer row vector
with values in [0 CalculationBase–1]. The default is [0 1 2 3]. The length of this
property vector must equal the order of the “Polynomial” property vector. This property
is available when InitialConditionsSource is set to Property.

ResetInputPort

Descrambler state reset port

Specify the creation of an input port that is used to reset the state of the descrambler.
If ResetInputPort is true, the descrambler is reset when a nonzero input argument

3 Alphabetical List

3-460

is provided to the step function. The default value is false. This property is available
when InitialConditionsSource is set to Property.

Methods

clone
Create descrambler object with same
property values

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

reset
Reset states of descrambler object

step
Descramble input signal

Examples

Scramble and Descramble Data

Scramble and descramble 8-ary data using comm.Scrambler and comm.Descrambler
System objects™ having a calculation base of 8.

Create scrambler and descrambler objects while specifying the generator polymomial and
initial conditions using name-value pairs.

N = 8;

hSCR = comm.Scrambler(N,[1 0 1 1 0 1 0 1], ...

 [0 3 2 2 5 1 7]);

 comm.Descrambler System object

3-461

hDSCR = comm.Descrambler(N,[1 0 1 1 0 1 0 1], ...

 [0 3 2 2 5 1 7]);

Scramble and descramble random integers and verify that the descrambled output
matches the initial data

data = randi([0 N-1],5,1);

scrData = step(hSCR,data);

deScrData = step(hDSCR,scrData);

[data scrData deScrData]

ans =

 6 7 6

 7 5 7

 1 7 1

 7 0 7

 5 3 5

Scramble and Descramble Data With Changing Initial Conditions

Scramble and descramble quaternary data while changing the initial conditions between
step calls.

Create scrambler and descrambler System objects™. Set the
InitialConditionsSource property to Input port to be able to set the initial
conditions as an argument to the step function.

N = 4;

hSCR = comm.Scrambler(N,[1 0 0 1],'InitialConditionsSource','Input port');

hDSCR = comm.Descrambler(N,[1 0 0 1],'InitialConditionsSource','Input port');

Allocate memory for errVec.

errVec = zeros(10,1);

Scramble and descramble random integers while changing the initial conditions,
initCond, each time the loop executes. Use the symerr function to determine if the
scrambling and descrambing operations result in symbol errors.

for k = 1:10

 initCond = randperm(3)';

 data = randi([0 N-1],5,1);

3 Alphabetical List

3-462

 scrData = step(hSCR,data,initCond);

 deScrData = step(hDSCR,scrData,initCond);

 errVec(k) = symerr(data,deScrData);

end

Examine errVec to verify that the output from the descrambler matches the original
data.

errVec

errVec =

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

Algorithms

This object implements the algorithm, inputs, and outputs described on the Descrambler
block reference page. The object properties correspond to the block parameters.

See Also
comm.PNSequence | comm.Scrambler

 clone

3-463

clone
System object: comm.Descrambler
Package: comm

Create descrambler object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a Descrambler object C, with the same property values as H.
The clone method creates a new unlocked object with uninitialized states.

3 Alphabetical List

3-464

getNumInputs
System object: comm.Descrambler
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of
expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H)

 getNumOutputs

3-465

getNumOutputs
System object: comm.Descrambler
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

3 Alphabetical List

3-466

isLocked
System object: comm.Descrambler
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the Descrambler System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

 release

3-467

release
System object: comm.Descrambler
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H)Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

3 Alphabetical List

3-468

reset
System object: comm.Descrambler
Package: comm

Reset states of descrambler object

Syntax

reset(H)

Description

reset(H) resets the states of the Descrambler object, H.

 step

3-469

step
System object: comm.Descrambler
Package: comm

Descramble input signal

Syntax

Y = step(H,X)

Y = step(H,X,IC)

Y = step(H,X,RESET)

Description

Y = step(H,X) descrambles input data, X, and returns the result in Y. X must be a
double precision, logical, or integer column vector. The output Y is same data type and
length as the input vector, X.

Y = step(H,X,IC) descrambles the input data given initial values of the linear
feedback shift register, IC. The length of IC must be the same as order of the
Polynomial property. This syntax is available when InitialConditionsSource is set
to Input port.

Y = step(H,X,RESET) resets the state of the descrambler when a nonzero value
is applied as an input to the RESET argument. This syntax is available when
InitialConditionsSource is set to Property and ResetInputPort is true.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

3 Alphabetical List

3-470

comm.DifferentialDecoder System object
Package: comm

Decode binary signal using differential decoding

Description
The DifferentialDecoder object decodes the binary input signal. The output is the
logical difference between the consecutive input element within a channel.

To decode a binary signal using differential decoding:

1 Define and set up your differential decoder object. See “Construction” on page
3-470.

2 Call step to decode a binary signal according to the properties of
comm.DifferentialDecoder. The behavior of step is specific to each object in the
toolbox.

Construction
H = comm.DifferentialDecoder creates a differential decoder System object, H. This
object decodes a binary input signal that was previously encoded using a differential
encoder.

H = comm.DifferentialDecoder(Name,Value) creates object, H, with each
specified property set to the specified value. You can specify additional name-value pair
arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties

InitialCondition

Initial value used to generate initial output

Specify the initial condition as a real scalar. This property can have a logical, numeric, or
fixed-point (embedded.fi object) data type. The default is 0. The object treats nonbinary
values as binary signals.

 comm.DifferentialDecoder System object

3-471

Methods

clone
Create differential decoder object with
same property values

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

reset
Reset states of differential decoder object

step
Decode binary signal using differential
decoding

Examples

Decode a differentially encoded signal.

% Create Differential Encoder System object

 hdiffenc = comm.DifferentialEncoder;

% Create Differential Decoder System object

 hdiffdec = comm.DifferentialDecoder;

% Generate random binary data

 data = randi([0 1], 100, 1);

% Encode data

 encdata = step(hdiffenc,data);

% Decode data

 recdata = step(hdiffdec, encdata);

 errors = biterr(data, recdata);

 fprintf(1, ['\nThere were %d errors in the decoded signal ' ...

 'out of %d bits\n'],errors, length(data));

3 Alphabetical List

3-472

Algorithms

This object implements the algorithm, inputs, and outputs described on the Differential
Decoder block reference page. The object properties correspond to the block parameters,
except:
The object only supports single channel, column vector inputs.

See Also
comm.DifferentialEncoder

 clone

3-473

clone
System object: comm.DifferentialDecoder
Package: comm

Create differential decoder object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a DifferentialDecoder object C, with the same property
values as H. The clone method creates a new unlocked object with uninitialized states.

3 Alphabetical List

3-474

getNumInputs
System object: comm.DifferentialDecoder
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of
expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H)

 getNumOutputs

3-475

getNumOutputs
System object: comm.DifferentialDecoder
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

3 Alphabetical List

3-476

isLocked
System object: comm.DifferentialDecoder
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the DifferentialDecoder
System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

 release

3-477

release
System object: comm.DifferentialDecoder
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H)Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

3 Alphabetical List

3-478

reset
System object: comm.DifferentialDecoder
Package: comm

Reset states of differential decoder object

Syntax

reset(H)

Description

reset(H) resets the states of the DifferentialDecoder object, H.

 step

3-479

step
System object: comm.DifferentialDecoder
Package: comm

Decode binary signal using differential decoding

Syntax

Y = step(H,X)

Description

Y = step(H,X) decodes the differentially encoded input data, X, and returns the
decoded data, Y. The input X must be a column vector of data type logical, numeric,
or fixed-point (embedded.fi objects). Y has the same data type as X. The object treats
non-binary inputs as binary signals. The object computes the initial output value by
performing an Xor operation of the value in the InitialCondition property and the
first element of the vector you input the first time you call the step method.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

3 Alphabetical List

3-480

comm.DifferentialEncoder System object

Package: comm

Encode binary signal using differential coding

Description

The DifferentialEncoder object encodes the binary input signal within a channel.
The output is the logical difference between the current input element and the previous
output element.

To encode a binary signal using differential coding:

1 Define and set up your differential encoder object. See “Construction” on page
3-480.

2 Call step to encode a binary signal according to the properties of
comm.DifferentialEncoder. The behavior of step is specific to each object in the
toolbox.

Construction

H = comm.DifferentialEncoder creates a differential encoder System object, H.
This object encodes a binary input signal by calculating its logical difference with the
previously encoded data.

H = comm.DifferentialEncoder(Name,Value) creates object, H, with each
specified property set to the specified value. You can specify additional name-value pair
arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties

InitialCondition

Initial value used to generate initial output

 comm.DifferentialEncoder System object

3-481

Specify the initial condition as a real scalar. This property can have a logical, numeric, or
fixed-point (embedded.fi object) data type. The default is 0. The object treats nonbinary
values as binary signals.

Methods

clone
Create differential encoder object with
same property values

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

reset
Reset states of differential encoder object

step
Encode binary signal using differential
coding

Examples

Encode binary signal using differential coding.

% Create Differential Encoder System object

 hdiffenc = comm.DifferentialEncoder;

% Generate random binary data

 data = randi([0 1], 11, 1);

% Encode data

 encdata = step(hdiffenc,data);

3 Alphabetical List

3-482

Algorithms

This object implements the algorithm, inputs, and outputs described on the Differential
Encoder block reference page. The object properties correspond to the block parameters,
except:
The object only supports single channel, column vector inputs.

See Also
comm.DifferentialDecoder

 clone

3-483

clone
System object: comm.DifferentialEncoder
Package: comm

Create differential encoder object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a DifferentialEncoder object C, with the same property
values as H. The clone method creates a new unlocked object with uninitialized states.

3 Alphabetical List

3-484

getNumInputs
System object: comm.DifferentialEncoder
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of
expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H)

 getNumOutputs

3-485

getNumOutputs
System object: comm.DifferentialEncoder
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

3 Alphabetical List

3-486

isLocked
System object: comm.DifferentialEncoder
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the DifferentialEncoder
System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

 release

3-487

release
System object: comm.DifferentialEncoder
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H)Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

3 Alphabetical List

3-488

reset
System object: comm.DifferentialEncoder
Package: comm

Reset states of differential encoder object

Syntax

reset(H)

Description

reset(H) resets the states of the DifferentialEncoder object, H.

 step

3-489

step
System object: comm.DifferentialEncoder
Package: comm

Encode binary signal using differential coding

Syntax

Y = step(H,X)

Description

Y = step(H,X) encodes the binary input data, X, and returns the differentially encoded
data, Y. The input X must be a column vector of data type logical, numeric, or fixed-point
(embedded.fi objects). Y has the same data type as X. The object treats non-binary inputs
as binary signals. The object computes the initial output value by performing an Xor
operation of the value in the InitialCondition property and the first element of the
vector you input the first time you call the step method.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

3 Alphabetical List

3-490

comm.DiscreteTimeVCO System object

Package: comm

Generate variable frequency sinusoid

Description

The DiscreteTimeVCO (voltage-controlled oscillator) object generates a signal whose
frequency shift from the quiescent frequency property is proportional to the input signal.
The input signal is interpreted as a voltage.

To generate a variable frequency sinusoid:

1 Define and set up your discrete time voltage-controlled oscillator object. See
“Construction” on page 3-490 .

2 Call step to generate a variable frequency sinusoid according to the properties of
comm.DiscreteTimeVCO. The behavior of step is specific to each object in the
toolbox.

Construction

H = comm.DiscreteTimeVCO creates a discrete-time voltage-controlled oscillator (VCO)
System object, H. This object generates a sinusoidal signal with the frequency shifted
from the specified quiescent frequency to a value proportional to the input signal.

H = comm.DiscreteTimeVCO(Name,Value) creates a discrete-time VCO object, H,
with each specified property set to the specified value. You can specify additional name-
value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties

OutputAmplitude

Amplitude of output signal

 comm.DiscreteTimeVCO System object

3-491

Specify the amplitude of the output signal as a double- or single-precision, scalar value.
The default is 1. This property is tunable.

QuiescentFrequency

Frequency of output signal when input is zero

Specify the quiescent frequency of the output signal in Hertz, as a double- or single-
precision, real, scalar value. The default is 10. This property is tunable.

Sensitivity

Sensitivity of frequency shift of output signal

Specify the sensitivity of the output signal frequency shift to the input as a double- or
single-precision, real, scalar value. The default is 1. This value scales the input voltage
and, consequently, the shift from the quiescent frequency value. The property measures
Sensitivity in Hertz per volt. This property is tunable.

InitialPhase

Initial phase of output signal

Specify the initial phase of the output signal, in radians, as a double or single precision,
real, scalar value. The default is 0.

SampleRate

Sample rate of input

Specify the sample rate of the input, in Hertz, as a double- or single-precision, positive,
scalar value. The default is 100.

Methods

clone
Create discrete-time VCO object with same
property values

3 Alphabetical List

3-492

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

reset
Reset states of discrete-time VCO object

step
Generate variable frequency sinusoid

Examples

Generate an FSK signal using a discrete time VCO.

 % Create a SignalSource System object and generate random data

 hreader = dsp.SignalSource;

 hreader.Signal = randi([0 7],10,1);

 % Rectangular pulse shaping

 hreader.Signal = rectpulse(hreader.Signal, 100);

 % Create a signal logger System object

 hlogger = dsp.SignalSink;

 % Create a discrete time VCO object and generate an FSK signal

 hdvco = comm.DiscreteTimeVCO('OutputAmplitude',8, ...

 'QuiescentFrequency',1);

 while(~isDone(hreader))

 sig = step(hreader);

 y = step(hdvco,sig);

 step(hlogger,y);

 end

 oscsig = hlogger.Buffer;

 % Plot FSK signal

 t = [0:length(oscsig)-1]'/hdvco.SampleRate;

 plot(t,hreader.Signal,'--r', 'LineWidth',3); hold on;

 plot(t,oscsig,'-b'); hold off;

 comm.DiscreteTimeVCO System object

3-493

 xlabel('time (s)');

 legend('Input Signal', 'FSK Signal');

Algorithms

This object implements the algorithm, inputs, and outputs as described on the Discrete-
Time VCO block reference page. However, this object and the corresponding block may
not generate the exact same outputs for single-precision inputs or property values due to
the following differences in casting strategies and arithmetic precision issues:

• The block always casts the result of intermediate mathematical operations to the
input data type. The object does not cast intermediate results and MATLAB decides
the data type. The object casts the final output to the input data type.

• You can specify the SampleRate object property in single-precision or double-
precision. The block does not allow this.

• In arithmetic operations with more than two operands with mixed data types, the
result may differ depending on the order of operation. Thus, the following calculation
may also contribute to the difference in the output of the block and the object:

input * sensitivity * sampleTime
• The block performs this calculation from left to right. However, since sensitivity *

sampleTime is a one-time calculation, the object calculates this in the following
manner:

input * (sensitivity * sampleTime)

See Also
comm.CPMCarrierPhaseSynchronizer | comm.PSKCarrierPhaseSynchronizer

3 Alphabetical List

3-494

clone
System object: comm.DiscreteTimeVCO
Package: comm

Create discrete-time VCO object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a DiscreteTimeVCO object C, with the same property values as
H. The clone method creates a new unlocked object with uninitialized states.

 getNumInputs

3-495

getNumInputs
System object: comm.DiscreteTimeVCO
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of
expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H)

3 Alphabetical List

3-496

getNumOutputs
System object: comm.DiscreteTimeVCO
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

 isLocked

3-497

isLocked
System object: comm.DiscreteTimeVCO
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the DiscreteTimeVCO System
object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

3 Alphabetical List

3-498

release
System object: comm.DiscreteTimeVCO
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H)Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 reset

3-499

reset
System object: comm.DiscreteTimeVCO
Package: comm

Reset states of discrete-time VCO object

Syntax

reset(H)

Description

reset(H) resets the states of the DiscreteTimeVCO object, H.

3 Alphabetical List

3-500

step
System object: comm.DiscreteTimeVCO
Package: comm

Generate variable frequency sinusoid

Syntax

Y = step(H,X)

Description

Y = step(H,X) generates a sinusoidal signal, Y, with frequency shifted, from the value
you specify in the QuiescentFrequency property, to a value proportional to the input
signal, X. The input, X, must be a double or single precision, real, scalar value. The
output, Y, has the same data type and size as the input, X.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

 comm.DPSKDemodulator System object

3-501

comm.DPSKDemodulator System object
Package: comm

Demodulate using M-ary DPSK method

Description

The DPSKDemodulator object demodulates a signal that was modulated using the M-
ary differential phase shift keying method. The input is a baseband representation of
the modulated signal. The input and output for this object are discrete-time signals. This
object accepts a scalar-valued or column vector input signal.

To demodulate a signal that was modulated using differential phase shift keying:

1 Define and set up your DPSK modulator object. See “Construction” on page 3-501.
2 Call step to demodulate a signal according to the properties of DPSKDemodulator.

The behavior of step is specific to each object in the toolbox.

Construction

H = comm.DPSKDemodulator creates a demodulator System object, H. This object
demodulates the input signal using the M-ary differential phase shift keying (M-DPSK)
method.

H = comm.DPSKDemodulator(Name,Value) creates an M-DPSK demodulator object,
H, with each specified property set to the specified value. You can specify additional
name-value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

H = comm.DPSKDemodulator(M,PHASE,Name,Value) creates an M-DPSK
demodulator object, H. This object has the ModulationOrder property set to M, the
PhaseRotation property set to PHASE, and the other specified properties set to the
specified values.

Properties

ModulationOrder

3 Alphabetical List

3-502

Number of points in signal constellation

Specify the number of points in the signal constellation as a positive, integer scalar
value. The default is 8.

PhaseRotation

Additional phase shift

Specify the additional phase difference between previous and current modulated symbols
in radians as a real scalar value. The default is pi/8. This value corresponds to the
phase difference between previous and current modulated symbols when the input is
zero.

BitOutput

Output data as bits

Specify whether the output consists of groups of bits or integer symbol values.
The default is false. When you set this property to true the step method
outputs a column vector of bit values. The length of this column vector is equal to
log2(“ModulationOrder”) times the number of demodulated symbols.

When you set this property to false, the step method outputs a column vector. The
length of this column vector is equal to that of the input data vector. The output contains
integer symbol values between 0 and ModulationOrder-1.

SymbolMapping

Constellation encoding

Specify how the object maps an integer or group of log2(“ModulationOrder”) bits to
the corresponding symbol as one of Binary | Gray. The default is Gray. When you set
this property to Gray, the object uses a Gray-encoded signal constellation. When you set
this property to Binary, the input integer m, between (0 £ £m ModulationOrder–1)
maps to the current symbol. This mapping uses exp(j ¥ PhaseRotation + j ¥ 2¥ ¥p m/
ModulationOrder) ¥ (previously modulated symbol).

OutputDataType

Data type of output

 comm.DPSKDemodulator System object

3-503

Specify the output data type as one of Full precision | Smallest unsigned
integer | double | single | int8 | uint8 | int16 | uint16 | int32 | uint32.
The default is Full precision. When you set this property to Full precision, the
input data type is single or double precision, the output data is the same as that of the
input. When you set the “BitOutput” property to true, logical data type becomes a
valid option.

Methods

clone
Create M-DPSK demodulator object with
same property values

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

reset
Reset states of M-DPSK demodulator object

step
Demodulate using M-ary DPSK method

Examples

Modulate and demodulate a signal using 8-DPSK modulation.

 hMod = comm.DPSKModulator(8,pi/4);

 hAWGN = comm.AWGNChannel('NoiseMethod', ...

 'Signal to noise ratio (SNR)','SNR',20);

 hDemod = comm.DPSKDemodulator(8,pi/4);

% Create an error rate calculator, account for the one symbol transient caused by the differential modulation

3 Alphabetical List

3-504

 hError = comm.ErrorRate('ComputationDelay',1);

 for counter = 1:100

% Transmit a 50-symbol frame

 data = randi([0 hMod.ModulationOrder-1],50,1);

 modSignal = step(hMod, data);

 noisySignal = step(hAWGN, modSignal);

 receivedData = step(hDemod, noisySignal);

 errorStats = step(hError, data, receivedData);

 end

 fprintf('Error rate = %f\nNumber of errors = %d\n', ...

 errorStats(1), errorStats(2))

Algorithms

This object implements the algorithm, inputs, and outputs described on the M-DPSK
Demodulator Baseband block reference page. The object properties correspond to the
block parameters.

See Also
comm.DPSKModulator | comm.DBPSKDemodulator | comm.DQPSKDemodulator

 clone

3-505

clone
System object: comm.DPSKDemodulator
Package: comm

Create M-DPSK demodulator object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a DPSKDemodulator object C, with the same property values as
H. The clone method creates a new unlocked object with uninitialized states.

3 Alphabetical List

3-506

getNumInputs
System object: comm.DPSKDemodulator
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of
expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H)

 getNumOutputs

3-507

getNumOutputs
System object: comm.DPSKDemodulator
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

3 Alphabetical List

3-508

isLocked
System object: comm.DPSKDemodulator
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the DPSKDemodulator System
object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

 release

3-509

release
System object: comm.DPSKDemodulator
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H)Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

3 Alphabetical List

3-510

reset
System object: comm.DPSKDemodulator
Package: comm

Reset states of M-DPSK demodulator object

Syntax

reset(H)

Description

reset(H) resets the states of the DPSKDemodulator object, H.

 step

3-511

step
System object: comm.DPSKDemodulator
Package: comm

Demodulate using M-ary DPSK method

Syntax

Y = step(H,X)

Description

Y = step(H,X) demodulates input data, X, with the DPSK demodulator System object,
H, and returns Y. Input X must be a double or single precision data type scalar or column
vector. Depending on the BitOutput property value, output Y can be integer or bit
valued.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

3 Alphabetical List

3-512

comm.DPSKModulator System object

Package: comm

Modulate using M-ary DPSK method

Description

The DPSKModulator object modulates using the M-ary differential phase shift keying
method. The output is a baseband representation of the modulated signal.

To modulate a signal using differential phase shift keying:

1 Define and set up your DPSK modulator object. See “Construction” on page 3-512.
2 Call step to modulate a signal according to the properties of comm.DPSKModulator.

The behavior of step is specific to each object in the toolbox.

Construction

H = comm.DPSKModulator creates a modulator System object, H. This object modulates
the input signal using the M-ary differential phase shift keying (M-DPSK) method.

H = comm.DPSKModulator(Name,Value) creates an M-DPSK modulator object, H,
with each specified property set to the specified value. You can specify additional name-
value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

H = comm.DPSKModulator(M,PHASE,Name,Value) creates an M-DPSK modulator
object, H. This object has the ModulationOrder property set to M, the PhaseRotation
property set to PHASE, and the other specified properties set to the specified values.

Properties

ModulationOrder

Number of points in signal constellation

 comm.DPSKModulator System object

3-513

Specify the number of points in the signal constellation as a positive, integer scalar
value. The default is 8.

PhaseRotation

Additional phase shift

Specify the additional phase difference between previous and current modulated symbols
in radians as a real scalar value. The default is pi/8. This value corresponds to the
phase difference between previous and current modulated symbols when the input is
zero.

BitInput

Assume bit inputs

Specify whether the input is bits or integers. The default is false. When you set this
property to true, the step method input must be a column vector of bit values whose
length is an integer multiple of log2(“ModulationOrder”). This vector contains bit
representations of integers between 0 and ModulationOrder–1. When you set this
property to false, the step method input requires a column vector of integer symbol
values between 0 and ModulationOrder–1.

SymbolMapping

Constellation encoding

Specify how the object maps an integer or group of log2(“ModulationOrder”) input bits
to the corresponding symbol as one of Binary | Gray. The default is Gray. When you set
this property to Gray, the object uses a Gray-encoded signal constellation. When you set
this property to Binary, the input integer m, between (0 £ £m ModulationOrder–1)
shifts the output phase. This shift is (“PhaseRotation” + 2¥ ¥p m/ModulationOrder)
radians from the previous output phase. The output symbol uses exp(j ¥ PhaseRotation

+ j ¥ 2¥ ¥p m/ModulationOrder) ¥ (previously modulated symbol).

OutputDataType

Data type of output

Specify output data type as one of double | single. The default is double.

3 Alphabetical List

3-514

Methods
clone

Create M-DPSK modulator object with
same property values

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

reset
Reset states of M-DPSK modulator object

step
Modulate using M-ary DPSK method

Examples
Modulate data using 8-DPSK modulation and visualize the data in a scatter plot.

% Create binary data for 1000, 3 bit symbols

 data = randi([0 1],3000,1);

% Create an 8-DPSK modulator System object with bits as inputs,phase rotation of pi/4 and Gray-coded signal constellation

 hModulator = comm.DPSKModulator(8,pi/4,'BitInput',true);

% Modulate and plot the data

 modData = step(hModulator, data);

 scatterplot(modData)

Algorithms
This object implements the algorithm, inputs, and outputs described on the M-DPSK
Modulator Baseband block reference page. The object properties correspond to the block
parameters.

 comm.DPSKModulator System object

3-515

See Also
comm.DBPSKModulator | comm.DPSKDemodulator | comm.DQPSKModulator

3 Alphabetical List

3-516

clone
System object: comm.DPSKModulator
Package: comm

Create M-DPSK modulator object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a DPSKModulator object C, with the same property values as H.
The clone method creates a new unlocked object with uninitialized states.

 getNumInputs

3-517

getNumInputs
System object: comm.DPSKModulator
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of
expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H)

3 Alphabetical List

3-518

getNumOutputs
System object: comm.DPSKModulator
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

 isLocked

3-519

isLocked
System object: comm.DPSKModulator
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the DPSKModulator System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

3 Alphabetical List

3-520

release
System object: comm.DPSKModulator
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H)Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 reset

3-521

reset
System object: comm.DPSKModulator
Package: comm

Reset states of M-DPSK modulator object

Syntax

reset(H)

Description

reset(H) resets the states of the DPSKModulator object, H.

3 Alphabetical List

3-522

step
System object: comm.DPSKModulator
Package: comm

Modulate using M-ary DPSK method

Syntax

Y = step(H,X)

Description

Y = step(H,X) modulates input data, X, with the DPSK modulator System object, H.
It returns the baseband modulated output, Y. Depending on the value of the BitInput
property, input X can be an integer or bit valued column vector with numeric or logical
data types.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

 comm.DQPSKDemodulator System object

3-523

comm.DQPSKDemodulator System object
Package: comm

Demodulate using DQPSK method

Description

The DQPSKDemodulator object demodulates a signal that was modulated using
the differential quaternary phase shift keying method. The input is a baseband
representation of the modulated signal.

To demodulate a signal that was modulated using differential quaternary phase shift
keying:

1 Define and set up your DQPSK modulator object. See “Construction” on page
3-523.

2 Call step to demodulate a signal according to the properties of DQPSKDemodulator.
The behavior of step is specific to each object in the toolbox.

Construction

H = comm.DQPSKDemodulator creates a demodulator System object, H. This object
demodulates the input signal using the differential quadrature phase shift keying
(DQPSK) method.

H = comm.DQPSKDemodulator(Name,Value) creates a DQPSK demodulator object, H,
with each specified property set to the specified value. You can specify additional name-
value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

H = comm.DQPSKDemodulator(PHASE,Name,Value) creates a DQPSK demodulator
object, H. This object has the PhaseRotation property set to PHASE and the other
specified properties set to the specified values.

Properties

PhaseRotation

3 Alphabetical List

3-524

Additional phase shift

Specify the additional phase difference between previous and current modulated symbols
in radians as a real scalar. The default is pi/4. This value corresponds to the phase
difference between previous and current modulated symbols when the input is zero.

BitOutput

Output data as bits

Specify whether the output consists of groups of bits or integer symbol values. The
default is false. When you set this property to true the step method outputs a column
vector of bit values with length equal to twice the number of demodulated symbols. When
you set this property to false, the step method outputs a column vector, of length equal
to the input data vector, that contains integer symbol values between 0 and 3.

SymbolMapping

Constellation encoding

Specify how the object maps an integer or group of 2 bits to the corresponding
symbol as one of Binary | Gray. The default is Gray. When you set this property
to Gray, the object uses a Gray-encoded signal constellation. When you set this
property to Binary, the integer m, between 0 3£ £m maps to the current symbol as

exp(j ¥ “PhaseRotation” + j ¥ 2
4

¥ ¥p m) ¥ (previously modulated symbol).

OutputDataType

Data type of output

Specify the output data type as one of Full precision | Smallest unsigned
integer | double | single | int8 | uint8 | int16 | uint16 | int32 | uint32.
The default is Full precision. When you set this property to Full precision the
output has the same data type as that of the input. In this case, the input data type
is single- or double-precision value. When you set the “BitOutput” property to true,
logical data type becomes a valid option.

 comm.DQPSKDemodulator System object

3-525

Methods

clone
Create DQPSK demodulator object with
same property values

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

reset
Reset states of DQPSK demodulator object

step
Demodulate using DQPSK method

Examples

Modulate and demodulate a signal using DQPSK modulation.

 hMod = comm.DQPSKModulator(pi/8);

 hAWGN = comm.AWGNChannel('NoiseMethod', ...

 'Signal to noise ratio (SNR)','SNR',15);

 hDemod = comm.DQPSKDemodulator(pi/8);

% Create an error rate calculator, account for the one symbol transient caused by the differential modulation

 hError = comm.ErrorRate('ComputationDelay',1);

 for counter = 1:100

% Transmit a 50-symbol frame

 data = randi([0 3],50,1);

 modSignal = step(hMod, data);

 noisySignal = step(hAWGN, modSignal);

 receivedData = step(hDemod, noisySignal);

 errorStats = step(hError, data, receivedData);

 end

3 Alphabetical List

3-526

 fprintf('Error rate = %f\nNumber of errors = %d\n', ...

 errorStats(1), errorStats(2))

Algorithms

This object implements the algorithm, inputs, and outputs described on the DQPSK
Demodulator Baseband block reference page. The object properties correspond to the
block parameters.

See Also
comm.DPSKDemodulator | comm.DQPSKModulator | comm.DBPSKDemodulator

 clone

3-527

clone
System object: comm.DQPSKDemodulator
Package: comm

Create DQPSK demodulator object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a DQPSKDemodulator object C, with the same property values as
H. The clone method creates a new unlocked object with uninitialized states.

3 Alphabetical List

3-528

getNumInputs
System object: comm.DQPSKDemodulator
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of
expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H)

 getNumOutputs

3-529

getNumOutputs
System object: comm.DQPSKDemodulator
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

3 Alphabetical List

3-530

isLocked
System object: comm.DQPSKDemodulator
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the DQPSKDemodulator System
object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

 release

3-531

release
System object: comm.DQPSKDemodulator
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H)Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

3 Alphabetical List

3-532

reset
System object: comm.DQPSKDemodulator
Package: comm

Reset states of DQPSK demodulator object

Syntax

reset(H)

Description

reset(H) resets the states of the DQPSKDemodulator object, H.

 step

3-533

step
System object: comm.DQPSKDemodulator
Package: comm

Demodulate using DQPSK method

Syntax

Y = step(H,X)

Description

Y = step(H,X) demodulates input data, X, with the DQPSK demodulator System
object, H, and returns Y. Input X must be a single or double precision data type scalar or
column vector. Depending on the BitOutput property value, output Y can be integer or
bit valued.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

3 Alphabetical List

3-534

comm.DQPSKModulator System object
Package: comm

Modulate using DQPSK method

Description

The DQPSKModulator object modulates using the differential quaternary phase shift
keying method. The output is a baseband representation of the modulated signal.

To modulate a signal using differential quaternary phase shift keying:

1 Define and set up your DQPSK modulator object. See “Construction” on page
3-534.

2 Call step to modulate a signal according to the properties of
comm.DQPSKModulator. The behavior of step is specific to each object in the
toolbox.

Construction

H = comm.DQPSKModulator creates a modulator System object, H. This object
modulates the input signal using the differential quadrature phase shift keying (DQPSK)
method.

H = comm.DQPSKModulator(Name,Value) creates a DQPSK modulator object, H, with
each specified property set to the specified value. You can specify additional name-value
pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

H = comm.DQPSKModulator(PHASE,Name,Value) creates a DQPSK modulator object,
H. This object has the PhaseRotation property set to PHASE and the other specified
properties set to the specified values.

Properties

PhaseRotation

 comm.DQPSKModulator System object

3-535

Additional phase shift

Specify the additional phase difference between previous and current modulated symbols
in radians as a real scalar value. The default is pi/4. This value corresponds to the
phase difference between previous and current modulated symbols when the input is
zero.

BitInput

Assume bit inputs

Specify whether the input is bits or integers. The default is false. When you set this
property to true, the step method input must be a column vector of bit values. The length
of this vector is an integer multiple of two. This vector contains bit representations of
integers between 0 and 3. When you set this property to false, the step method input
must be a column vector of integer symbol values between 0 and 3.

SymbolMapping

Constellation encoding

Specify how the object maps an integer or group of two input bits to the corresponding
symbol as one of Binary | Gray. The default is Gray. When you set this property to
Gray, the object uses a Gray-encoded signal constellation. When you set this property
to Binary, the input integer m, between 0 3£ £m shifts the output phase. This shift is

(“PhaseRotation” + 2
4

¥ ¥p m) radians from the previous output phase. The output

symbol is exp(j ¥ PhaseRotation + j ¥ 2
4

¥ ¥p m) ¥ (previously modulated symbol).

OutputDataType

Data type of output

Specify output data type as one of double | single. The default is double.

Methods

clone
Create DQPSK modulator object with same
property values

3 Alphabetical List

3-536

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

reset
Reset states of DQPSK modulator object

step
Modulate using DQPSK method

Examples

Modulate data using DQPSK modulation and visualize the data in a scatter plot.

 % Create binary data for 100, 4 bit symbols

 data = randi([0 1],400,1);

 % Create a DQPSK modulator System object with bits as inputs,phase rotation of pi/8, and Gray-coded constellation

 hModulator = comm.DQPSKModulator(pi/8,'BitInput',true);

 % Modulate and plot the data

 modData = step(hModulator, data);

 scatterplot(modData)

Algorithms

This object implements the algorithm, inputs, and outputs described on the DQPSK
Modulator Baseband block reference page. The object properties correspond to the block
parameters.

See Also
comm.DPSKModulator | comm.DQPSKDemodulator | comm.DBPSKModulator

 clone

3-537

clone
System object: comm.DQPSKModulator
Package: comm

Create DQPSK modulator object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a DQPSKModulator object C, with the same property values as H.
The clone method creates a new unlocked object with uninitialized states.

3 Alphabetical List

3-538

getNumInputs
System object: comm.DQPSKModulator
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of
expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H)

 getNumOutputs

3-539

getNumOutputs
System object: comm.DQPSKModulator
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

3 Alphabetical List

3-540

isLocked
System object: comm.DQPSKModulator
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the DQPSKModulator System
object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

 release

3-541

release
System object: comm.DQPSKModulator
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H)Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

3 Alphabetical List

3-542

reset
System object: comm.DQPSKModulator
Package: comm

Reset states of DQPSK modulator object

Syntax

reset(H)

Description

reset(H) resets the states of the DQPSKModulator object, H.

 step

3-543

step
System object: comm.DQPSKModulator
Package: comm

Modulate using DQPSK method

Syntax

Y = step(H,X)

Description

Y = step(H,X) modulates input data, X, with the DQPSK modulator System object, H.
It returns the baseband modulated output, Y. Depending on the value of the BitInput
property, input X can be an integer or bit valued column vector with numeric or logical
data types.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

3 Alphabetical List

3-544

comm.EarlyLateGateTimingSynchronizer System
object
Package: comm

Recover symbol timing phase using early-late gate method

Description
The EarlyLateGateTimingSynchronizer object recovers the symbol timing phase of
the input signal using the early-late gate method. This object implements a non-data-
aided feedback method.

To recover the symbol timing phase of the input signal :

1 Define and set up your early late gate timing synchronizer object. See “Construction”
on page 3-544.

2 Call step to recover the symbol timing phase of the input signal according to the
properties of comm.EarlyLateGateTimingSynchronizer. The behavior of step is
specific to each object in the toolbox.

Construction
H = comm.EarlyLateGateTimingSynchronizer creates a timing phase synchronizer
System object, H. This object recovers the symbol timing phase of the input signal using
the early-late gate method.

H = comm.EarlyLateGateTimingSynchronizer(Name,Value) creates an
early-late gate timing synchronizer object, H, with each specified property set to the
specified value. You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties

SamplesPerSymbol

Number of samples representing each symbol

 comm.EarlyLateGateTimingSynchronizer System object

3-545

Specify the number of samples that represent each symbol in the input signal as an
integer-valued scalar greater than 1. The default is 4.

ErrorUpdateGain

Error update step size

Specify the step size for updating successive timing phase estimates as a positive
real scalar value. Typically, this number is less than 1/“SamplesPerSymbol”, which
corresponds to a slowly varying timing phase. The default is 0.05. This property is
tunable.

ResetInputPort

Enable synchronization reset input

Set this property to true to enable resetting the timing phase recovery process based
on an input argument value. When you set this property to true, you must specify a
reset input value to the step method. When the reset input is a nonzero value, the object
restarts the timing phase recovery process. When you set this property to false, the
object does not restart. The default is false.

ResetCondition

Condition for timing phase recovery reset

Specify the conditions to reset the timing phase recovery process as one of Never |
Every frame. The default is Never. When you set this property to Never, the phase
recovery process never restarts. The object operates continuously, retaining information
from one symbol to the next. When you set this property to Every frame, the timing
phase recovery restarts at the start of each frame of data. In this case, each time the
object calls the step method. This property applies when you set the “ResetInputPort”
property to false.

Methods

clone
Create early-late gate timing phase
synchronizer object with same property
values

3 Alphabetical List

3-546

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

reset
Reset states of early-late gate timing phase
synchronizer

step
Recover symbol timing phase using early-
late gate method

Examples

Recover timing phase using the early-late gate method.

% Initialize data

 L = 16; M = 16; numSymb = 100; snrdB = 30;

 R = 25; rollOff = 0.75; filtDelay = 3; g = 0.07; delay = 6.6498;

% Create System objects

 hMod = comm.RectangularQAMModulator(M, ...

 'NormalizationMethod', 'Average power');

 hTxFilter = comm.RaisedCosineTransmitFilter(...

 'RolloffFactor', rollOff, ...

 'FilterSpanInSymbols', 2*filtDelay, ...

 'OutputSamplesPerSymbol', L);

 hDelay = dsp.VariableFractionalDelay('MaximumDelay', L);

 hChan = comm.AWGNChannel('NoiseMethod', ...

 'Signal to noise ratio (SNR)', 'SNR', snrdB, ...

 'SignalPower', 1/L);

 hRxFilter = comm.RaisedCosineReceiveFilter(...

 'RolloffFactor', rollOff, ...

 'FilterSpanInSymbols', 2*filtDelay, ...

 comm.EarlyLateGateTimingSynchronizer System object

3-547

 'InputSamplesPerSymbol', L, ...

 'DecimationFactor', 1);

 hSync = comm.EarlyLateGateTimingSynchronizer(...

 'SamplesPerSymbol', L, ...

 'ErrorUpdateGain', g);

% Generate random data

 data = randi([0 M-1], numSymb, 1);

% Modulate and filter transmitter data

 modData = step(hMod, data);

 filterData = step(hTxFilter, modData);

% Introduce a random delay and add noise

 delayedData = step(hDelay, filterData, delay);

 chData = step(hChan, delayedData);

% Filter receiver data

 rxData = step(hRxFilter, chData);

% Estimate the delay from the received signal

 [~, phase] = step(hSync, rxData);

 fprintf(1, 'Actual Timing Delay: %f\n', delay);

 fprintf(1, 'Estimated Timing Delay: %f\n', phase(end));

Algorithms

This object implements the algorithm, inputs, and outputs described on the Early-Late
Gate Timing Recovery block reference page. The object properties correspond to the block
parameters, except:
The block Reset parameter corresponds to the “ResetInputPort” and
“ResetCondition” properties.

See Also
comm.GardnerTimingSynchronizer | comm.MSKTimingSynchronizer

3 Alphabetical List

3-548

clone
System object: comm.EarlyLateGateTimingSynchronizer
Package: comm

Create early-late gate timing phase synchronizer object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a EarlyLateGateTimingSynchronizer object C, with the
same property values as H. The clone method creates a new unlocked object with
uninitialized states.

 getNumInputs

3-549

getNumInputs
System object: comm.EarlyLateGateTimingSynchronizer
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) method returns a positive integer, N, representing the number
of expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H).

3 Alphabetical List

3-550

getNumOutputs
System object: comm.EarlyLateGateTimingSynchronizer
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) method returns a positive integer, N, representing the number
of outputs from the step method. This value will change if any properties that turn
inputs on or off are changed.

 isLocked

3-551

isLocked
System object: comm.EarlyLateGateTimingSynchronizer
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the
EarlyLateGateTimingSynchronizer System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

3 Alphabetical List

3-552

release
System object: comm.EarlyLateGateTimingSynchronizer
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H)Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 reset

3-553

reset
System object: comm.EarlyLateGateTimingSynchronizer
Package: comm

Reset states of early-late gate timing phase synchronizer

Syntax

reset(H)

Description

reset(H) resets the states of early-late gate timing phase synchronizer for the
EarlyLateGateTimingSynchronizer object H.

3 Alphabetical List

3-554

step
System object: comm.EarlyLateGateTimingSynchronizer
Package: comm

Recover symbol timing phase using early-late gate method

Syntax

[Y,PHASE] = step(H,X)

[Y,PHASE] = step(H,X,R)

Description

[Y,PHASE] = step(H,X) performs timing phase recovery and returns the time-
synchronized signal, Y, and the estimated timing phase, PHASE, for input signal X. The
input X must be a double or single precision complex column vector. Ideally, it is when
the timing phase estimate is zero and the input signal has symmetric Nyquist pulses. In
this case, the timing error detector for the early-late gate method requires samples that
span one symbol interval.

[Y,PHASE] = step(H,X,R) restarts the timing phase recovery process when you input
a reset signal, R, that is non-zero. R must be a double precision or logical scalar. This
syntax applies when you set the ResetInputPort property to true.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

 comm.ErrorRate System object

3-555

comm.ErrorRate System object
Package: comm

Compute bit or symbol error rate of input data

Description

The ErrorRate object compares input data from a transmitter with input data from a
receiver and calculates the error rate as a running statistic. To obtain the error rate, the
object divides the total number of unequal pairs of data elements by the total number of
input data elements from one source.

To obtain the error rate:

1 Define and set up your error rate object. See “Construction” on page 3-555.
2 Call step to compare input data from a transmitter with input data from a receiver

and calculate the error rate according to the properties of comm.ErrorRate. The
behavior of step is specific to each object in the toolbox.

Construction

H = comm.ErrorRate creates an error rate calculator System object, H. This object
computes the error rate of the received data by comparing it to the transmitted data.

H = comm.ErrorRate(Name,Value) creates an error rate calculator object, H, with
each specified property set to the specified value. You can specify additional name-value
pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties

ReceiveDelay

Number of samples to delay transmitted signal

Specify the number of samples by which the received data lags behind the transmitted
data. This value must be a real, nonnegative, double-precision, integer scalar. Use this

3 Alphabetical List

3-556

property to align the samples for comparison in the transmitted and received input data
vectors. Specify the delay in number of samples, regardless of whether the input is a
scalar or a vector. The default is 0.

ComputationDelay

Computation delay

Specify the number of data samples that the object should ignore at the beginning of the
comparison. This value must be a real, nonnegative, double-precision, integer scalar. Use
this property to ignore the transient behavior of both input signals. The default is 0.

Samples

Samples to consider

Specify samples to consider as one of Entire frame | Custom | Input port. The
property defines whether the object should consider all or only part of the input frames
when computing error statistics. The default is Entire frame. Select Entire frame
to compare all the samples of the RX frame to those of the TX frame. Select Custom
or Input port to list the indices of the RX frame elements that the object should
consider when making comparisons. When you set this property to Custom, you can
list the indices as a scalar or a column vector of double-precision integers through the
“CustomSamples” property. When you set this property to Input port, you can list the
indices as an input to the step method.

CustomSamples

Selected samples from frame

Specify a scalar or a column vector of double-precision, real, positive integers. This value
lists the indices of the elements of the RX frame vector that the object uses when making
comparisons. This property applies when you set the “Samples” property to Custom. The
default is an empty vector, which specifies that all samples are used.

ResetInputPort

Enable error rate reset input

Set this property to true to reset the error statistics via an input to the step method.
The default is false.

 comm.ErrorRate System object

3-557

Methods

clone
Create error rate calculator object with
same property values

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

reset
Reset states of error rate calculator object

step
Compute bit or symbol error rate of input
data

Examples

Calculate BER between transmitted and received signal

Use 8-DPSK modulation in an AWGN channel

 hMod = comm.DPSKModulator('ModulationOrder',8,'BitInput',true);

 hDemod = comm.DPSKDemodulator('ModulationOrder',8,'BitOutput',true);

 hAWGN = comm.AWGNChannel('NoiseMethod',...

 'Signal to noise ratio (SNR)','SNR', 7);

% Create an error rate calculator, accounting for the three bit

% (i.e., one symbol) transient caused by the differential modulation

 hError = comm.ErrorRate('ComputationDelay',3);

 BER = zeros(10,1);

% Calculate BER for 10 frames

3 Alphabetical List

3-558

 for i= 1:10

 data = randi([0 1], 96, 1);

 modData = step(hMod, data);

 receivedSignal = step(hAWGN, modData);

 receivedData = step(hDemod, receivedSignal);

 errors = step(hError, data, receivedData);

 BER(i) = errors(1);

 end

 disp(BER) % display BER for 10 frames

 0.1613

 0.1640

 0.1614

 0.1496

 0.1488

 0.1309

 0.1405

 0.1399

 0.1370

 0.1411

Algorithms

This object implements the algorithm, inputs, and outputs described on the Error
Rate Calculation block reference page. The object properties correspond to the block
parameters, except:

• The Output data and Variable name block parameters do not have a corresponding
properties. The object always returns the result as an output.

• The Stop simulation block parameter does not have a corresponding property. To
implement similar behavior, use the output of the step method in a while loop, to
programmatically stop the simulation. See the Gray Coded 8-PSK.

• The Computation mode parameter corresponds to the “Samples” and
“CustomSamples” properties.

See Also
alignsignals | finddelay

 clone

3-559

clone
System object: comm.ErrorRate
Package: comm

Create error rate calculator object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a ErrorRate object C, with the same property values as H. The
clone method creates a new unlocked object with uninitialized states.

3 Alphabetical List

3-560

getNumInputs
System object: comm.ErrorRate
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of
expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H)

 getNumOutputs

3-561

getNumOutputs
System object: comm.ErrorRate
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

3 Alphabetical List

3-562

isLocked
System object: comm.ErrorRate
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the ErrorRate System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

 release

3-563

release
System object: comm.ErrorRate
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H)Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

3 Alphabetical List

3-564

reset
System object: comm.ErrorRate
Package: comm

Reset states of error rate calculator object

Syntax

reset(H)

Description

reset(H) resets the states of the ErrorRate object, H.

 step

3-565

step

System object: comm.ErrorRate
Package: comm

Compute bit or symbol error rate of input data

Syntax

Y = step(H,TX,RX)

Y = step(H,TX,RX,SEL)

Y = step(H,TX,RX,RST)

Description

Y = step(H,TX,RX) counts the number of differences between the transmitted data
vector, TX, and received data vector, RX. The step method outputs a three-element vector
consisting of the error rate, followed by the number of errors detected and the total
number of samples compared. TX and RX inputs can be either scalars or column vectors of
the same data type. Valid data types are single, double, integer or logical. If TX is a scalar
and RX is a vector, or vice-versa, then the block compares the scalar with each element of
the vector.

Y = step(H,TX,RX,SEL) calculates the errors based on selected samples from the
input frame specified by the SEL input. SEL must be a real, double-precision integer-
valued scalar or a column vector. The vector lists the indices of the elements of the RX
input vector that the object should consider when making comparisons. This syntax
applies when you set the Samples property to 'Input Port'.

Y = step(H,TX,RX,RST) resets the error count whenever the input RST is non-zero.
RST must be a real, double, or logical scalar. When you set the RST input to a nonzero
value, the object clears its error statistics and then recomputes them based on the
current TX and RX inputs. This syntax applies when you set the ResetInputPort
property to true. You can combine optional input arguments when their enabling
properties are set. Optional inputs must be listed in the same order as the order of the
enabling properties. For example,

3 Alphabetical List

3-566

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

 comm.EVM System object

3-567

comm.EVM System object
Package: comm

Measure error vector magnitude

Description

The Error Vector Magnitude EVM object is a measurement of modulator or demodulator
performance in an impaired signal.

To measure error vector magnitude:

1 Define and set up your EVM object. See “Construction” on page 3-567.
2 Call step to measure modulator or demodulator performance according to the

properties of comm.EVM. The behavior of step is specific to each object in the toolbox.

Construction

H = comm.EVM creates an error vector magnitude (EVM) System object, H. This object
measures the amount of impairment in a modulated signal.

H = comm.EVM(Name,Value) creates an EVM object, H, with each specified property
set to the specified value. You can specify additional name-value pair arguments in any
order as (Name1,Value1,...,NameN,ValueN).

Properties

Normalization

EVM normalization method

Specify the normalization method that the object uses in the EVM calculation. Choose
from Average reference signal power | Average constellation power |
Peak constellation power. The default is Average reference signal power.

AverageConstellationPower

3 Alphabetical List

3-568

Average constellation power

Specify the average constellation power (in watts) that the object uses to normalize the
EVM measurements. Set this property to a positive, real scalar value with a data type
of double, single, or integer. This property applies when you set the “Normalization”
property to Average constellation power. The default is 1.

PeakConstellationPower

Peak constellation power

Specify the peak constellation power (in watts) that the object uses to normalize the
EVM measurements. Set this property to a positive, real scalar value with a data type
of double, single, or integer. This property applies when you set the “Normalization”
property to Peak constellation power. The default is 1.

MaximumEVMOutputPort

Enable maximum EVM measurement output

When you set this property to true, the step method outputs maximum EVM
measurements. The default is false. The maximum EVM output is the maximum EVM
value measured in the current input frame.

XPercentileEVMOutputPort

Enable X-percentile EVM measurement output

When you set this property to true, the step method outputs X-percentile EVM
measurements. The default is false. After you set this property the X-percentile EVM
measurements persist. These measurements are obtained based on all the input frames
since the last reset.

XPercentileValue

X-percentile value

Specify the X-percentile value (in percent) that the object uses to calculate the X-th
percentile of the EVM measurements. The default is 95. The X-th percentile is the EVM
value below which X% of all the computed EVM values lie. Set this property to a real
scalar between 0 and 100, inclusive. This property can have a data type of double, single,
or integer, and applies when you set the “XPercentileEVMOutputPort” property to
true.

 comm.EVM System object

3-569

SymbolCountOutputPort

Enable symbol count output

When you set this property to true, the step method outputs the number of accumulated
symbols that the object uses to calculate the X-Percentile EVM measurements since the
last reset. The default setting for this property is false. This property applies when you
set the “XPercentileEVMOutputPort” property to true.

Methods

clone
Create EVM measurement object with
same property values

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

reset
Reset states of EVM measurement object

step
Measure error vector magnitude

Examples

Measure the EVM of a noisy 16-QAM modulated signal

hMod = comm.RectangularQAMModulator(16);

hAWGN = comm.AWGNChannel('NoiseMethod',...

 'Signal to noise ratio (SNR)',...

3 Alphabetical List

3-570

 'SNR', 20, 'SignalPower', 10);

% Create an EVM object, output maximum and 90-percentile EVM

% measurements, and symbol count

 hEVM = comm.EVM('MaximumEVMOutputPort',true,...

 'XPercentileEVMOutputPort', true, 'XPercentileValue', 90,...

 'SymbolCountOutputPort', true);

 % Generate modulated symbols and add noise

 refsym = step(hMod, randi([0 15], 1000, 1));

 rxsym = step(hAWGN, refsym);

 % Calculate measurements

 [RMSEVM,MaxEVM,PercentileEVM,NumSym] = step(hEVM,refsym,rxsym)

RMSEVM =

 9.8775

MaxEVM =

 26.8385

PercentileEVM =

 14.9750

NumSym =

 1000

Algorithms

This object implements the algorithm, inputs, and outputs described on the EVM
Measurement block reference page. The object properties correspond to the block
parameters.

See Also
comm.MER | comm.CCDF | comm.ACPR

 clone

3-571

clone
System object: comm.EVM
Package: comm

Create EVM measurement object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a EVM object C, with the same property values as H. The clone
method creates a new unlocked object with uninitialized states.

3 Alphabetical List

3-572

getNumInputs
System object: comm.EVM
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of
expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H)

 getNumOutputs

3-573

getNumOutputs
System object: comm.EVM
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

3 Alphabetical List

3-574

isLocked
System object: comm.EVM
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the EVM System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

 release

3-575

release
System object: comm.EVM
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H)Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

3 Alphabetical List

3-576

reset
System object: comm.EVM
Package: comm

Reset states of EVM measurement object

Syntax

reset(H)

Description

reset(H) resets the states of the EVM object, H.

 step

3-577

step
System object: comm.EVM
Package: comm

Measure error vector magnitude

Syntax

RMSEVM = step(H,REFSYM,RXSYM)

[RMSEVM,MAXEVM] = step(H,REFSYM,RXSYM)

[RMSEVM,PEVM] = step(H,REFSYM,RXSYM)

[RMSEVM,NUMSYM] = step(H,REFSYM,RXSYM)

[RMSEVM,MAXEVM,PEVM,NUMSYM] = step(H,REFSYM,RXSYM)

Description

RMSEVM = step(H,REFSYM,RXSYM) outputs the root-mean-square EVM (in percent),
RMSEVM, measured in the received signal, RXSYM, based on the reference signal, REFSYM.
REFSYM and RXSYM inputs are complex column vectors of equal dimensions and data
type. The data type can be double, single, signed integer, or signed fixed point with
power-of-two slope and zero bias. The step method outputs the RMSEVM measurement
based solely on the current input frame.

[RMSEVM,MAXEVM] = step(H,REFSYM,RXSYM) outputs the maximum EVM
(in percent), MAXEVM, measured in the received signal, RXSYM, when you set the
MaximumEVMOutputPort property to true. The step method outputs the MAXEVM
measurement based on the reference signal, REFSYM. MAXEVM represents the worst-case
EVM value measured in the current input frame.

[RMSEVM,PEVM] = step(H,REFSYM,RXSYM) outputs the percentile EVM
(in percent), PEVM, measured in the received signal, RXSYM, when you set the
XPercentileEVMOutputPort property to true. The step method outputs the PEVM
measurement based on the reference signal, REFSYM. The object sets PEVM equal to
a value just greater than the XPercentileValue percent of all the EVM values.
For example, if you set the XPercentileValue property to 95, then 95% of all
EVM measurements are below the PEVM value. The object calculates the persistent
measurement PEVM, using all the input frames since the last reset.

3 Alphabetical List

3-578

[RMSEVM,NUMSYM] = step(H,REFSYM,RXSYM) outputs the number of symbols,
NUMSYM, used to calculate the X-Percentile EVM measurements when you set the
SymbolCountOutputPort property to true. All outputs of the object are of data type
double. You can combine optional output arguments when you set their enabling
properties. Optional outputs must be listed in the same order as the order of the enabling
properties. For example,

[RMSEVM,MAXEVM,PEVM,NUMSYM] = step(H,REFSYM,RXSYM)

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

 comm.FSKDemodulator System object

3-579

comm.FSKDemodulator System object
Package: comm

Demodulate using M-ary FSK method

Description

The FSKDemodulator object demodulates a signal that was modulated using the M-ary
frequency shift keying method. The input is a baseband representation of the modulated
signal. The input and output for this object are discrete-time signals.

To demodulate a signal that was modulated using frequency shift keying:

1 Define and set up your FSK demodulator object. See “Construction” on page 3-579.
2 Call step to demodulate a signal according to the properties of FSKDemodulator.

The behavior of step is specific to each object in the toolbox.

Construction

H = comm.FSKDemodulator creates a demodulator System object, H. This object
demodulates an M-ary frequency shift keying (M-FSK) signal using a noncoherent energy
detector.

H = comm.FSKDemodulator(Name,Value) creates an M-FSK demodulator object, H,
with each specified property set to the specified value. You can specify additional name-
value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

H = comm.FSKDemodulator(M,FREQSEP,RS,Name,Value) creates an M-FSK
demodulator object, H. This object has the ModulationOrder property set to M, the
FrequencySeparation property set to FREQSEP, the SymbolRate property set to RS,
and the other specified properties set to the specified values.

Properties

ModulationOrder

3 Alphabetical List

3-580

Number of frequencies in modulated signal

Specify the number of frequencies in the modulated signal as a numeric, positive, integer
scalar value that is a power of two. The default is 8.

BitOutput

Output data as bits

Specify whether the output is groups of bits or integer values. The default is false.

When you set this property to false, the step method outputs a column vector of
length equal to N/“SamplesPerSymbol”. N is the length of the input data vector
to the step method. The elements of the output vector are integers between 0 and
“ModulationOrder”–1. When you set this property to true, the step method outputs
a column vector of length equal to log2(ModulationOrder) ¥ (N/SamplesPerSymbol).
The property's elements are bit representations of integers between 0 and
ModulationOrder–1.

SymbolMapping

Symbol encoding

Specify how the object maps an integer or group of log2(“ModulationOrder”) bits to the
corresponding symbol as one of Binary | Gray. The default is Gray.

When you set this property to Gray, the object uses Gray-coded ordering.

When you set this property to Binary, the object uses natural binary-coded ordering.

For either type of mapping, the object maps the highest frequency to the integer 0 and
maps the lowest frequency to the integer M–1. In baseband simulation, the lowest
frequency is the negative frequency with the largest absolute value.

FrequencySeparation

Frequency separation between successive tones

Specify the frequency separation between successive symbols in the modulated signal in
Hertz as a positive, real scalar value. The default is 6 Hz.

SamplesPerSymbol

Number of samples per input symbol

 comm.FSKDemodulator System object

3-581

Specify the number of samples per input symbol as a positive, integer scalar value. The
default is 17.

SymbolRate

Symbol duration

Specify the symbol rate in symbols per second as a positive, double-precision, real
scalar value. The default is 100. To avoid output signal aliasing, specify an output
sampling rate, Fs = “SamplesPerSymbol” ¥ SymbolRate, which is greater than
“ModulationOrder” ¥ “FrequencySeparation”. The symbol duration remain the
same, regardless of whether the input is bits or integers.

OutputDataType

Data type of output

Specify the output data type as one of logical | int8 | uint8 | int16 | uint16 |
int32 | uint32 | double. The default is double. The logical type is valid only when
you set the “BitOutput” property to false and the “ModulationOrder” property to
two. When you set the BitOutput property to true, the output data requires a type of
logical | double.

Methods

clone
Create M-FSK demodulator object with
same property values

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

3 Alphabetical List

3-582

reset
Reset states of M-FSK demodulator object

step
Demodulate using M-ary FSK method

Examples

FSK Modulation and Demodulation in AWGN

Modulate and demodulate a signal using 8-FSK modulation with a frequency separation
of 100 Hz.

Set the modulation order and frequency separation parameters.

M = 8;

freqSep = 100;

Create FSK modulator and demodulator System objects™ with modulation order 8 and
100 Hz frequency separation.

hMod = comm.FSKModulator(M,freqSep);

hDemod = comm.FSKDemodulator(M,freqSep);

Create an additive white Gaussian noise channel, where the noise is specified as a signal-
to-noise ratio.

hAWGN = comm.AWGNChannel('NoiseMethod', ...

 'Signal to noise ratio (SNR)','SNR',-2);

Create an error rate calculator object.

hError = comm.ErrorRate;

Transmit one hundred 50-symbol frames using 8-PSK in an AWGN channel.

for counter = 1:100

 data = randi([0 M-1],50,1);

 modSignal = step(hMod,data);

 noisySignal = step(hAWGN,modSignal);

 receivedData = step(hDemod,noisySignal);

 errorStats = step(hError,data,receivedData);

end

 comm.FSKDemodulator System object

3-583

Display the error statistics.

fprintf('Error rate = %4.2e\nNumber of errors = %d\nNumber of symbols = %d\n', ...

 errorStats)

Error rate = 1.40e-02

Number of errors = 70

Number of symbols = 5000

Algorithms

This object implements the algorithm, inputs, and outputs described on the M-FSK
Demodulator Baseband block reference page. The object properties correspond to the
block parameters, except:

• The Symbol set ordering parameter corresponds to the “SymbolMapping” property.
• The “SymbolRate” property replaces the block sample rate capability.

See Also
comm.CPFSKModulator | comm.FSKModulator | comm.CPFSKDemodulator

3 Alphabetical List

3-584

clone
System object: comm.FSKDemodulator
Package: comm

Create M-FSK demodulator object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a FSKDemodulator object C, with the same property values as H.
The clone method creates a new unlocked object with uninitialized states.

 getNumInputs

3-585

getNumInputs
System object: comm.FSKDemodulator
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of
expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H)

3 Alphabetical List

3-586

getNumOutputs
System object: comm.FSKDemodulator
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

 isLocked

3-587

isLocked
System object: comm.FSKDemodulator
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the FSKDemodulator System
object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

3 Alphabetical List

3-588

release
System object: comm.FSKDemodulator
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H)Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 reset

3-589

reset
System object: comm.FSKDemodulator
Package: comm

Reset states of M-FSK demodulator object

Syntax

reset(H)

Description

reset(H) resets the states of the FSKDemodulator object, H.

3 Alphabetical List

3-590

step
System object: comm.FSKDemodulator
Package: comm

Demodulate using M-ary FSK method

Syntax

Y = step(H,X)

Description

Y = step(H,X) demodulates input data, X, with the FSK demodulator System object,
H, and returns Y. X must be a double or single precision data type column vector of length
equal to an integer multiple of the number of samples per symbol that you specify in the
SamplesPerSymbol property. Depending on the BitOutput property value, output Y
can be integer or bit valued.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

 comm.FSKModulator System object

3-591

comm.FSKModulator System object
Package: comm

Modulate using M-ary FSK method

Description

The FSKModulator object modulates using the M-ary frequency shift keying method.
The output is a baseband representation of the modulated signal.

To modulate a signal using frequency shift keying:

1 Define and set up your FSK modulator object. See “Construction” on page 3-591.
2 Call step to modulate a signal according to the properties of comm.FSKModulator.

The behavior of step is specific to each object in the toolbox.

Construction

H = comm.FSKModulator creates a modulator System object, H. This object modulates
the input signal using the M-ary frequency shift keying (M-FSK) method.

H = comm.FSKModulator(Name,Value) creates an M-FSK modulator object, H, with
each specified property set to the specified value. You can specify additional name-value
pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

H = comm.FSKModulator(M,FREQSEP,RS,Name,Value) creates an M-FSK
modulator object, H. This object has the ModulationOrder property set to M, the
FrequencySeparation property set to FREQSEP, the SymbolRate property set to RS,
and the other specified properties set to the specified values.

Properties

ModulationOrder

Number of frequencies in modulated signal

3 Alphabetical List

3-592

Specify the number of frequencies in the modulated signal as a numeric positive integer
scalar value that is a power of two. The default is 8.

BitInput

Assume bit inputs

Specify whether the input is bits or integers. The default is false.

When you set this property to false, the step method input requires a numeric
(except single precision data type) column vector of integer values between 0 and
“ModulationOrder”–1. In this case, the input vector can also be of data type logical if
ModulationOrder equals 2.

When you set this property to true, the step method input requires a double-precision
or logical data type column vector of bit values. The length of this vector is an integer
multiple of log2(ModulationOrder). This vector contains bit representations of integers
between 0 and ModulationOrder–1.

SymbolMapping

Symbol encoding

Specify how the object maps an integer or group of log2(“ModulationOrder”) bits to the
corresponding symbol as one of Binary | Gray. The default is Gray.

When you set this property to Gray, the object uses Gray-coded ordering.

When you set this property to Binary, the object uses natural binary-coded ordering. For
either type of mapping, the object maps the highest frequency to the integer 0 and maps
the lowest frequency to the integer M–1. In baseband simulation, the lowest frequency is
the negative frequency with the largest absolute value.

FrequencySeparation

Frequency separation between successive tones

Specify the frequency separation between successive tones in the modulated signal in
Hertz as a positive, real scalar value. The default is 6 Hz. To avoid output signal aliasing,
specify an output sampling rate, Fs = “SamplesPerSymbol” ¥ “SymbolRate”, which is
greater than “ModulationOrder” multiplied by “FrequencySeparation”.

ContinuousPhase

 comm.FSKModulator System object

3-593

Phase continuity

Specify if the phase of the output modulated signal is continuous or discontinuous. The
default is true.

When you set this property to true, the modulated signal maintains continuous phase
even when its frequency changes.

When you set this property to false, the modulated signal comprises portions of
“ModulationOrder” sinusoids of different frequencies. In this case, a change in the
input value can cause a discontinuous change in the phase of the modulated signal.

SamplesPerSymbol

Number of samples per output symbol

Specify the number of output samples that the object produces for each integer or binary
word in the input as a positive, integer scalar value. The default is 17.

SymbolRate

Symbol duration

Specify the symbol rate in symbols per second as a positive, double-precision, real scalar.
The default is 100. To avoid output signal aliasing, specify an output sampling rate, Fs
= “SamplesPerSymbol” ¥ SymbolRate, which is greater than “ModulationOrder” ¥

“FrequencySeparation”. The symbol duration remain the same, regardless of whether
the input is bits or integers.

OutputDataType

Data type of output

Specify the output data type as one of double | single. The default is double.

Methods

clone
Create M-FSK modulator object with same
property values

3 Alphabetical List

3-594

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

reset
Reset states of M-FSK modulator object

step
Modulate using M-ary FSK method

Examples

FSK Modulation and Demodulation in AWGN

Modulate and demodulate a signal using 8-FSK modulation with a frequency separation
of 100 Hz.

Set the modulation order and frequency separation parameters.

M = 8;

freqSep = 100;

Create FSK modulator and demodulator System objects™ with modulation order 8 and
100 Hz frequency separation.

hMod = comm.FSKModulator(M,freqSep);

hDemod = comm.FSKDemodulator(M,freqSep);

Create an additive white Gaussian noise channel, where the noise is specified as a signal-
to-noise ratio.

hAWGN = comm.AWGNChannel('NoiseMethod', ...

 'Signal to noise ratio (SNR)','SNR',-2);

Create an error rate calculator object.

 comm.FSKModulator System object

3-595

hError = comm.ErrorRate;

Transmit one hundred 50-symbol frames using 8-PSK in an AWGN channel.

for counter = 1:100

 data = randi([0 M-1],50,1);

 modSignal = step(hMod,data);

 noisySignal = step(hAWGN,modSignal);

 receivedData = step(hDemod,noisySignal);

 errorStats = step(hError,data,receivedData);

end

Display the error statistics.

fprintf('Error rate = %4.2e\nNumber of errors = %d\nNumber of symbols = %d\n', ...

 errorStats)

Error rate = 1.40e-02

Number of errors = 70

Number of symbols = 5000

Algorithms

This object implements the algorithm, inputs, and outputs described on the M-FSK
Modulator Baseband block reference page. The object properties correspond to the block
parameters, except:

• The Symbol set ordering parameter corresponds to the “SymbolMapping” property.
• The “SymbolRate” property takes the place of the block sample rate capability.

See Also
comm.CPFSKModulator | comm.FSKDemodulator

3 Alphabetical List

3-596

clone
System object: comm.FSKModulator
Package: comm

Create M-FSK modulator object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a FSKModulator object C, with the same property values as H.
The clone method creates a new unlocked object with uninitialized states.

 getNumInputs

3-597

getNumInputs
System object: comm.FSKModulator
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of
expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H)

3 Alphabetical List

3-598

getNumOutputs
System object: comm.FSKModulator
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

 isLocked

3-599

isLocked
System object: comm.FSKModulator
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the FSKModulator System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

3 Alphabetical List

3-600

release
System object: comm.FSKModulator
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H)Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 reset

3-601

reset
System object: comm.FSKModulator
Package: comm

Reset states of M-FSK modulator object

Syntax

reset(H)

Description

reset(H) resets the states of the FSKModulator object, H.

3 Alphabetical List

3-602

step
System object: comm.FSKModulator
Package: comm

Modulate using M-ary FSK method

Syntax

Y = step(H,X)

Description

Y = step(H,X) modulates input data, X, with the FSK modulator System object, H.
It returns the baseband modulated output, Y. Depending on the value of the BitInput
property, input X can be an integer or bit- valued column vector with numeric or logical
data types. The length of output vector, Y, is equal to the number of input samples times
the number of samples per symbol you specify in the SamplesPerSymbol property.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

 comm.GardnerTimingSynchronizer System object

3-603

comm.GardnerTimingSynchronizer System object
Package: comm

Recover symbol timing phase using Gardner's method

Description

The GardnerTimingSynchronizer object recovers the symbol timing phase of the
input signal using the Gardner method. This object implements a non-data-aided
feedback method. Gardner timing synchronization is a non-data-aided feedback method
that is independent of carrier phase recovery. The timing error detector that forms part
of this object's algorithm requires at least two samples per symbol, one of which is the
point at which the decision can be made.

To recover the symbol timing phase of the input signal:

1 Define and set up your Gardner timing synchronizer object. See “Construction” on
page 3-603.

2 Call step to recover symbol timing phase according to the properties of
comm.GardnerTimingSynchronizer. The behavior of step is specific to each
object in the toolbox.

Construction

H = comm.GardnerTimingSynchronizer creates a timing phase synchronizer System
object, H. This object recovers the symbol timing phase of the input signal using the
Gardner method.

H = comm.GardnerTimingSynchronizer(Name,Value) creates an Gardner
timing synchronizer object, H, with each specified property set to the specified
value. You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties

SamplesPerSymbol

3 Alphabetical List

3-604

Number of samples representing each symbol

Specify the number of samples that represent each symbol in the input signal as an
integer-valued scalar value greater than 1. The default is 4.

ErrorUpdateGain

Error update step size

Specify the step size for updating successive timing phase estimates as a positive
real scalar value. The default is 0.05. Typically, this number is less than
1/“SamplesPerSymbol”, which corresponds to a slowly varying timing phase. This
property is tunable.

ResetInputPort

Enable synchronization reset input

Set this property to true to enable resetting the timing phase recovery process based on
an input argument value. The default is false. When you set this property to true, you
must specify a reset input value to the step method. When you specify a nonzero value
as the reset input, the object restarts the timing phase recovery process. When you set
this property to false, the object does not restart.

ResetCondition

Condition for timing phase recovery reset

Specify the conditions to reset the timing phase recovery process as one of Never |
Every frame. The default is Never. When you set this property to Never, the phase
recovery process never restarts. The object operates continuously, retaining information
from one symbol to the next. When you set this property to Every frame, the timing
phase recovery restarts at the start of each frame of data. In this case, the restart occurs
each time the object calls the step method. This property applies when you set the
“ResetInputPort” property to false.

Methods

clone
Create Gardner timing phase synchronizer
object with same with same property values

 comm.GardnerTimingSynchronizer System object

3-605

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

reset
Reset states of Gardner timing phase
synchronizer object

step
Recover symbol timing phase using
Gardner's method

Examples

Recover timing phase using the Gardner method.

% Initialize data

 L = 16; M = 8; numSymb = 100; snrdB = 30;

 R = 25; rollOff = 0.75; filtDelay = 3; g = 0.07; delay = 6.6498;

% Create System objects

 hMod = comm.PSKModulator(M);

 hTxFilter = comm.RaisedCosineTransmitFilter(...

 'RolloffFactor', rollOff, ...

 'FilterSpanInSymbols', 2*filtDelay, ...

 'OutputSamplesPerSymbol', L);

 hDelay = dsp.VariableFractionalDelay('MaximumDelay', L);

 hChan = comm.AWGNChannel(...

 'NoiseMethod', 'Signal to noise ratio (SNR)', ...

 'SNR', snrdB, 'SignalPower', 1/L);

 hRxFilter = comm.RaisedCosineReceiveFilter(...

 'RolloffFactor', rollOff, ...

 'FilterSpanInSymbols', 2*filtDelay, ...

 'InputSamplesPerSymbol', L, ...

3 Alphabetical List

3-606

 'DecimationFactor', 1);

 hSync = comm.GardnerTimingSynchronizer('SamplesPerSymbol', L, ...

 'ErrorUpdateGain', g);

% Generate random data

 data = randi([0 M-1], numSymb, 1);

% Modulate and filter transmitter data

 modData = step(hMod, data);

 filterData = step(hTxFilter, modData);

% Introduce a random delay

 delayedData = step(hDelay, filterData, delay);

% Add noise

 chData = step(hChan, delayedData);

% Filter receiver data

 rxData = step(hRxFilter, chData);

% Estimate the delay from the received signal

 [~, phase] = step(hSync, rxData);

 fprintf(1, 'Actual Timing Delay: %f\n', delay);

 fprintf(1, 'Estimated Timing Delay: %f\n', phase(end));

Algorithms

This object implements the algorithm, inputs, and outputs described on the Gardner
Timing Recovery block reference page. The object properties correspond to the block
parameters, except:
The Reset parameter corresponds to the “ResetInputPort” and “ResetCondition”
properties.

See Also
comm.EarlyLateGateTimingSynchronizer |
comm.MuellerMullerTimingSynchronizer

 clone

3-607

clone
System object: comm.GardnerTimingSynchronizer
Package: comm

Create Gardner timing phase synchronizer object with same with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a GardnerTimingSynchronizer object C, with the same
property values as H. The clone method creates a new unlocked object with uninitialized
states.

3 Alphabetical List

3-608

getNumInputs
System object: comm.GardnerTimingSynchronizer
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) method returns a positive integer, N, representing the number
of expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H).

 getNumOutputs

3-609

getNumOutputs
System object: comm.GardnerTimingSynchronizer
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

3 Alphabetical List

3-610

isLocked
System object: comm.GardnerTimingSynchronizer
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the
GardnerTimingSynchronizer System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

 release

3-611

release
System object: comm.GardnerTimingSynchronizer
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H)Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

3 Alphabetical List

3-612

reset
System object: comm.GardnerTimingSynchronizer
Package: comm

Reset states of Gardner timing phase synchronizer object

Syntax

reset(H)

Description

reset(H) resets the states of the GardnerTimingSynchronizer object, H.

 step

3-613

step
System object: comm.GardnerTimingSynchronizer
Package: comm

Recover symbol timing phase using Gardner's method

Syntax

[Y,PHASE] = step(H,X)

[Y,PHASE] = step(H,X,R)

Description

[Y,PHASE] = step(H,X) recovers the timing phase and returns the time-synchronized
signal, Y, and the estimated timing phase, PHASE, for input signal X. The input X must
be a double or single precision complex column vector. The length of X is N*K, where N is
an integer greater than or equal to two and K is the number of symbols. The output, Y, is
the signal value for each symbol, which you use to make symbol decisions. Y is a column
vector of length K with the same data type as X.

[Y,PHASE] = step(H,X,R) restarts the timing phase recovery process when you
input a reset signal, R, that is non-zero. R must be a logical or double scalar. This syntax
applies when you set the ResetInputPort property to true.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

3 Alphabetical List

3-614

comm.GeneralQAMDemodulator System object
Package: comm

Demodulate using arbitrary QAM constellation

Description
The GeneralQAMDemodulator object demodulates a signal that was modulated using
quadrature amplitude modulation. The input is a baseband representation of the
modulated signal.

To demodulate a signal that was modulated using quadrature amplitude modulation:

1 Define and set up your QAM demodulator object. See “Construction” on page
3-614.

2 Call step to demodulate a signal according to the properties of
comm.GeneralQAMModulator. The behavior of step is specific to each object in the
toolbox.

Construction
H = comm.GeneralQAMDemodulator creates a demodulator System object, H. This
object demodulates the input signal using a general quadrature amplitude modulation
(QAM) method.

H = comm.GeneralQAMDemodulator(Name,Value) creates a general
QAM demodulator object, H, with each specified property set to the specified
value. You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

H = comm.GeneralQAMDemodulator(CONST,Name,Value) creates a general QAM
demodulator object, H. This object has the Constellation property set to CONST, and
the other specified properties set to the specified values.

Properties
Constellation

 comm.GeneralQAMDemodulator System object

3-615

Signal constellation

Specify the constellation points as a real or complex, double-precision data type

vector. The default is exp(2 1 0 7
8

¥ ¥ ¥p i (:)). The length of the vector determines the

modulation order.

When you set the “BitOutput” property to false, the step method outputs a vector
with integer values. These integers are between 0 and M–1, where M is the length of this
property vector. The length of the output vector equals the length of the input signal.

When you set the BitOutput property to true, the output signal contains bits. For bit
outputs, the size of the signal constellation requires an integer power of two and the
output length is an integer multiple of the number of bits per symbol.

BitOutput

Output data as bits

Specify whether the output consists of groups of bits or integer symbol values. The
default is false.

When you set this property to true the step method outputs a column vector of bit
values with length equal to log2(M) times the number of demodulated symbols, where M
is the length of the signal constellation specified in the “Constellation” property. The
length M determines the modulation order.

When you set this property to false, the step method outputs a column vector, of
length equal to the input data vector. The vector contains integer symbol values between
0 and M–1.

DecisionMethod

Demodulation decision method

Specify the decision method the object uses as one of Hard decision | Log-
likelihood ratio | Approximate log-likelihood ratio. The default is Hard
decision. When you set the “BitOutput” property to false the object always performs
hard decision demodulation. This property applies when you set the BitOutput property
to true.

VarianceSource

3 Alphabetical List

3-616

Source of noise variance

Specify the source of the noise variance as one of Property | Input port. The default
is Property. This property applies when you set the “DecisionMethod” property to
Log-likelihood ratio or Approximate log-likelihood ratio.

Variance

Noise variance

Specify the variance of the noise as a nonzero, real scalar value. The default is 1. If
this value is very small (i.e., SNR is very high), log-likelihood ratio (LLR) computations
may yield Inf or -Inf. This result occurs because the LLR algorithm would compute the
exponential of very large or very small numbers using finite-precision arithmetic. In such
cases, using approximate LLR is recommended because its algorithm does not compute
exponentials. This property applies when you set the “VarianceSource” property to
Property. This property is tunable.

OutputDataType

Data type of output

Specify the output data type as one of Full precision | Smallest unsigned
integer | double | single | int8 | uint8 | int16 | uint16 | int32 | uint32.
The default is Full precision .

This property applies only when you set the “BitOutput” property to false or when
you set the BitOutput property to true and the “DecisionMethod” property to Hard
decision or Approximate log-likelihood ratio. In this case, when you set the
“OutputDataType” property to Full precision, the output data type is the same as
that of the input when the input data has a single or double-precision data type.

When the input data is of a fixed-point type, the output data type works as if you had set
the OutputDataType property to Smallest unsigned integer.

When the input signal is an integer data type, you must have a Fixed-Point Designer
user license to use this property in Smallest unsigned integer or Full precision
mode.

When you set the BitOutput property to true, and the DecisionMethod property to
Hard Decision the data type logical becomes a valid option.

 comm.GeneralQAMDemodulator System object

3-617

When you set the BitOutput property to true and the DecisionMethod property
to Approximate log-likelihood ratio you may only set this property to Full
precision | Custom.

If you set the BitOutput property to true and the DecisionMethod property to Log-
likelihood ratio, the output data has the same type as that of the input. In this case,
that value can be only single or double precision.

Fixed-Point Properties

FullPrecisionOverride

Full precision override for fixed-point arithmetic

Specify whether to use full precision rules. If you set FullPrecisionOverride to
true, which is the default, the object computes all internal arithmetic and output
data types using full precision rules. These rules provide the most accurate fixed-point
numerics. It also turns off the display of other fixed-point properties because they do
not apply individually. These rules guarantee that no quantization occurs within the
object. Bits are added, as needed, to ensure that no roundoff or overflow occurs. If you
set FullPrecisionOverride to false, fixed-point data types are controlled through
individual fixed-point property settings. For more information, see “Full Precision for
Fixed-Point System Objects”.

RoundingMethod

Rounding of fixed-point numeric values

Specify the rounding method as one of Ceiling | Convergent | Floor | Nearest
| Round | Simplest | Zero. The default is Floor. This property applies when the
object is not in a full precision configuration. This property does not apply when you set
“BitOutput” to true and “DecisionMethod” to Log-likelihood ratio.

OverflowAction

Action when fixed-point numeric values overflow

Specify the overflow action as one of Wrap | Saturate. The default is Wrap. This
property applies when the object is not in a full precision configuration. This
property does not apply when you set the “BitOutput” property to true and the
“DecisionMethod” property to Log-likelihood ratio.

3 Alphabetical List

3-618

ConstellationDataType

Data type of signal constellation

Specify the constellation fixed-point data type as one of Same word length as input
| Custom. The default is Same word length as input. This property does not apply
when you set the “BitOutput” property to true and the “DecisionMethod” property to
Log-likelihood ratio.

CustomConstellationDataType

Fixed-point data type of signal constellation

Specify the constellation fixed-point type as an unscaled numerictype object with a
Signedness of Auto. The default is numerictype([],16). This property applies when
you set the “ConstellationDataType” property to Custom.

Accumulator1DataType

Data type of accumulator 1

Specify the accumulator 1 fixed-point data type as one of Full precision |
Custom. The default is Full precision. This property applies when you set the
“FullPrecisionOverride” property to false. This property does not apply when you
set the “BitOutput” property to true and the “DecisionMethod” property to Log-
likelihood ratio.

CustomAccumulator1DataType

Fixed-point data type of accumulator 1

Specify the accumulator 1 fixed-point type as a scaled numerictype object with a
Signedness of Auto. The default is numerictype([],32,30). This property applies
when you set the “Accumulator1DataType” property to Custom.

ProductInputDataType

Data type of product

Specify the product input fixed-point data type as one of Same as accumulator 1 |
Custom. The default is Same as accumulator 1. This property applies when you set
the “FullPrecisionOverride” property to false, the “BitOutput” property to true and
the “DecisionMethod” property to Log-likelihood ratio.

 comm.GeneralQAMDemodulator System object

3-619

CustomProductInputDataType

Fixed-point data type of product

Specify the product input fixed-point type as a scaled numerictype object with
a Signedness of Auto. The default is numerictype([],32,30). This property
applies when you set the “FullPrecisionOverride” property to false and the
“ProductInputDataType” property to Custom.

ProductOutputDataType

Data type of product output

Specify the product output fixed-point data type as one of Full precision |
Custom. The default is Full precision . This property applies when you set the
“FullPrecisionOverride” property to false, the “BitOutput” property to true and the
“DecisionMethod” property to Log-likelihood ratio.

CustomProductOutputDataType

Fixed-point data type of product output

Specify the product output fixed-point type as a scaled numerictype object with
a Signedness of Auto. The default is numerictype([],32,30). This property
applies when you set the “FullPrecisionOverride” property to false and the
“ProductOutputDataType” property to Custom.

Accumulator2DataType

Data type of accumulator 2

Specify the accumulator 2 fixed-point data type as one of Full precision |
Custom. The default is Full precision . This property applies when you set the
“FullPrecisionOverride” property to false, the “BitOutput” property to true and
the “DecisionMethod” property to Log-likelihood ratio.

CustomAccumulator2DataType

Fixed-point data type accumulator 2

Specify the accumulator 2 fixed-point data type as a scaled numerictype object
with a Signedness of Auto. The default is numerictype([],32,30). This property

3 Alphabetical List

3-620

applies when you set the “FullPrecisionOverride” property to false and the
“Accumulator2DataType” property to Custom.

Accumulator3DataType

Data type of accumulator 3

Specify the accumulator 3 fixed-point data type as one of Full precision |
Custom. The default is Full precision . This property applies when you set the
“FullPrecisionOverride” property to false, the “BitOutput” property to true and the
“DecisionMethod” property to Approximate log-likelihood ratio.

CustomAccumulator3DataType

Fixed-point data type of accumulator 3

Specify the accumulator 3 fixed-point type as a scaled numerictype object with
a Signedness of Auto. The default is numerictype([],32,30). This property
applies when you set the “FullPrecisionOverride” property to false and the
“Accumulator3DataType” property to Custom.

NoiseScalingInputDataType

Data type of noise-scaling input

Specify the noise-scaling input fixed-point data type as one of Same as accumulator 3
| Custom. The default is Same as accumulator 3. This property applies when you set
the “FullPrecisionOverride” property to false, the “BitOutput” property to true and
the “DecisionMethod” property to Approximate log-likelihood ratio.

CustomNoiseScalingInputDataType

Fixed-point data type of noise-scaling input

Specify the noise-scaling input fixed-point type as a scaled numerictype object
with a Signedness of Auto. The default is numerictype([],32,30). This property
applies when you set the “FullPrecisionOverride” property to false and the
“NoiseScalingInputDataType” property to Custom.

InverseVarianceDataType

Data type of inverse noise variance

 comm.GeneralQAMDemodulator System object

3-621

Specify the inverse noise variance fixed-point data type as one of Same word length
as input | Custom. The default is Same word length as input. This property
applies when you set the “BitOutput” property to true, the “DecisionMethod” property
to Approximate log-likelihood ratio, and the “VarianceSource” property to
Property.

CustomInverseVarianceDataType

Fixed-point data type of inverse noise variance

Specify the inverse noise variance fixed-point type as a numerictype object with a
Signedness of Auto. The default is numerictype([],16,8). This property applies when
you set the “InverseVarianceDataType” property to Custom.

CustomOutputDataType

Data type of output

Specify the output fixed-point type as a scaled numerictype object with a Signedness of
Auto. The default is numerictype([],32,30). This property applies when you set the
“FullPrecisionOverride” property to false and the “OutputDataType” property to
Custom.

Methods

clone
Create general QAM demodulator object
with same property values

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

3 Alphabetical List

3-622

step
Demodulate using arbitrary QAM
constellation

Examples

Modulate and demodulate data using an arbitrary three-point constellation.

 % Setup a three point constellation

 c = [1 1i -1];

 hQAMMod = comm.GeneralQAMModulator(c);

 hAWGN = comm.AWGNChannel('NoiseMethod', ...

 'Signal to noise ratio (SNR)','SNR',15, 'SignalPower', 0.89);

 hQAMDemod = comm.GeneralQAMDemodulator(c);

 %Create an error rate calculator

 hError = comm.ErrorRate;

 for counter = 1:100

 % Transmit a 50-symbol frame

 data = randi([0 2],50,1);

 modSignal = step(hQAMMod, data);

 noisySignal = step(hAWGN, modSignal);

 receivedData = step(hQAMDemod, noisySignal);

 errorStats = step(hError, data, receivedData);

 end

 fprintf('Error rate = %f\nNumber of errors = %d\n', ...

 errorStats(1), errorStats(2))

Algorithms

This object implements the algorithm, inputs, and outputs described on the General
QAM Demodulator Baseband block reference page. The object properties correspond to
the block parameters.

See Also
comm.GeneralQAMModulator | comm.RectangularQAMDemodulator

 clone

3-623

clone
System object: comm.GeneralQAMDemodulator
Package: comm

Create general QAM demodulator object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a GeneralQAMDemodulator object C, with the same property
values as H. The clone method creates a new unlocked object with uninitialized states.

3 Alphabetical List

3-624

getNumInputs
System object: comm.GeneralQAMDemodulator
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of
expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H)

 getNumOutputs

3-625

getNumOutputs
System object: comm.GeneralQAMDemodulator
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

3 Alphabetical List

3-626

isLocked
System object: comm.GeneralQAMDemodulator
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the GeneralQAMDemodulator
System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

 release

3-627

release
System object: comm.GeneralQAMDemodulator
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H)Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

3 Alphabetical List

3-628

step
System object: comm.GeneralQAMDemodulator
Package: comm

Demodulate using arbitrary QAM constellation

Syntax

Y = step(H,X)

Y = step(H,X,VAR)

Description

Y = step(H,X) demodulates the input data, X, with the general QAM demodulator
System object, H, and returns Y. Input X must be a scalar or a column vector with double
or single precision data type. When you set the BitOutput property to true and the
DecisionMethod property to 'Log-likelihood ratio' the input data type must be single or
double precision. Depending on the BitOutput property value, output Y can be integer
or bit valued.

Y = step(H,X,VAR) uses soft decision demodulation and noise variance VAR. This
syntax applies when you set the BitOutput property to true, the DecisionMethod
property to Approximate log-likelihood ratio or Log-likelihood ratio, and
the VarianceSource property to 'Input port'.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

 comm.GeneralQAMModulator System object

3-629

comm.GeneralQAMModulator System object
Package: comm

Modulate using arbitrary QAM constellation

Description

The GeneralQAMModulator object modulates using quadrature amplitude modulation.
The output is a baseband representation of the modulated signal.

To modulate a signal using quadrature amplitude modulation:

1 Define and set up your QAM modulator object. See “Construction” on page 3-629.
2 Call step to modulate a signal according to the properties of

comm.GeneralQAMModulator. The behavior of step is specific to each object in the
toolbox.

Construction

H = comm.GeneralQAMModulator creates a modulator System object, H. This object
modulates the input signal using a general quadrature amplitude modulation (QAM)
method.

H = comm.GeneralQAMModulator(Name,Value) creates a QAM modulator object, H,
with each specified property set to the specified value. You can specify additional name-
value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

H = comm.GeneralQAMModulator(CONST,Name,Value) creates a General QAM
modulator object, H. This object has the Constellation property set to CONST, and the
other specified properties set to the specified values.

Properties

Constellation

Signal constellation

3 Alphabetical List

3-630

Specify the constellation points as a vector of real or complex double-precision data

type. The default is exp(2 1 0 7
8

¥ ¥ ¥p i (:)). The length of the vector determines the

modulation order. The step method inputs requires integers between 0 and M–1, where
M indicates the length of this property vector. The object maps an input integer m to the
(m+1)st value in the Constellation vector.

OutputDataType

Data type of output

Specify the output data type as one of double | single | Custom. The default is
double.

Fixed-Point Properties

CustomOutputDataType

Fixed-point data type of output

Specify the output fixed-point type as a numerictype object with a signedness of
Auto. The default is numerictype([],16). This property applies when you set the
“OutputDataType” property to Custom.

Methods

clone
Create general QAM modulator object with
same property values

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

isLocked
Locked status for input attributes and
nontunable properties

 comm.GeneralQAMModulator System object

3-631

release
Allow property value and input
characteristics changes

step
Modulate using arbitrary QAM
constellation

Examples

Modulate data using an arbitrary 3-point constellation. Then, visualize the data in a
scatter plot

 hQAMMod = comm.GeneralQAMModulator;

 % Setup a three point constellation

 hQAMMod.Constellation = [1 1i -1];

 data = randi([0 2],100,1);

 modData = step(hQAMMod, data);

 scatterplot(modData)

Algorithms

This object implements the algorithm, inputs, and outputs described on the General
QAM Modulator Baseband block reference page. The object properties correspond to the
block parameters.

See Also
comm.GeneralQAMDemodulator | comm.RectangularQAMModulator

3 Alphabetical List

3-632

clone
System object: comm.GeneralQAMModulator
Package: comm

Create general QAM modulator object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a GeneralQAMModulator object C, with the same property
values as H. The clone method creates a new unlocked object with uninitialized states.

 getNumInputs

3-633

getNumInputs
System object: comm.GeneralQAMModulator
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of
expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H)

3 Alphabetical List

3-634

getNumOutputs
System object: comm.GeneralQAMModulator
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

 isLocked

3-635

isLocked
System object: comm.GeneralQAMModulator
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the GeneralQAMModulator
System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

3 Alphabetical List

3-636

release
System object: comm.GeneralQAMModulator
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H)Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 step

3-637

step
System object: comm.GeneralQAMModulator
Package: comm

Modulate using arbitrary QAM constellation

Syntax

Y = step(H,X)

Description

Y = step(H,X) modulates input data, X, with the general QAM modulator System
object, H. It returns the baseband modulated output, Y. The input must be an integer
scalar or an integer-valued column vector. The data type of the input can be numeric or
unsigned fixed point of word length ceil(log2(ModulationOrder)) (fi object).

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

3 Alphabetical List

3-638

comm.GeneralQAMTCMDemodulator System object

Package: comm

Demodulate convolutionally encoded data mapped to arbitrary QAM constellation

Description

The GeneralQAMTCMDemodulator object uses the Viterbi algorithm to decode a trellis-
coded modulation (TCM) signal that was previously modulated using an arbitrary signal
constellation.

To demodulate a signal that was modulated using a trellis-coded, general quadrature
amplitude modulator:

1 Define and set up your general QAM TCM modulator object. See “Construction” on
page 3-638.

2 Call step to demodulate a signal according to the properties of
comm.GeneralQAMTCMDemodulator. The behavior of step is specific to each object
in the toolbox.

Construction

H = comm.GeneralQAMTCMDemodulator creates a trellis-coded, general quadrature
amplitude (QAM TCM) demodulator System object, H. This object demodulates
convolutionally encoded data that has been mapped to an arbitrary QAM constellation.

H = comm.GeneralQAMTCMDemodulator(Name,Value) creates a general
QAM TCM demodulator object, H, with each specified property set to the specified
value. You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

H = comm.GeneralQAMTCMDemodulator(TRELLIS,Name,Value) creates a general
QAM TCM demodulator object, H. This object has the TrellisStructure property set
to TRELLIS, and the other specified properties set to the specified values.

 comm.GeneralQAMTCMDemodulator System object

3-639

Properties

TrellisStructure

Trellis structure of convolutional code

Specify trellis as a MATLAB structure that contains the trellis description of the
convolutional code. Use the istrellis function to check if a structure is a valid trellis
structure. The default is the value that results from poly2trellis([1 3], [1 0 0; 0
5 2]).

TerminationMethod

Termination method of encoded frame

Specify the termination method as one of Continuous | Truncated | Terminated. The
default is Continuous.

When you set this property to Continuous, the object saves the internal state metric
at the end of each frame. The next frame uses the same state metric. The object treats
each traceback path independently. If the input signal contains only one symbol, use
Continuous mode.

When you set this property to Truncated, the object treats each input vector
independently. The traceback path starts at the state with the best metric and always
ends in the all-zeros state.

When you set this property to Terminated, the object treats each input vector
independently, and the traceback path always starts and ends in the all-zeros state.

TracebackDepth

Traceback depth for Viterbi decoder

Specify the scalar, integer number of trellis branches to construct each traceback path.
The default is 21. The Traceback depth parameter influences the decoding accuracy and
delay. The decoding delay indicates the number of zero symbols that precede the first
decoded symbol in the output.

When you set the “TerminationMethod” property to Continuous, the decoding delay
consists of TracebackDepth zero symbols or TracebackDepth¥ K zero bits for a rate
K/N convolutional code.

3 Alphabetical List

3-640

When you set the TerminationMethod property to Truncated or Terminated, no
output delay occurs and the traceback depth must be less than or equal to the number of
symbols in each input vector.

ResetInputPort

Enable demodulator reset input

Set this property to true to enable an additional input to the step method. The default
is false. When this additional reset input is a nonzero value, the internal states of
the encoder reset to their initial conditions. This property applies when you set the
“TerminationMethod” property to Continuous.

Constellation

Signal constellation

Specify a double- or single-precision complex vector. This vector lists the points in
the signal constellation that were used to map the convolutionally encoded data. The
constellation must be specified in set-partitioned order. See documentation for the
General TCM Encoder block for more information on set-partitioned order. The length
of the constellation vector must equal the number of possible input symbols to the
convolutional decoder of the general QAM TCM demodulator object. This corresponds
to 2N for a rate K/N convolutional code. The default corresponds to a set-partitioned
order for the points of an 8-PSK signal constellation. This value is expressed as

exp(2
0 4 2 6 1 5 3 7

8
¥ ¥ ¥p j []).

OutputDataType

Data type of output

Specify output data type as one of logical | double. The default is double.

Methods

clone
Create general QAM TCM demodulator
object with same property values

 comm.GeneralQAMTCMDemodulator System object

3-641

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

reset
Reset states of the general QAM TCM
demodulator object

step
Demodulate convolutionally encoded data
mapped to arbitrary QAM constellation

Examples

Modulate and Demodulate Data Using QAM TCM

Modulate and demodulate noisy data using QAM TCM modulation with an arbitrary 4-
point constellation. Estimate the resultant BER.

Define a trellis structure with two input symbols and four output symbols using a [171
133] generator polynomial. Define an arbitrary four-point constellation.

qamTrellis = poly2trellis(7,[171 133]);

refConst = exp(pi*1i*[1 2 3 6]/4);

Create a QAM TCM modulator and demodulator System object™ pair using qamTrellis
and refConst.

hMod = comm.GeneralQAMTCMModulator(qamTrellis,'Constellation', refConst);

hDemod = comm.GeneralQAMTCMDemodulator(qamTrellis,'Constellation',refConst);

Create an AWGN channel object in which the noise is set by using a signal-to-noise ratio.

hAWGN = comm.AWGNChannel('NoiseMethod','Signal to noise ratio (SNR)', ...

3 Alphabetical List

3-642

 'SNR',4);

Create an error rate calculator with delay (in bits) equal to the product of
TracebackDepth and the number of bits per symbol

hError = comm.ErrorRate(...

 'ReceiveDelay', hDemod.TracebackDepth*log2(qamTrellis.numInputSymbols));

Generate random binary data and apply QAM TCM modulation. Pass the signal through
an AWGN channel and demodulate. Collect the error statistics.

for counter = 1:10

 % Generate binary data

 data = randi([0 1],500,1);

 % Modulate

 modSignal = step(hMod,data);

 % Pass through an AWGN channel

 noisySignal = step(hAWGN,modSignal);

 % Demodulate

 receivedData = step(hDemod,noisySignal);

 % Calculate the error statistics

 errorStats = step(hError,data,receivedData);

end

Display the BER and the number of bit errors.

fprintf('Error rate = %5.2e\nNumber of errors = %d\n', ...

 errorStats(1), errorStats(2))

Error rate = 1.16e-02

Number of errors = 58

Algorithms

This object implements the algorithm, inputs, and outputs described on the General TCM
Decoder block reference page. The object properties correspond to the block parameters.

See Also
comm.ViterbiDecoder | comm.GeneralQAMTCMModulator |
comm.RectangularQAMTCMDemodulator

 clone

3-643

clone
System object: comm.GeneralQAMTCMDemodulator
Package: comm

Create general QAM TCM demodulator object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a GeneralQAMTCMDemodulator object C, with the same
property values as H. The clone method creates a new unlocked object with uninitialized
states.

3 Alphabetical List

3-644

getNumInputs
System object: comm.GeneralQAMTCMDemodulator
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of
expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H)

 getNumOutputs

3-645

getNumOutputs
System object: comm.GeneralQAMTCMDemodulator
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

3 Alphabetical List

3-646

isLocked
System object: comm.GeneralQAMTCMDemodulator
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the GeneralQAMTCMDemodulator
System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

 release

3-647

release
System object: comm.GeneralQAMTCMDemodulator
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H)Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

3 Alphabetical List

3-648

reset
System object: comm.GeneralQAMTCMDemodulator
Package: comm

Reset states of the general QAM TCM demodulator object

Syntax

reset(H)

Description

reset(H) resets the states of the GeneralQAMTCMDemodulator object, H.

 step

3-649

step
System object: comm.GeneralQAMTCMDemodulator
Package: comm

Demodulate convolutionally encoded data mapped to arbitrary QAM constellation

Syntax

Y = step(H,X)

Y = step(H,X,R)

Description

Y = step(H,X) demodulates the general QAM modulated input data, X, and uses the
Viterbi algorithm to decode the resulting demodulated convolutionally encoded bits. X
must be a complex double or single precision column vector. The step method outputs a
demodulated binary column data vector, Y. When the convolutional encoder represents a
rate K/N code, the length of the output vector equals K ¥ L, where L is the length of the
input vector, X.

Y = step(H,X,R) resets the decoder states of the general QAM TCM demodulator
System object to the all-zeros state when you input a non-zero reset signal, R. R must
be a double precision or logical scalar integer. This syntax applies when you set the
ResetInputPort property to true.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

3 Alphabetical List

3-650

comm.GeneralQAMTCMModulator System object

Package: comm

Convolutionally encode binary data and map using arbitrary QAM constellation

Description

The GeneralQAMTCMModulator object implements trellis-coded modulation (TCM)
by convolutionally encoding the binary input signal. The object then maps the result
to an arbitrary signal constellation. The Signal constellation property lists the signal
constellation points in set-partitioned order.

To modulate a signal using a trellis-coded, general quadrature amplitude modulator:

1 Define and set up your general QAM TCM modulator object. See “Construction” on
page 3-650.

2 Call step to modulate a signal according to the properties of
comm.GeneralQAMTCMModulator. The behavior of step is specific to each object in
the toolbox.

Construction

H = comm.GeneralQAMTCMModulator creates a trellis-coded, general quadrature
amplitude (QAM TCM) modulator System object, H. This object convolutionally encodes
a binary input signal and maps the result using QAM modulation with a signal
constellation specified in the Constellation property.

H = comm.GeneralQAMTCMModulator(Name,Value) creates a general QAM
TCM modulator System object, H, with each specified property set to the specified
value. You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

H = comm.GeneralQAMTCMModulator(TRELLIS,Name,Value) creates a general
QAM TCM modulator System object, H. This object has the TrellisStructure
property set to TRELLIS, and the other specified properties set to the specified values.

 comm.GeneralQAMTCMModulator System object

3-651

Properties

TrellisStructure

Trellis structure of convolutional code

Specify trellis as a MATLAB structure that contains the trellis description of the
convolutional code. Use the istrellis function to check if a structure is a valid trellis
structure. The default is the result of poly2trellis([1 3], [1 0 0; 0 5 2]).

TerminationMethod

Termination method of encoded frame

Specify the termination method as one of Continuous | Truncated | Terminated. The
default is Continuous.

When you set this property to Continuous, the object retains the encoder states at the
end of each input vector for use with the next input vector.

When you set this property to Truncated, the object treats each input vector
independently. The encoder is reset to the all-zeros state at the start of each input vector.

When you set this property to Terminated, the object treats each input vector
independently. For each input vector, the object uses extra bits to set the encoder to the
all-zeros state at the end of the vector. For a rate K/N code, the step method outputs

the vector with length y N L S
K

= ¥
+() , where S = constraintLength–1. In the case of

multiple constraint lengths, S = sum(constraintLength(i)–1)). L represents the length of
the input to the step method.

ResetInputPort

Enable modulator reset input

Set this property to true to enable an additional input to the step method. The default
is false. When this additional reset input is a nonzero value, the internal states of
the encoder reset to their initial conditions. This property applies when you set the
“TerminationMethod” property to Continuous.

Constellation

3 Alphabetical List

3-652

Signal constellation

Specify a double- or single-precision complex vector that lists the points in the
signal constellation that were used to map the convolutionally encoded data. You
must specify the constellation in set-partitioned order. See documentation for the
General TCM Encoder block for more information on set-partitioned order. The
length of the constellation vector must equal the number of possible input symbols
to the convolutional decoder of the general QAM TCM demodulator object. This
corresponds to 2N for a rate K/N convolutional code. The default corresponds to a set-
partitioned order for the points of an 8-PSK signal constellation. This value is expressed

exp(2
0 4 2 6 1 5 3 7

8
¥ ¥ ¥p j []).

OutputDataType

Data type of output

Specify the output data type as one of double | single. The default is double.

Methods

clone
Create general QAM TCM modulator object
with same property values

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

reset
Reset states of the general QAM TCM
modulator object

 comm.GeneralQAMTCMModulator System object

3-653

step
Convolutionally encode binary data and
map using arbitrary QAM constellation

Examples

Modulate Data using QAM TCM with an Arbitrary Constellation

Modulate data using QAM TCM modulation with an arbitrary 4-point constellation.
Display a scatter plot of the modulated data.

Create binary data.

data = randi([0 1],1000,1);

Use the trellis structure with generating polynomial [171 133] and 4-point arbitrary
constellation { , , , } to perform QAM TCM modulation.

t = poly2trellis(7,[171 133]);

hMod = comm.GeneralQAMTCMModulator(t,...

 'Constellation',exp(pi*1i*[1 2 3 6]/4));

Modulate and plot the data.

modData = step(hMod,data);

scatterplot(modData);

3 Alphabetical List

3-654

Algorithms
This object implements the algorithm, inputs, and outputs described on the General TCM
Encoder block reference page. The object properties correspond to the block parameters.

 comm.GeneralQAMTCMModulator System object

3-655

See Also
comm.PSKTCMModulator | comm.GeneralQAMTCMDemodulator |
comm.GeneralQAMModulator | comm.ConvolutionalEncoder

3 Alphabetical List

3-656

clone
System object: comm.GeneralQAMTCMModulator
Package: comm

Create general QAM TCM modulator object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a GeneralQAMTCMModulator object C, with the same property
values as H. The clone method creates a new unlocked object with uninitialized states.

 getNumInputs

3-657

getNumInputs
System object: comm.GeneralQAMTCMModulator
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of
expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H)

3 Alphabetical List

3-658

getNumOutputs
System object: comm.GeneralQAMTCMModulator
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

 isLocked

3-659

isLocked
System object: comm.GeneralQAMTCMModulator
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

tTF = isLocked(H) returns the locked status, TF of the GeneralQAMTCMModulator
System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

3 Alphabetical List

3-660

release
System object: comm.GeneralQAMTCMModulator
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H)Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 reset

3-661

reset
System object: comm.GeneralQAMTCMModulator
Package: comm

Reset states of the general QAM TCM modulator object

Syntax

reset(H)

Description

reset(H) resets the states of the GeneralQAMTCMModulator object, H.

3 Alphabetical List

3-662

step
System object: comm.GeneralQAMTCMModulator
Package: comm

Convolutionally encode binary data and map using arbitrary QAM constellation

Syntax

Y = step(H,X)

Y = step(H,X,R)

Description

Y = step(H,X) convolutionally encodes and modulates the input data, X, and returns
the encoded and modulated data, Y. X must be of data type numeric, logical, or unsigned
fixed point of word length 1 (fi object). When the convolutional encoder represents a rate
K/N code, the length of the input vector, X, must be K ¥ L, for some positive integer L. The
step method outputs a complex column vector, Y, of length L.

Y = step(H,X,R) resets the encoder of the general QAM TCM modulator object to the
all-zeros state when you input a non-zero reset signal, R. R must be a double precision or
logical scalar integer. This syntax applies when you set the ResetInputPort property to
true.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

 comm.GMSKDemodulator System object

3-663

comm.GMSKDemodulator System object
Package: comm

Demodulate using GMSK method and the Viterbi algorithm

Description

The GMSKDemodulator object uses a Viterbi algorithm to demodulate a signal that was
modulated using the Gaussian minimum shift keying method. The input is a baseband
representation of the modulated signal.

To demodulate a signal that was modulated using Gaussian minimum shift keying:

1 Define and set up your GMSK demodulator object. See “Construction” on page 3-579.
2 Call step to demodulate a signal according to the properties of GMSKDemodulator.

The behavior of step is specific to each object in the toolbox.

Construction

H = comm.GMSKDemodulator creates a demodulator System object, H. This object
demodulates the input Gaussian minimum shift keying (GMSK) modulated data using
the Viterbi algorithm.

H = comm.GMSKDemodulator(Name,Value) creates a GMSK demodulator
object, H. This object has each specified property set to the specified value.
You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties

BitOutput

Output data as bits

Specify whether the output is groups of bits or integer values. The default is false.

3 Alphabetical List

3-664

When you set the “BitOutput” property to false, the step method outputs a column
vector of length equal to N/“SamplesPerSymbol”. N is the length of the input signal,
which is the number of input baseband modulated symbols. The elements of the output
vector are –1 or 1.

When you set the BitOutput property to true, the step method outputs a binary
column vector of length equal to N/SamplesPerSymbol with bit values of 0 or 1.

BandwidthTimeProduct

Product of bandwidth and symbol time of Gaussian pulse

Specify the product of bandwidth and symbol time for the Gaussian pulse shape as a real,
positive scalar. The default 0.3.

PulseLength

Pulse length

Specify the length of the Gaussian pulse shape in symbol intervals as a real positive
integer. The default 4.

SymbolPrehistory

Symbol prehistory

Specify the data symbols used by the modulator prior to the first call to the step method.
The default is 1. This property requires a scalar or vector with elements equal to -1
or 1. If the value is a vector, its length must be one less than the value you set in the
“PulseLength” property.

InitialPhaseOffset

Initial phase offset

Specify the initial phase offset of the input modulated waveform in radians as a real,
numeric scalar value. The default is 0.

SamplesPerSymbol

Number of samples per input symbol

Specify the expected number of samples per input symbol as a positive, integer scalar
value. The default is 8.

 comm.GMSKDemodulator System object

3-665

TracebackDepth

Traceback depth for Viterbi algorithm

Specify the number of trellis branches that the Viterbi algorithm uses to construct each
traceback path as a positive, integer scalar value. The value of this property is also
the output delay, and the number of zero symbols that precede the first meaningful
demodulated symbol in the output. The default is 16.

OutputDataType

Data type of output

Specify the output data type as one of int8 | int16 | int32 | double, when you set
the “BitOutput” property to false.

When you set the BitOutput property to true, specify the output data type as one of
logical | double. The default is double.

Methods

clone
Create GMSK demodulator object with
same property values

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

reset
Reset states of the GMSK demodulator
object

3 Alphabetical List

3-666

step
Demodulate using GMSK method and the
Viterbi algorithm

Examples

Demodulate a GMSK signal with bit inputs and phase offset

% Create a GMSK modulator, an AWGN channel, and a GMSK demodulator. Use a phase offset of pi/4.

 hMod = comm.GMSKModulator('BitInput', true, 'InitialPhaseOffset', pi/4);

 hAWGN = comm.AWGNChannel('NoiseMethod', ...

 'Signal to noise ratio (SNR)','SNR',0);

 hDemod = comm.GMSKDemodulator('BitOutput', true, ...

 'InitialPhaseOffset', pi/4);

% Create an error rate calculator, account for the delay caused by the Viterbi algorithm

 hError = comm.ErrorRate('ReceiveDelay', hDemod.TracebackDepth);

 for counter = 1:100

 % Transmit 100 3-bit words

 data = randi([0 1],300,1);

 modSignal = step(hMod, data);

 noisySignal = step(hAWGN, modSignal);

 receivedData = step(hDemod, noisySignal);

 errorStats = step(hError, data, receivedData);

 end

 fprintf('Error rate = %f\nNumber of errors = %d\n', ...

 errorStats(1), errorStats(2))

Error rate = 0.000133

Number of errors = 4

Algorithms

This object implements the algorithm, inputs, and outputs described on the GMSK
Demodulator Baseband block reference page. The object properties correspond to the
block parameters.

See Also
comm.CPMModulator | comm.GMSKModulator | comm.CPMDemodulator

 clone

3-667

clone
System object: comm.GMSKDemodulator
Package: comm

Create GMSK demodulator object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a GMSKDemodulator object C, with the same property values as
H. The clone method creates a new unlocked object with uninitialized states.

3 Alphabetical List

3-668

getNumInputs
System object: comm.GMSKDemodulator
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of
expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H)

 getNumOutputs

3-669

getNumOutputs
System object: comm.GMSKDemodulator
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

3 Alphabetical List

3-670

isLocked
System object: comm.GMSKDemodulator
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the GMSKDemodulator System
object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

 release

3-671

release
System object: comm.GMSKDemodulator
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H)Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

3 Alphabetical List

3-672

reset
System object: comm.GMSKDemodulator
Package: comm

Reset states of the GMSK demodulator object

Syntax

reset(H)

Description

reset(H) resets the states of the GMSKDemodulator object, H.

 step

3-673

step
System object: comm.GMSKDemodulator
Package: comm

Demodulate using GMSK method and the Viterbi algorithm

Syntax

Y = step(H,X)

Description

Y = step(H,X) demodulates input data, X, with the GMSK demodulator object, H,
and returns Y. X must be a double or single precision column vector with a length
equal to an integer multiple of the number of samples per symbol you specify in the
SamplesPerSymbol property.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

3 Alphabetical List

3-674

comm.GMSKModulator System object
Package: comm

Modulate using GMSK method

Description

The GMSKModulator object modulates using the Gaussian minimum shift keying
method. The output is a baseband representation of the modulated signal.

To modulate a signal using Gaussian minimum shift keying:

1 Define and set up your GMSK modulator object. See “Construction” on page 3-674.
2 Call step to modulate a signal according to the properties of comm.GMSKModulator.

The behavior of step is specific to each object in the toolbox.

Construction

H = comm.GMSKModulator creates a modulator System object, H. This object modulates
the input signal using the Gaussian minimum shift keying (GMSK) modulation method.

H = comm.GMSKModulator(Name,Value) creates a GMSK modulator object, H. This
object has each specified property set to the specified value. You can specify additional
name-value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties

BitInput

Assume input is bits

Specify whether the input is bits or integers. The default is false.

When you set the “BitInput” property to false, the step method input requires a
double-precision or signed integer data type column vector with values of -1 or 1.

 comm.GMSKModulator System object

3-675

When you set the BitInput property to true, step method input requires a double-
precision or logical data type column vector of 0s and 1s.

BandwidthTimeProduct

Product of bandwidth and symbol time of Gaussian pulse

Specify the product of the bandwidth and symbol time for the Gaussian pulse shape as a
real, positive scalar value. The default is 0.3.

PulseLength

Pulse length

Specify the length of the Gaussian pulse shape in symbol intervals as a real, positive
integer. The default is 4.

SymbolPrehistory

Symbol prehistory

Specify the data symbols the modulator uses prior to the first call to the step method
in reverse chronological order. The default is 1. This property requires a scalar or vector
with elements equal to -1 or 1. If the value is a vector, then its length must be one less
than the value in the “PulseLength” property.

InitialPhaseOffset

Initial phase offset

Specify the initial phase of the modulated waveform in radians as a real, numeric scalar
value. The default is 0.

SamplesPerSymbol

Number of samples per output symbol

Specify the upsampling factor at the output as a real, positive, integer scalar value.
The default is 8. The upsampling factor is the number of output samples that the step
method produces for each input sample.

OutputDataType

3 Alphabetical List

3-676

Data type of output

Specify output data type as one of double | single. The default is double.

Methods

clone
Create GMSK modulator object with same
property values

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

reset
Reset states of the GMSK modulator object

step
Modulate using GMSK method

Examples

Modulate a GMSK signal with bit inputs and phase offset

% Create a GMSK modulator, an AWGN channel, and a GMSK demodulator. Use a phase offset of pi/4.

 hMod = comm.GMSKModulator('BitInput', true, 'InitialPhaseOffset', pi/4);

 hAWGN = comm.AWGNChannel('NoiseMethod', ...

 'Signal to noise ratio (SNR)','SNR',0);

 hDemod = comm.GMSKDemodulator('BitOutput', true, ...

 'InitialPhaseOffset', pi/4);

% Create an error rate calculator, account for the delay caused by the Viterbi algorithm

 hError = comm.ErrorRate('ReceiveDelay', hDemod.TracebackDepth);

 comm.GMSKModulator System object

3-677

 for counter = 1:100

 % Transmit 100 3-bit words

 data = randi([0 1],300,1);

 modSignal = step(hMod, data);

 noisySignal = step(hAWGN, modSignal);

 receivedData = step(hDemod, noisySignal);

 errorStats = step(hError, data, receivedData);

 end

 fprintf('Error rate = %f\nNumber of errors = %d\n', ...

 errorStats(1), errorStats(2))

Error rate = 0.000133

Number of errors = 4

Algorithms

This object implements the algorithm, inputs, and outputs described on the GMSK
Modulator Baseband block reference page. The object properties correspond to the block
parameters.

See Also
comm.CPMModulator | comm.GMSKDemodulator | comm.CPMDemodulator

3 Alphabetical List

3-678

clone
System object: comm.GMSKModulator
Package: comm

Create GMSK modulator object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a GMSKModulator object C, with the same property values as H.
The clone method creates a new unlocked object with uninitialized states.

 getNumInputs

3-679

getNumInputs
System object: comm.GMSKModulator
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of
expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H)

3 Alphabetical List

3-680

getNumOutputs
System object: comm.GMSKModulator
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

 isLocked

3-681

isLocked
System object: comm.GMSKModulator
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the GMSKModulator System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

3 Alphabetical List

3-682

release
System object: comm.GMSKModulator
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H)Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 reset

3-683

reset
System object: comm.GMSKModulator
Package: comm

Reset states of the GMSK modulator object

Syntax

reset(H)

Description

reset(H) resets the states of the GMSKModulator object, H.

3 Alphabetical List

3-684

step
System object: comm.GMSKModulator
Package: comm

Modulate using GMSK method

Syntax

Y = step(H,X)

Description

Y = step(H,X) modulates input data, X, with the GMSK modulator object, H. It returns
the baseband modulated output in Y. Depending on the BitInput property value, input
X can be a double precision, signed integer, or logical column vector. The length of vector
Y is equal to the number of input samples times the number of samples per symbol that
you specify in the SamplesPerSymbol property.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

 comm.GMSKTimingSynchronizer System object

3-685

comm.GMSKTimingSynchronizer System object
Package: comm

Recover symbol timing phase using fourth-order nonlinearity method

Description

The GMSKTimingSynchronizer object recovers the symbol timing phase of the input
signal using a fourth-order nonlinearity method. This block implements a general non-
data-aided feedback method. This timing synchronization is a non-data-aided feedback
method that is independent of carrier phase recovery, but requires prior compensation
for the carrier frequency offset. You can use this block for systems that use Gaussian
minimum shift keying (GMSK) modulation.

To recover the symbol timing phase of the input signal:

1 Define and set up your GMSK timing synchronizer object. See “Construction” on
page 3-685.

2 Call step to recover the symbol timing phase of the input signal according to the
properties of comm.GMSKTimingSynchronizer. The behavior of step is specific to
each object in the toolbox.

Construction

H = comm.GMSKTimingSynchronizer creates a timing phase synchronizer System
object, H. This object recovers the symbol timing phase of the GMSK input signal using a
fourth-order nonlinearity method.

H = comm.GMSKTimingSynchronizer(Name,Value) creates a GMSK
timing synchronizer object, H, with each specified property set to the specified
value. You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties

SamplesPerSymbol

3 Alphabetical List

3-686

Number of samples representing each symbol

Specify the number of samples that represent each symbol in the input signal as an
integer-valued scalar value greater than 1. The default is 4.

ErrorUpdateGain

Error update step size

Specify the step size for updating successive timing phase estimates as a positive
real scalar value. Typically, this number is less than 1/“SamplesPerSymbol”, which
corresponds to a slowly varying timing phase. The default is 0.05. This property is
tunable.

ResetInputPort

Enable synchronization reset input

Set this property to true to enable resetting the timing phase recovery process based on
an input argument value. The default is false.

When you set this property to true, you must specify a reset input value to the step
method.

When you specify a nonzero value as the reset input, the object restarts the timing phase
recovery process. When you set this property to false, the object does not restart.

ResetCondition

Condition for timing phase recovery reset

Specify the conditions to reset the timing phase recovery process as one of Never |
Every frame. The default is Never.

When you set this property to Never, the phase recovery process never restarts. The
object operates continuously, retaining information from one symbol to the next.

When you set this property to Every frame, the timing phase recovery restarts at the
start of each frame of data. In this case, the restart occurs at each step method call. This
property applies when you set the “ResetInputPort” property to false.

 comm.GMSKTimingSynchronizer System object

3-687

Methods

clone
Create GMSK timing phase synchronizer
object with same property values

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

reset
Reset states of GMSK timing phase
synchronizer object

step
Recover symbol timing phase using fourth-
order nonlinearity method

Examples

Recover timing phase of an MSK signal.

 % Create System objects

 hMod = comm.GMSKModulator('BitInput', true, ...

 'SamplesPerSymbol', 14);

 timingOffset = 0.2; % Actual timing offset

 hDelay = dsp.VariableFractionalDelay;

 hSync = comm.GMSKTimingSynchronizer('SamplesPerSymbol', 14, ...

 'ErrorUpdateGain', 0.05);

 phEst = zeros(1, 10);

 for i = 1:51

 data = randi([0 1], 100, 1); % generate data

 modData = step(hMod, data); % modulate data

3 Alphabetical List

3-688

 % data impaired by timing offset error

 impairedData = step(hDelay, modData, timingOffset*14);

 % perform timing phase recovery

 [y, phase] = step(hSync, impairedData);

 phEst(i) = phase(1)/14;

 end

 figure, plot(0.2*ones(1, 50));

 hold on; ylim([0 0.4])

 plot(phEst, 'r'); legend('original', 'estimated')

 title('Original and Estimated timing phases');

Algorithms

This object implements the algorithm, inputs, and outputs described on the MSK-Type
Signal Timing Recovery block reference page. The object properties correspond to the
block parameters, except:

• The object corresponds to the MSK-Type Signal Timing Recovery block with the
Modulation type parameter set to GMSK.

• The Reset parameter corresponds to the “ResetInputPort” and “ResetCondition”
properties.

See Also
comm.EarlyLateGateTimingSynchronizer |
comm.MuellerMullerTimingSynchronizer

 clone

3-689

clone
System object: comm.GMSKTimingSynchronizer
Package: comm

Create GMSK timing phase synchronizer object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a GMSKTimingSynchronizer object C, with the same property
values as H. The clone method creates a new unlocked object with uninitialized states.

3 Alphabetical List

3-690

getNumInputs
System object: comm.GMSKTimingSynchronizer
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) method returns a positive integer, N, representing the number
of expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H).

 getNumOutputs

3-691

getNumOutputs
System object: comm.GMSKTimingSynchronizer
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

3 Alphabetical List

3-692

isLocked
System object: comm.GMSKTimingSynchronizer
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the GMSKTimingSynchronizer
System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

 release

3-693

release
System object: comm.GMSKTimingSynchronizer
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H)Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

3 Alphabetical List

3-694

reset
System object: comm.GMSKTimingSynchronizer
Package: comm

Reset states of GMSK timing phase synchronizer object

Syntax

reset(H)

Description

reset(H) resets the states for the GMSKTimingSynchronizer object H.

 step

3-695

step
System object: comm.GMSKTimingSynchronizer
Package: comm

Recover symbol timing phase using fourth-order nonlinearity method

Syntax

[Y,PHASE] = step(H,X)

[Y,PHASE] = step(H,X,R)

Description

[Y,PHASE] = step(H,X) performs timing phase recovery and returns the time-
synchronized signal, Y, and the estimated timing phase, PHASE, for input signal X. X
must be a double or single precision complex column vector.

[Y,PHASE] = step(H,X,R) restarts the timing phase recovery process when you
input a reset signal, R, that is non-zero. R must be a logical or double scalar. This syntax
applies when you set the ResetInputPort property to true.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

3 Alphabetical List

3-696

comm.GoldSequence System object

Package: comm

Generate Gold sequence

Description

The GoldSequence object generates a Gold sequence. Gold sequences form a large class
of sequences that have good periodic cross-correlation properties.

To generate a Gold sequence:

1 Define and set up your Gold sequence object. See “Construction” on page 3-696.
2 Call step to generate the Gold sequence according to the properties of

comm.GoldSequence. The behavior of step is specific to each object in the toolbox.

Construction

H = comm.GoldSequence creates a Gold sequence generator System object, H. This
object generates a pseudo-random Gold sequence.

H = comm.GoldSequence(Name,Value) creates a Gold sequence generator object, H,
with each specified property set to the specified value. You can specify additional name-
value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties

FirstPolynomial

Generator polynomial for first preferred PN sequence

Specify the polynomial that determines the feedback connections for the shift register of
the first preferred PN sequence generator. The default is [1 0 0 0 0 1 1]. You can
specify the generator polynomial as a numeric, binary vector that lists the coefficients

 comm.GoldSequence System object

3-697

of the polynomial in descending order of powers. The first and last elements must equal
1, and the length of this vector requires a value of n+1, where n is the degree of the
generator polynomial. Alternatively, you can specify the generator polynomial as a
numeric vector containing the exponents of z for the nonzero terms of the polynomial in
descending order of powers. The last entry must be 0. For example, [1 0 0 0 0 0 1 0
1] and [8 2 0] represent the same polynomial, g z z z() = + +

8 2
1 . The degree of the first

generator polynomial must equal the degree of the second generator polynomial specified
in the “SecondPolynomial” property.

FirstInitialConditions

Initial conditions for first PN sequence generator

Specify the initial conditions for the shift register of the first preferred PN sequence
generator. The default is [0 0 0 0 0 1]. The initial conditions require a numeric,
binary scalar, or a numeric, binary vector with length equal to the degree of the first
generator polynomial specified in the “FirstPolynomial” property. If you set this
property to a vector, each element of the vector corresponds to the initial value of the
corresponding cell in the shift register. If you set this property to a scalar, the initial
conditions of all shift register cells are the specified scalar value.

SecondPolynomial

Generator polynomial for second preferred PN sequence

Specify the polynomial that determines the feedback connections for the shift register of
the second preferred PN sequence generator. The default is [1 1 0 0 1 1 1]. You can
specify the generator polynomial as a binary, numeric vector that lists the coefficients
of the polynomial in descending order of powers. The first and last elements must equal
1, and the length of this vector requires a value of n+1, where n is the degree of the
generator polynomial. Alternatively, you can specify the generator polynomial as a
numeric vector containing the exponents of z for the nonzero terms of the polynomial
in descending order of powers. The last entry must be 0. For example, [1 0 0 0 0 0
1 0 1] and [8 2 0] represent the same polynomial, g z z z() = + +

8 2
1 . The degree of

the second generator polynomial must equal the degree of the first generator polynomial
specified in the “FirstPolynomial” property.

SecondInitialConditionsSource

Source of initial conditions for second PN sequence

3 Alphabetical List

3-698

Specify the source of the initial conditions that determines the start of the second PN
sequence as one of Property | Input port. The default is Property. When you set
this property to Property, you can specify the initial conditions as a scalar or binary
vector using the SecondInitialConditions property. When you set this property
to Input port, you specify the initial conditions as an input to the stepmethod. The
object accepts a binary scalar or a binary vector input. The length of the input must equal
the degree of the generator polynomial that the “SecondPolynomial” property specifies.

SecondInitialConditions

Initial conditions for second PN sequence generator

Specify the initial conditions for the shift register of the second preferred PN sequence
generator as a numeric, binary scalar, or as a numeric, binary vector. The length must
equal the degree of the second generator polynomial. You set the second generator
polynomial in the “SecondPolynomial” property.

When you set this property to a vector, each element of the vector corresponds to the
initial value of the corresponding cell in the shift register. The default is [0 0 0 0 0
1].

When you set this property to a scalar, the initial conditions of all shift register cells are
the specified scalar value.

Index

Index of output sequence of interest

Specify the index of the output sequence of interest from the set of available sequences
as a scalar integer. The default is 0. The scalar integer must be in the range [–
2, 2n–2], where n is the degree of the generator polynomials you specify in the
“FirstPolynomial” and “SecondPolynomial” properties.

The index values -2 and -1 correspond to the first and second preferred PN sequences as
generated by the FirstPolynomial and SecondPolynomial, respectively.

The set G(u, v) of available Gold sequences is defined by G(u,v) = {u, v, (uxor Tv), (u
xor T2v), ..., (u xor T((N–1)v))}.In this case, T represents the operator that shifts vectors
cyclically to the left by one place, and u, v represent the two preferred PN sequences.
Also, G(u,v) contains N+2 Gold sequences of period N. You select the desired sequence
from this set using the “Index” property.

 comm.GoldSequence System object

3-699

Shift

Sequence offset from initial time

Specify the offset of the Gold sequence from its starting point as a numeric, integer
scalar value that can be positive or negative. The default is 0. The Gold sequence has a
period of N = 2 1

n
- , where n is the degree of the generator polynomials specified in the

“FirstPolynomial” and “SecondPolynomial” properties. The shift value is wrapped
with respect to the sequence period.

VariableSizeOutput

Enable variable-size outputs

Set this property to true to enable an additional input to the step method. The default is
false. When you set this property to true, the enabled input specifies the output size of
the Gold sequence used for the step. The input value must be less than or equal to the
value of the MaximumOutputSize property.

When you set this property to false, the SamplesPerFrame property specifies the
number of output samples.

MaximumOutputSize

Maximum output size

Specify the maximum output size of the Gold sequence as a positive integer 2-element
row vector. The second element of the vector must be 1. The default is [10 1].

This property applies when you set the VariableSizeOutput property to true.

SamplesPerFrame

Number of output samples per frame

Specify the number of Gold sequence samples that the step method outputs as a
numeric, integer scalar value. The default is 1. If you set this property to a value of M,
then the step method outputs M samples of a Gold sequence with a period of N = 2 1

n
- .

The value of n represents the degree of the generator polynomials that you specify in the
“FirstPolynomial” and “SecondPolynomial” properties.

ResetInputPort

3 Alphabetical List

3-700

Enable generator reset input

Set this property to true to enable an additional reset input to the step
method. The default is false. This input resets the states of the two shift
registers of the Gold sequence generator to the initial conditions specified in the
“FirstInitialConditions” and “SecondInitialConditions” properties.

OutputDataType

Data type of output

Specify the output data type as one of double | logical | Smallest unsigned
integer. The default is double.

You must have a Fixed-Point Designer user license to use this property in Smallest
unsigned integer mode.

Methods

clone
Create Gold sequence generator object with
same property values

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

reset
Reset states of Gold sequence generator
object

step
Generate a Gold sequence

 comm.GoldSequence System object

3-701

Examples

Get 10 samples of a Gold sequence of period 2 1
5

- .

 hgld = comm.GoldSequence('FirstPolynomial',[5 2 0],...

 'SecondPolynomial', [5 4 3 2 0],...

 'FirstInitialConditions', [0 0 0 0 1],...

 'SecondInitialConditions', [0 0 0 0 1],...

 'Index', 4, 'SamplesPerFrame', 10);

 x = step(hgld)

Algorithms

This object implements the algorithm, inputs, and outputs described on the Gold
Sequence Generator block reference page. The object properties correspond to the block
parameters.

See Also
comm.PNSequence | comm.KasamiSequence

3 Alphabetical List

3-702

clone
System object: comm.GoldSequence
Package: comm

Create Gold sequence generator object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a GoldSequence object C, with the same property values as H.
The clone method creates a new unlocked object with uninitialized states.

 getNumInputs

3-703

getNumInputs
System object: comm.GoldSequence
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of
expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H)

3 Alphabetical List

3-704

getNumOutputs
System object: comm.GoldSequence
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

 isLocked

3-705

isLocked
System object: comm.GoldSequence
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the GoldSequence System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

3 Alphabetical List

3-706

release
System object: comm.GoldSequence
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H)Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 reset

3-707

reset
System object: comm.GoldSequence
Package: comm

Reset states of Gold sequence generator object

Syntax

reset(H)

Description

reset(H) resets the states of the GoldSequence object, H.

3 Alphabetical List

3-708

step
System object: comm.GoldSequence
Package: comm

Generate a Gold sequence

Syntax

Y = step(H)

Y = step(H,RESET)

Description

Y = step(H) outputs a frame of the Gold sequence in column vector Y. Specify the
frame length with the SamplesPerFrame property. The object uses two PN sequence
generators to generate a preferred pair of sequences with period N = 2^n-1. Then the
object XORs these sequences to produce the output Gold sequence. The value in n is
the degree of the generator polynomials that you specify in the FirstPolynomial and
SecondPolynomial properties.

Y = step(H,RESET) uses RESET as the reset signal when you set the ResetInputPort
property to true. The data type of the RESET input must be double precision or logical.
RESET can be a scalar value or a column vector with length equal to the number of
samples per frame specified in the SamplesPerFrame property. When the RESET input
is a non-zero scalar, the object resets to the initial conditions that you specify in the
FirstInitialConditions and SecondInitialConditions properties. It then
generates a new output frame. A column vector RESET input allows multiple resets
within an output frame. A non-zero value at the ith element of the vector causes a reset
at the ith output sample time.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an

 step

3-709

input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

3 Alphabetical List

3-710

comm.gpu.AWGNChannel System object
Package: comm

Add white Gaussian noise to input signal with GPU

Description

The GPU AWGNChannel object adds white Gaussian noise to an input signal using a
graphics processing unit (GPU).

Note: To use this object, you must install a Parallel Computing Toolbox license and
have access to an appropriate GPU. For more about GPUs, see “GPU Computing” in the
Parallel Computing Toolbox documentation.

To add white Gaussian noise to an input signal:

1 Define and set up your additive white Gaussian noise channel object. See
“Construction” on page 3-711.

2 Call step to add white Gaussian noise to the input signal according to the properties
of comm.gpu.AWGNChannel. The behavior of step is specific to each object in the
toolbox.

A GPU-based System object accepts typical MATLAB arrays or objects that you create
using the gpuArray class as an input to the step method. GPU-based System objects
support input signals with double- or single-precision data types. The output signal
inherits its datatype from the input signal.

• If the input signal is a MATLAB array, then the output signal is also a MATLAB
array. In this case, the System object handles data transfer between the CPU and
GPU.

• If the input signal is a gpuArray, then the output signal is also a gpuArray. In this
case, the data remains on the GPU. Therefore, when the object is given a gpuArray,
calculations take place entirely on the GPU and no data transfer occurs. Invoking the
step method with gpuArray arguments provides increased performance by reducing
simulation time. For more information, see “Establish Arrays on a GPU” in the
Parallel Computing Toolbox documentation.

 comm.gpu.AWGNChannel System object

3-711

Construction

H = comm.gpu.AWGNChannel creates a GPU-based additive white Gaussian noise
(AWGN) channel System object, H. This object adds white Gaussian noise to a real or
complex input signal.

H = comm.gpu.AWGNChannel(Name,Value) creates a GPU-based AWGN
channel object, H, with the specified property name set to the specified
value. You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

A GPU-based System object accepts typical MATLAB arrays or objects that you create
using the gpuArray class as an input to the step method. GPU-based System objects
support input signals with double- or single-precision data types. The output signal
inherits its datatype from the input signal.

• If the input signal is a MATLAB array, then the output signal is also a MATLAB
array. In this case, the System object handles data transfer between the CPU and
GPU.

• If the input signal is a gpuArray, then the output signal is also a gpuArray. In this
case, the data remains on the GPU. Therefore, when the object is given a gpuArray,
calculations take place entirely on the GPU and no data transfer occurs. Invoking the
step method with gpuArray arguments provides increased performance by reducing
simulation time. For more information, see “Establish Arrays on a GPU” in the
Parallel Computing Toolbox documentation.

Properties

NoiseMethod

Method to specify noise level

Select the method to specify the noise level as one of Signal to noise ratio (Eb/
No) | Signal to noise ratio (Es/No) | Signal to noise ratio (SNR) |
Variance. The default is Signal to noise ratio (Eb/No).

EbNo

Energy per bit to noise power spectral density ratio (Eb/No)

3 Alphabetical List

3-712

Specify the Eb/No ratio in decibels. Set this property to a numeric, real scalar or row
vector with a length equal to the number of channels. This property applies when you set
the “NoiseMethod” property to Signal to noise ratio (Eb/No). The default is 10.
This property is tunable.

EsNo

Energy per symbol to noise power spectral density ratio (Es/No)

Specify the Es/No ratio in decibels. Set this property to a numeric, real scalar or row
vector with a length equal to the number of channels. This property applies when you set
the “NoiseMethod” property to Signal to noise ratio (Es/No). The default is 10.
This property is tunable.

SNR

Signal to noise ratio (SNR)

Specify the SNR value in decibels. Set this property to a numeric, real scalar or row
vector with a length equal to the number of channels. This property applies when you set
the “NoiseMethod” property to Signal to noise ratio (SNR). The default is 10.
This property is tunable.

BitsPerSymbol

Number of bits in one symbol

Specify the number of bits in each input symbol. You can set this property to a numeric,
positive, integer scalar or row vector with a length equal to the number of channels.
This property applies when you set the “NoiseMethod” property to Signal to noise
ratio (Eb/No). The default is 1 bit.

SignalPower

Input signal power in Watts

Specify the mean square power of the input signal in Watts. Set this property to
a numeric, positive, real scalar or row vector with a length equal to the number of
channels. This property applies when you set the “NoiseMethod” property to Signal to
noise ratio (Eb/No), Signal to noise ratio (Es/No) or Signal to noise
ratio (SNR). The default is 1 Watt. The object assumes a nominal impedance of 1
Ohm. This property is tunable.

 comm.gpu.AWGNChannel System object

3-713

SamplesPerSymbol

Number of samples per symbol

Specify the number of samples per symbol. Set this property to a numeric, positive,
integer scalar or row vector with a length equal to the number of channels. This property
applies when you set the “NoiseMethod” property to Signal to noise ratio (Eb/
No) or Signal to noise ratio (Es/No). The default is 1 sample.

VarianceSource

Source of noise variance

Specify the source of the noise variance as one of Property | Input port. The default
is Property. Set VarianceSource to Input port to specify the noise variance value
via an input to the step method. Set VarianceSource to Property to specify the noise
variance value using the “Variance” property. This property applies when you set the
“NoiseMethod” property to Variance.

Variance

Noise variance

Specify the variance of the white Gaussian noise. You can set this property to a numeric,
positive, real scalar or row vector with a length equal to the number of channels. This
property applies when you set the “NoiseMethod” property to Variance and the
“VarianceSource” property to Property. The default is 1. This property is tunable.

RandomStream

Source of random number stream

Specify the source of random number stream. The only valid setting for this property is
Global stream. The object generates the normally distributed random numbers from
the current global random number stream.

Seed

Initial seed of mt19937ar random number stream

The GPU version of the AWGN Channel System object does not use this property.

3 Alphabetical List

3-714

Methods

clone
Create AWGN Channel object with same
property values

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

step
Add white Gaussian noise to input signal

Algorithm

This object uses the same algorithm as the comm.AWGNChannel System object. See the
Algorithms section of the comm.AWGNChannel help page for more details. The object
properties correspond to the related block parameters, except that:

• This object uses parallel.gpu.RandStream to provide an interface for controlling
the properties of one or more random number streams that the GPU uses. Usage is
the same as RandStream with the following restrictions:

• Only the combRecursive (MRG32K3A) generator is supported.
• Only the Inversion normal transform is supported.
• Setting the substream property is not allowed.

Enter help parallel.gpu.RandStream at the MATLAB command line for more
information.

Examples

Add AWGN to an 8-PSK signal.

hMod = comm.PSKModulator;

 comm.gpu.AWGNChannel System object

3-715

modData = step(hMod,randi([0 hMod.ModulationOrder-1],1000,1));

hAWGN = comm.gpu.AWGNChannel('EbNo',15, 'BitsPerSymbol', ...

 log2(hMod.ModulationOrder));

channelOutput = step(hAWGN, modData);

% Visualize the noiseless and noisy data in scatter plots

scatterplot(modData)

scatterplot(channelOutput)

See Also
comm.AWGNChannel

3 Alphabetical List

3-716

clone
System object: comm.gpu.AWGNChannel
Package: comm

Create AWGN Channel object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a GPU AWGN Channel object C, with the same property values as
H. The clone method creates a new unlocked object with uninitialized states.

The clone method creates an instance of an object. The property values, but not internal
states, are copied into the new instance of the object.

 isLocked

3-717

isLocked
System object: comm.gpu.AWGNChannel
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the GPU AWGN Channel System
object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

3 Alphabetical List

3-718

release
System object: comm.gpu.AWGNChannel
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 step

3-719

step
System object: comm.gpu.AWGNChannel
Package: comm

Add white Gaussian noise to input signal

Syntax

Y = step(H,X)

Y = step(H,X,VAR)

Description

Y = step(H,X) adds white Gaussian noise to input X and returns the result in Y. The
input X can be a double or single precision data type scalar, vector, or matrix with real or
complex values. The dimensions of input X determine single or multichannel processing.
For an M-by-N matrix input, M represents the number of time samples per channel and
N represents the number of channels. M and N can be equal to 1. The object adds frames
of length M of Gaussian noise to each of the N channels independently.

Y = step(H,X,VAR) uses input VAR as the variance of the white Gaussian noise.
This applies when you set the “NoiseMethod” property to Variance and the
“VarianceSource” property to Input port. Input VAR can be a positive scalar or row
vector with a length equal to the number of channels. VAR must be of the same data type
as input X.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

3 Alphabetical List

3-720

comm.gpu.BlockDeinterleaver System object
Package: comm

Restore original ordering of block interleaved sequence with GPU

Description

The BlockDeinterleaver System object restores the original ordering of a sequence
that was interleaved using the block interleaver System object.

Note: To use this object, you must install a Parallel Computing Toolbox license and
have access to an appropriate GPU. For more about GPUs, see “GPU Computing” in the
Parallel Computing Toolbox documentation.

A GPU-based System object accepts typical MATLAB arrays or objects that you create
using the gpuArray class as an input to the step method. GPU-based System objects
support input signals with double- or single-precision data types. The output signal
inherits its datatype from the input signal.

• If the input signal is a MATLAB array, then the output signal is also a MATLAB
array. In this case, the System object handles data transfer between the CPU and
GPU.

• If the input signal is a gpuArray, then the output signal is also a gpuArray. In this
case, the data remains on the GPU. Therefore, when the object is given a gpuArray,
calculations take place entirely on the GPU and no data transfer occurs. Invoking the
step method with gpuArray arguments provides increased performance by reducing
simulation time. For more information, see “Establish Arrays on a GPU” in the
Parallel Computing Toolbox documentation.

To deinterleave the input vector:

1 Define and set up your block deinterleaver object. See “Construction” on page
3-721.

2 Call step to rearrange the elements of the input vector according to the properties of
comm.gpu.BlockDeinterleaver. The behavior of step is specific to each object in
the toolbox.

 comm.gpu.BlockDeinterleaver System object

3-721

Construction

H = comm.gpu.BlockDeinterleaver creates a GPU-based block deinterleaver
System object, H. This object restores the original ordering of a sequence that was
interleaved using the BlockInterleaver System object

H = comm.gpu.BlockDeinterleaver(Name,Value) creates a GPU-based block
deinterleaver object, H, with the specified property name set to the specified value.

H = comm.gpu.BlockDeinterleaver(PERMVEC) creates a GPU-based block
deinterleaver object, H, with the PermutationVector property set to PERMVEC.

Properties

PermutationVector

Permutation vector

Specify the mapping used to permute the input symbols as a column vector of integers.
The default is [5;4;3;2;1]. The mapping is a vector where the number of elements is
equal to the length, N, of the input to the step method. Each element must be an integer
between 1 and N, with no repeated values.

Methods

clone
Create Block Deinterleaver object with
same property values

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

step
Deinterleave input sequence

3 Alphabetical List

3-722

Algorithm

This object uses the same algorithm as the comm.BlockDeinterleaver System object.
See Algorithms on the comm.BlockDeinterleaver help page for details.

Examples

Interleave and deinterleave data.

%Example 1: Interleave and deinterleave data

 hInt = comm.gpu.BlockInterleaver([3 4 1 2]');

 hDeInt = comm.gpu.BlockDeinterleaver([3 4 1 2]');

 data = randi(7, 4, 1);

 intData = step(hInt, data);

 deIntData = step(hDeInt, intData);

 % compare the original sequence, interleaved sequence,

 % and restored sequence

 [data, intData, deIntData]

%Example 2: Interleave and deinterleave data with random interleaver

 permVec = randperm(7)'; % Random permutation vector

 hInt = comm.gpu.BlockInterleaver(permVec);

 hDeInt = comm.gpu.BlockDeinterleaver(permVec);

 data = randi(9, 7, 1);

 intData = step(hInt, data);

 deIntData = step(hDeInt, intData);

 % compare the original sequence, interleaved sequence,

 % and restored sequence

 [data, intData, deIntData]

See Also
comm.gpu.BlockInterleaver | comm.BlockDeinterleaver

 clone

3-723

clone
System object: comm.gpu.BlockDeinterleaver
Package: comm

Create Block Deinterleaver object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a GPU Block Deinterleaver object C, with the same property
values as H. The clone method creates a new unlocked object with uninitialized states.

The clone method creates an instance of an object. The property values, but not internal
states, are copied into the new instance of the object.

3 Alphabetical List

3-724

isLocked
System object: comm.gpu.BlockDeinterleaver
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the GPU Block Deinterleaver
System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

 release

3-725

release
System object: comm.gpu.BlockDeinterleaver
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

3 Alphabetical List

3-726

step
System object: comm.gpu.BlockDeinterleaver
Package: comm

Deinterleave input sequence

Syntax

Y = step(H,X)

Description

Y = step(H,X) restores the original ordering of the sequence, X, that was
interleaved using a block interleaver. The step method forms the output, Y,
based on the mapping specified by the PermutationVector property as
Output(PermutationVector(k))=Input(k), for k = 1:N, where N is the length of the
permutation vector. The input X must be a column vector of the same length, N. The data
type of X can be numeric, logical, or fixed-point (fi objects). Y has the same data type as
X.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

 comm.gpu.BlockInterleaver System object

3-727

comm.gpu.BlockInterleaver System object

Package: comm

Create block interleaved sequence with GPU

Description

The GPU BlockInterleaver object permutes the symbols in the input signal using a
graphics processing unit (GPU).

Note: To use this object, you must install a Parallel Computing Toolbox license and
have access to an appropriate GPU. For more about GPUs, see “GPU Computing” in the
Parallel Computing Toolbox documentation.

A GPU-based System object accepts typical MATLAB arrays or objects that you create
using the gpuArray class as an input to the step method. GPU-based System objects
support input signals with double- or single-precision data types. The output signal
inherits its datatype from the input signal.

• If the input signal is a MATLAB array, then the output signal is also a MATLAB
array. In this case, the System object handles data transfer between the CPU and
GPU.

• If the input signal is a gpuArray, then the output signal is also a gpuArray. In this
case, the data remains on the GPU. Therefore, when the object is given a gpuArray,
calculations take place entirely on the GPU and no data transfer occurs. Invoking the
step method with gpuArray arguments provides increased performance by reducing
simulation time. For more information, see “Establish Arrays on a GPU” in the
Parallel Computing Toolbox documentation.

To interleave the input signal:

1 Define and set up your block interleaver object. See “Construction” on page 3-728.
2 Call step to reorder the input symbols according to the properties of

comm.gpu.BlockInterleaver. The behavior of step is specific to each object in
the toolbox.

3 Alphabetical List

3-728

Construction

H = comm.gpu.BlockInterleaver creates a GPU-based block interleaver System
object, H. This object permutes the symbols in the input signal based on a permutation
vector.

H = comm.gpu.BlockInterleaver(Name,Value) creates a GPU-based block
interleaver object, H, with the specified property Name set to the specified Value.

H = comm.gpu.BlockInterleaver(PERMVEC) creates a GPU-based block
deinterleaver object, H, with the PermutationVector property set to PERMVEC.

Properties

PermutationVector

Permutation vector

Specify the mapping used to permute the input symbols as a column vector of integers.
The default is [5;4;3;2;1]. The mapping is a vector where the number of elements is
equal to the length, N, of the input to the step method. Each element must be an integer
between 1 and N, with no repeated values.

Methods

clone
Block Interleaver object with same property
values

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

step
Permute input symbols using a
permutation vector

 comm.gpu.BlockInterleaver System object

3-729

Algorithm

The GPU Block Interleaver System object uses the same algorithm
as the comm.BlockInterleaver System object. See Algorithms on the
comm.BlockInterleaver help page for details.

Examples

Interleave and deinterleave data.

%Example 1: Interleave and deinterleave data

 hInt = comm.gpu.BlockInterleaver([3 4 1 2]');

 hDeInt = comm.gpu.BlockDeinterleaver([3 4 1 2]');

 data = randi(7, 4, 1);

 intData = step(hInt, data);

 deIntData = step(hDeInt, intData);

 % compare the original sequence, interleaved sequence,

 % and restored sequence

 [data, intData, deIntData]

%Example 2: Interleave and deinterleave data with random interleaver

 permVec = randperm(7)'; % Random permutation vector

 hInt = comm.gpu.BlockInterleaver(permVec);

 hDeInt = comm.gpu.BlockDeinterleaver(permVec);

 data = randi(9, 7, 1);

 intData = step(hInt, data);

 deIntData = step(hDeInt, intData);

 % compare the original sequence, interleaved sequence,

 % and restored sequence

 [data, intData, deIntData]

See Also
comm.gpu.BlockDeinterleaver | comm.BlockInterleaver

3 Alphabetical List

3-730

clone
System object: comm.gpu.BlockInterleaver
Package: comm

Block Interleaver object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a GPU Block Interleaver object C, with the same property
values as H. The clone method creates a new unlocked object with uninitialized states.

The clone method creates an instance of an object. The property values, but not internal
states, are copied into the new instance of the object.

 isLocked

3-731

isLocked
System object: comm.gpu.BlockInterleaver
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the GPU Block Interleaver
System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

3 Alphabetical List

3-732

release
System object: comm.gpu.BlockInterleaver
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 step

3-733

step
System object: comm.gpu.BlockInterleaver
Package: comm

Permute input symbols using a permutation vector

Syntax

Y = step(H,X)

Description

Y = step(H,X) permutes input sequence, X, and returns interleaved sequence,
Y. The step method forms the output Y, based on the mapping defined by the
PermutationVector property as Output(k)=Input(PermutationVector(k)), for k
= 1:N, where N is the length of the PermutationVector property. The input X must be
a column vector of length N. The data type of X can be numeric, logical, or fixed-point (fi
objects). Y has the same data type as X.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

3 Alphabetical List

3-734

comm.gpu.ConvolutionalEncoder class

Package: comm.gpu

Convolutionally encode binary data with GPU

Description

The GPU ConvolutionalEncoder object encodes a sequence of binary input vectors to
produce a sequence of binary output vectors.

Note: To use this object, you must install a Parallel Computing Toolbox license and
have access to an appropriate GPU. For more about GPUs, see “GPU Computing” in the
Parallel Computing Toolbox documentation.

A GPU-based System object accepts typical MATLAB arrays or objects that you create
using the gpuArray class as an input to the step method. GPU-based System objects
support input signals with double- or single-precision data types. The output signal
inherits its datatype from the input signal.

• If the input signal is a MATLAB array, then the output signal is also a MATLAB
array. In this case, the System object handles data transfer between the CPU and
GPU.

• If the input signal is a gpuArray, then the output signal is also a gpuArray. In this
case, the data remains on the GPU. Therefore, when the object is given a gpuArray,
calculations take place entirely on the GPU and no data transfer occurs. Invoking the
step method with gpuArray arguments provides increased performance by reducing
simulation time. For more information, see “Establish Arrays on a GPU” in the
Parallel Computing Toolbox documentation.

To convolutionally encode a binary signal:

1 Define and set up your convolutional encoder object. See “Construction” on page
3-735.

2 Call step to encode a sequence of binary input vectors to produce
a sequence of binary output vectors according to the properties of

 comm.gpu.ConvolutionalEncoder class

3-735

comm.gpu.ConvolutionalEncoder. The behavior of step is specific to each object
in the toolbox.

Construction

H = comm.gpu.ConvolutionalEncoder creates a System object, H, that
convolutionally encodes binary data.

H = comm.gpu.ConvolutionalEncoder(Name,Value) creates a convolutional
encoder object, H, with each specified property set to the specified value.
You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

H = comm.gpu.ConvolutionalEncoder(TRELLIS,Name,Value) creates a
convolutional encoder object, H. This object has the “TrellisStructure” property set to
TRELLIS, and the other specified properties set to the specified values.

Properties

TrellisStructure

Trellis structure of convolutional code

Specify the trellis as a MATLAB structure that contains the trellis description of the
convolutional code. The default is the result of poly2trellis(7, [171 133]). Use the
istrellis function to check if a structure is a valid trellis structure.

TerminationMethod

Termination method of encoded frame

Specify how the encoded frame is terminated as one of Continuous | Truncated |
Terminated. The default is Continuous.

When you set this property to Continuous, the object retains the encoder states at the
end of each input vector for use with the next input vector.

When you set this property to Truncated, the object treats each input vector
independently and resets its states to the all-zeros state.

3 Alphabetical List

3-736

When you set this property to Terminated, the object treats each input vector
independently. For each input vector, the object uses extra bits to set the encoder states
to the all-zeros state at the end of the vector. For a rate K/N code, the step method

outputs a vector with length N L S
K

¥
+() , where S = constraintLength–1. In the case of

multiple constraint lengths, S = sum(constraintLength(i)–1)). L is the length of the input
to the step method.

ResetInputPort

Enable encoder reset input

You cannot reset this encoder object using an input port. The only valid property setting
is false.

DelayedResetAction

Delay output reset

You cannot reset this encoder object using an input port. The only valid property setting
is false.

InitialStateInputPort

You cannot set the initial state of this encoder object. The only valid property setting is
false.

FinalStateOutputPort

You cannot output the final state of this encoder object. The only valid property setting is
false.

PuncturePatternSource

Source of puncture pattern

Specify the source of the puncture pattern as one of None | Property. The default is
None. When you set this property to None the object does not apply puncturing. When
you set this property to Property, the object punctures the code. This puncturing
is based on the puncture pattern vector that you specify in the “PuncturePattern”
property. This property applies when you set the “TerminationMethod” property to
Continuous or Truncated.

 comm.gpu.ConvolutionalEncoder class

3-737

PuncturePattern

Puncture pattern vector

Specify the puncture pattern that the object uses to puncture the encoded data as
a column vector. The default is [1; 1; 0; 1; 0; 1]. The vector contains 1s and
0s, where 0 indicates a punctured, or excluded, bit. This property applies when you
set the “TerminationMethod” property to Continuous or Truncated and the
“PuncturePatternSource” property to Property.

NumFrames

Number of independent frames present in the input and output data vectors.

Specify the number of independent frames contained in a single data input/output
vector. The default value of this property is 1. The objects segments the input vector into
NumFrames segments and encodes them independently. The output contains NumFrames
encoded segments. This property is applicable when you set the “TerminationMethod”
to Terminated or Truncated.

Methods

clone
Create convolutional encoder object with
same property values

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

reset
Reset states of the convolutional encoder
object

3 Alphabetical List

3-738

step
Convolutionally encode binary data

Examples

8-PSK-Modulation With Convolutional Encoding

Transmit a Convolutionally Encoded, 8-PSK-Modulated Bit Stream Through an AWGN
Channel.

Create a GPU-based Convolutional Encoder System object.

hConEnc = comm.gpu.ConvolutionalEncoder;

Create a GPU-based PSK Modulator System object that accepts a bit input signal.

hMod = comm.gpu.PSKModulator('BitInput',true);

Create a GPU-based AWGN Channel System object with a signal-to-noise ratio of seven.

hChan = comm.gpu.AWGNChannel('NoiseMethod', ...

 'Signal to noise ratio (SNR)',...

 'SNR',7);

Create a GPU-based PSK Demodulator System object that outputs a column vector of bit
values.

hDemod = comm.gpu.PSKDemodulator('BitOutput',true);

Create a GPU-based Viterbi Decoder System object that accepts an input vector of hard
decision values, which are zeros or ones.

hDec = comm.gpu.ViterbiDecoder('InputFormat','Hard');

Create an Error Rate System object that ignores 3 data samples before makings
comparisons. The received data lags behind the transmitted data by 34 samples.

hError = comm.ErrorRate('ComputationDelay',3,'ReceiveDelay', 34);

Run the simulation by using the step method to process data.

for counter = 1:20

 data = randi([0 1],30,1);

 comm.gpu.ConvolutionalEncoder class

3-739

 encodedData = step(hConEnc, gpuArray(data));

 modSignal = step(hMod, encodedData);

 receivedSignal = step(hChan, modSignal);

 demodSignal = step(hDemod, receivedSignal);

 receivedBits = step(hDec, demodSignal);

 errors = step(hError, data, gather(receivedBits));

end

Display the errors.

disp(errors)

Algorithms

This object implements the algorithm, inputs, and outputs described on the
Convolutional Encoder block reference page. The object properties correspond to the
block parameters.

See Also
comm.gpu.ViterbiDecoder | comm.gpu.ConvolutionalDeinterleaver |
comm.gpu.ConvolutionalInterleaver | comm.ConvolutionalEncoder

3 Alphabetical List

3-740

clone
Class: comm.gpu.ConvolutionalEncoder
Package: comm.gpu

Create convolutional encoder object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a GPU ConvolutionalEncoder object C, with the same
property values as H. The clone method creates a new unlocked object with uninitialized
states.

 getNumInputs

3-741

getNumInputs
Class: comm.gpu.ConvolutionalEncoder
Package: comm.gpu

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of
expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H)

3 Alphabetical List

3-742

getNumOutputs
Class: comm.gpu.ConvolutionalEncoder
Package: comm.gpu

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

 isLocked

3-743

isLocked
Class: comm.gpu.ConvolutionalEncoder
Package: comm.gpu

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the GPU ConvolutionalEncoder
System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

3 Alphabetical List

3-744

release
Class: comm.gpu.ConvolutionalEncoder
Package: comm.gpu

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 reset

3-745

reset
Class: comm.gpu.ConvolutionalEncoder
Package: comm.gpu

Reset states of the convolutional encoder object

Syntax

reset(H)

Description

reset(H) resets the states of the GPU ConvolutionalEncoder object, H.

3 Alphabetical List

3-746

step
Class: comm.gpu.ConvolutionalEncoder
Package: comm.gpu

Convolutionally encode binary data

Syntax

Y = step(H,X)

Description

Y = step(H,X) encodes the binary data, X, using the convolutional encoding that you
specify in the “TrellisStructure” property. It returns the encoded data, Y. Both X
and Y are column vectors of data type single, double, or logical. When the convolutional
encoder represents a rate K/N code, the length of the input vector equals K ¥ L, for a
positive integer, L. The step method sets the length of the output vector, Y, to L ¥ N.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

 comm.gpu.ConvolutionalInterleaver System object

3-747

comm.gpu.ConvolutionalInterleaver System object
Package: comm

Permute input symbols using shift registers with GPU

Description

The GPU ConvolutionalInterleaver object permutes the symbols in the input signal
using a graphics processing unit (GPU). Internally, this class uses a set of shift registers.

Note: To use this object, you must install a Parallel Computing Toolbox license and
have access to an appropriate GPU. For more about GPUs, see “GPU Computing” in the
Parallel Computing Toolbox documentation.

A GPU-based System object accepts typical MATLAB arrays or objects that you create
using the gpuArray class as an input to the step method. GPU-based System objects
support input signals with double- or single-precision data types. The output signal
inherits its datatype from the input signal.

• If the input signal is a MATLAB array, then the output signal is also a MATLAB
array. In this case, the System object handles data transfer between the CPU and
GPU.

• If the input signal is a gpuArray, then the output signal is also a gpuArray. In this
case, the data remains on the GPU. Therefore, when the object is given a gpuArray,
calculations take place entirely on the GPU and no data transfer occurs. Invoking the
step method with gpuArray arguments provides increased performance by reducing
simulation time. For more information, see “Establish Arrays on a GPU” in the
Parallel Computing Toolbox documentation.

To convolutionally interleave binary data:

1 Define and set up your convolutional interleaver object. See “Construction” on page
3-748.

2 Call step to convolutionally interleave according to the properties of
comm.gpu.ConvolutionalInterleaver. The behavior of step is specific to each
object in the toolbox.

3 Alphabetical List

3-748

Construction

H = comm.gpu.ConvolutionalInterleaver creates a GPU-based convolutional
interleaver System object, H. This object permutes the symbols in the input signal using a
set of shift registers.

H = comm.gpu.ConvolutionalInterleaver(Name,Value) creates a GPU-based
convolutional interleaver System object, H, with the specified property Name set to the
specified Value. You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

H = comm.gpu.ConvolutionalInterleaver(M,B,IC) creates a GPU-based
convolutional interleaver System object H, with the NumRegisters property set to M, the
RegisterLengthStep property set to B, and the InitialConditions property set to
IC. M, B, and IC are value-only arguments. To specify a value-only argument, you must
also specify all preceding value-only arguments.

Properties

NumRegisters

Number of internal shift registers

Specify the number of internal shift registers as a scalar, positive integer. The default is
6.

RegisterLengthStep

Number of additional symbols that fit in each successive shift register

Specify the number of additional symbols that fit in each successive shift register as a
positive, scalar integer. The default is 2. The first register holds zero symbols.

InitialConditions

Initial conditions of shift registers

Specify the values that are initially stored in each shift register as a numeric scalar or
vector. You do not need to specify a value for the first shift register, which has zero delay.
The default is 0. The value of the first element of this property is unimportant because

 comm.gpu.ConvolutionalInterleaver System object

3-749

the first shift register has zero delay. If you set this property to a scalar, then all shift
registers, except the first one, store the same specified value. If you set it to a column
vector with length equal to the value of the “NumRegisters” property, then the i-th shift
register stores the i-th element of the specified vector.

Methods

clone
Create convolutional interleaver object with
same property values

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

reset
Reset states of the convolutional
interleaver object

step
Permute input symbols using shift registers

Examples

Interleave and deinterleave random data

Interleave and deinterleave random data. Then, compare the original sequence,
interleaved sequence and restored sequence.

Create a GPU-based Convolutional Interleaver with three internal shift registers capable
of fitting two additional symbols. The initial value stored in each shift register is [-1 -2
-3].

3 Alphabetical List

3-750

hInt = comm.gpu.ConvolutionalInterleaver('NumRegisters', 3, ...

 'RegisterLengthStep', 2, ...

 'InitialConditions', [-1 -2 -3]');

Create a GPU-based Convolutional Deinterleaver with three internal shift registers
capable of fitting two additional symbols. The initial value stored in each shift register is
[-1 -2 -3].

hDeInt = comm.gpu.ConvolutionalDeinterleaver('NumRegisters', 3, ...

 'RegisterLengthStep', 2, ...

 'InitialConditions', [-1 -2 -3]');

Copy numeric data to the GPU.

data = gpuArray((0:20)');

Run the simulation by using the step method to process data.

intrlvData = step(hInt, data);

deintrlvData = step(hDeInt, intrlvData);

Compare the original sequence, interleaved sequence and restored sequence.

[data, intrlvData, deintrlvData]

Algorithms

This object implements the algorithm, inputs, and outputs described on the
Convolutional Interleaver block reference page. The object properties correspond to the
block parameters.

See Also
comm.ConvolutionalInterleaver | comm.gpu.ConvolutionalDeinterleaver

 clone

3-751

clone
System object: comm.gpu.ConvolutionalInterleaver
Package: comm

Create convolutional interleaver object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a GPU ConvolutionalInterleaver object C, with the same
property values as H. The clone method creates a new unlocked object with uninitialized
states.

The clone method creates an instance of an object. The property values, but not internal
states, are copied into the new instance of the object.

3 Alphabetical List

3-752

getNumInputs
System object: comm.gpu.ConvolutionalInterleaver
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of
expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H)

 getNumOutputs

3-753

getNumOutputs
System object: comm.gpu.ConvolutionalInterleaver
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

3 Alphabetical List

3-754

isLocked
System object: comm.gpu.ConvolutionalInterleaver
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the GPU
ConvolutionalInterleaver System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

 release

3-755

release
System object: comm.gpu.ConvolutionalInterleaver
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H)Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

3 Alphabetical List

3-756

reset
System object: comm.gpu.ConvolutionalInterleaver
Package: comm

Reset states of the convolutional interleaver object

Syntax

reset(H)

Description

reset(H) resets the states of the GPU ConvolutionalInterleaver object, H.

 step

3-757

step
System object: comm.gpu.ConvolutionalInterleaver
Package: comm

Permute input symbols using shift registers

Syntax

Y = step(H,X)

Description

Y = step(H,X) permutes input sequence, X, and returns interleaved sequence, Y. The
input X must be a column vector. The data type can be of type double, single, uint32,
int32, or logical. Y has the same data type as X. The convolutional interleaver object
uses a set of N shift registers, where N is the value specified by the NumRegisters
property. The object sets the delay value of the kth shift register to the product of (k-1)
and the “RegisterLengthStep” RegisterLengthStep property value. With each new
input symbol, a commutator switches to a new register and the new symbol shifts in
while the oldest symbol in that register shifts out. When the commutator reaches the Nth

register and the next new input occurs, it returns to the first register.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

3 Alphabetical List

3-758

comm.gpu.ConvolutionalDeinterleaver System object
Package: comm

Restore ordering of symbols using shift registers with GPU

Description
The GPU ConvolutionalDeinterleaver object recovers a signal that was interleaved
using the GPU-based convolutional interleaver object. The parameters in the two blocks
should have the same values.

Note: To use this object, you must install a Parallel Computing Toolbox license and
have access to an appropriate GPU. For more about GPUs, see “GPU Computing” in the
Parallel Computing Toolbox documentation.

A GPU-based System object accepts typical MATLAB arrays or objects that you create
using the gpuArray class as an input to the step method. GPU-based System objects
support input signals with double- or single-precision data types. The output signal
inherits its datatype from the input signal.

• If the input signal is a MATLAB array, then the output signal is also a MATLAB
array. In this case, the System object handles data transfer between the CPU and
GPU.

• If the input signal is a gpuArray, then the output signal is also a gpuArray. In this
case, the data remains on the GPU. Therefore, when the object is given a gpuArray,
calculations take place entirely on the GPU and no data transfer occurs. Invoking the
step method with gpuArray arguments provides increased performance by reducing
simulation time. For more information, see “Establish Arrays on a GPU” in the
Parallel Computing Toolbox documentation.

To recover convolutionally interleaved binary data:

1 Define and set up your convolutional deinterleaver object. See “Construction” on
page 3-759.

2 Call step to convolutionally deinterleave according to the properties of
comm.gpu.ConvolutionalDeinterleaver. The behavior of step is specific to
each object in the toolbox.

 comm.gpu.ConvolutionalDeinterleaver System object

3-759

Construction

H = comm.gpu.ConvolutionalDeinterleaver creates a GPU-based convolutional
deinterleaver System object, H. This object restores the original ordering of a sequence
that was interleaved using a convolutional interleaver.

H = comm.gpu.ConvolutionalDeinterleaver(Name,Value) creates a GPU-based
convolutional deinterleaver System object, H, with the specified property Name set to the
specified Value. You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

H = comm.gpu.ConvolutionalDeinterleaver(M,B,IC) creates a convolutional
deinterleaver System object H, with the NumRegisters property set to M, the
RegisterLengthStep property set to B, and the InitialConditions property set to
IC. M, B, and IC are value-only arguments. To specify a value-only argument, you must
also specify all preceding value-only arguments.

Properties

NumRegisters

Number of internal shift registers

Specify the number of internal shift registers as a scalar, positive integer. The default is
6.

RegisterLengthStep

Number of additional symbols that fit in each successive shift register

Specify the number of additional symbols that fit in each successive shift register as a
positive, scalar integer. The default is 2. The first register holds zero symbols.

InitialConditions

Initial conditions of shift registers

Specify the values that are initially stored in each shift register (except the first shift
register, which has zero delay) as a numeric scalar or vector. The default is 0. If you
set this property to a scalar, then all shift registers, except the first one, store the same

3 Alphabetical List

3-760

specified value. If you set it to a column vector with length equal to the value of the
“NumRegisters”property, then the i-th shift register stores the i-th element of the
specified vector. The value of the first element of this property is unimportant, since the
first shift register has zero delay.

Methods

clone
Create convolutional deinterleaver object
with same property values

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

step
Permute input symbols using shift registers

reset
Reset states of the convolutional
deinterleaver object

Examples

Interleave and Deinterleave Random Data

Interleave and deinterleave random data. Then, compare the original sequence,
interleaved sequence and restored sequence.

Create a GPU-based Convolutional Interleaver with three internal shift registers capable
of fitting two additional symbols. The initial value stored in each shift register is [-1 -2
-3].

 comm.gpu.ConvolutionalDeinterleaver System object

3-761

hInt = comm.gpu.ConvolutionalInterleaver('NumRegisters', 3, ...

 'RegisterLengthStep', 2, ...

 'InitialConditions', [-1 -2 -3]');

Create a GPU-based Convolutional Deinterleaver with three internal shift registers
capable of fitting two additional symbols. The initial value stored in each shift register is
[-1 -2 -3].

hDeInt = comm.gpu.ConvolutionalDeinterleaver('NumRegisters', 3, ...

 'RegisterLengthStep', 2, ...

 'InitialConditions', [-1 -2 -3]');

Copy numeric data to the GPU.

data = gpuArray((0:20)');

Run the simulation by using the step method to process data.

intrlvData = step(hInt, data);

deintrlvData = step(hDeInt, intrlvData);

Compare the original sequence, interleaved sequence and restored sequence.

[data, intrlvData, deintrlvData]

Algorithms

This object implements the algorithm, inputs, and outputs described on the
Convolutional Deinterleaver block reference page. The object properties correspond to the
block parameters.

See Also
comm.ConvolutionalDeinterleaver | comm.gpu.ConvolutionalInterleaver

3 Alphabetical List

3-762

clone
System object: comm.gpu.ConvolutionalDeinterleaver
Package: comm

Create convolutional deinterleaver object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a GPU ConvolutionalDeinterleaver object C, with the same
property values as H. The clone method creates a new unlocked object with uninitialized
states.

The clone method creates an instance of an object. The property values, but not internal
states, are copied into the new instance of the object.

 getNumInputs

3-763

getNumInputs
System object: comm.gpu.ConvolutionalInterleaver
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of
expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H)

3 Alphabetical List

3-764

getNumOutputs
System object: comm.gpu.ConvolutionalDeinterleaver
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

 isLocked

3-765

isLocked
System object: comm.gpu.ConvolutionalDeinterleaver
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the GPU
ConvolutionalDeinterleaver System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

3 Alphabetical List

3-766

release
System object: comm.gpu.ConvolutionalDeinterleaver
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 step

3-767

step
System object: comm.gpu.ConvolutionalDeinterleaver
Package: comm

Permute input symbols using shift registers

Syntax

Y = step(H,X)

Description

Y = step(H,X) restores the original ordering of the sequence, X, that was interleaved
using a convolutional interleaver and returns Y. The input X must be a column vector.
The data type can be numeric, logical, or fixed-point (fi objects). Y has the same data
type as X. The convolutional deinterleaver object uses a set of N shift registers, where N
represents the value specified by the NumRegisters property. The object sets the delay
value of the kth shift register to the product of (k-1) and the “RegisterLengthStep”
property value. With each new input symbol, a commutator switches to a new register
and the new symbol shifts in while the oldest symbol in that register shifts out. When
the commutator reaches the Nth register and the next new input occurs, it returns to the
first register.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

3 Alphabetical List

3-768

reset
System object: comm.gpu.ConvolutionalDeinterleaver
Package: comm

Reset states of the convolutional deinterleaver object

Syntax

reset(H)

Description

reset(H) resets the states of the GPU ConvolutionalDeinterleaver object, H.

 comm.gpu.LDPCDecoder System object

3-769

comm.gpu.LDPCDecoder System object
Package: comm

Decode binary low-density parity-check data with GPU

Description

The GPU LDPCDecoder object decodes a binary low-density parity-check code using a
graphics processing unit (GPU).

Note: To use this object, you must install a Parallel Computing Toolbox license and
have access to an appropriate GPU. For more about GPUs, see “GPU Computing” in the
Parallel Computing Toolbox documentation.

A GPU-based System object accepts typical MATLAB arrays or objects that you create
using the gpuArray class as an input to the step method. GPU-based System objects
support input signals with double- or single-precision data types. The output signal
inherits its datatype from the input signal.

• If the input signal is a MATLAB array, then the output signal is also a MATLAB
array. In this case, the System object handles data transfer between the CPU and
GPU.

• If the input signal is a gpuArray, then the output signal is also a gpuArray. In this
case, the data remains on the GPU. Therefore, when the object is given a gpuArray,
calculations take place entirely on the GPU and no data transfer occurs. Invoking the
step method with gpuArray arguments provides increased performance by reducing
simulation time. For more information, see “Establish Arrays on a GPU” in the
Parallel Computing Toolbox documentation.

To decode a binary low-density parity-check code:

1 Define and set up your binary low-density parity-check decoder object. See
“Construction” on page 3-770.

2 Call step to decode a binary low-density parity-check code according to the
properties of comm.gpu.LDPCDecoder. The behavior of step is specific to each
object in the toolbox.

3 Alphabetical List

3-770

Construction
h = comm.gpu.LDPCDecoder creates a GPU-based LDPC binary low-density parity-
check decoder object, h. This object performs LDPC decoding based on the specified
parity-check matrix. The object does not assume any patterns in the parity-check matrix.

h = comm.gpu.LDPCDecoder('PropertyName','ValueName') creates a GPU-
based LDPC decoder object, h, with each specified property set to the specified
value. You can specify additional name-value pair arguments in any order as
('PropertyName1','PropertyValue1',...,'PropertyNameN','PropertyValueN').

h = comm.gpu.LDPCDecoder(PARITY) creates a GPU-based LDPC decoder object, h,
with the ParityCheckMatrix property set to PARITY.

Properties
ParityCheckMatrix

Parity-check matrix

Specify the parity-check matrix as a binary valued sparse matrix with dimension (N-
by-K) by N, where N > K > 0. The last N−K columns in the parity check matrix must be
an invertible matrix in GF(2). This property accepts numeric or logical data types. The
upper bound for the value of N is (231)-1. The default is the parity-check matrix of the
half-rate LDPC code from the DVB-S.2 standard, which is the result of dvbs2ldpc(1/2).

OutputValue

Select output value format

Specify the output value format as one of Information part | Whole codeword.
The default is Information part. When you set this property to Information part,
the output contains only the message bits and is a multiple of K length column vector,
assuming an (N-by-K)xK parity check matrix. When you set this property to Whole
codeword, the output contains the codeword bits and is an N element column vector.

DecisionMethod

Decision method

Specify the decision method used for decoding as one of Hard decision | Soft
decision. The default is Hard decision. When you set this property to Hard

 comm.gpu.LDPCDecoder System object

3-771

decision, the output is decoded bits of logical data type. When you set this property to
Soft decision, the output is log-likelihood ratios of single or double data type.

IterationTerminationCondition

Condition for iteration termination

Specify the condition to stop the decoding iterations as one of Maximum iteration
count | Parity check satisfied. The default is Maximum iteration count.
When you set this property to Maximum iteration count, the object will iterate for
the number of iterations you specify in the MaximumIterationCount property. When
you set this property to Parity check satisfied, the object will determine if the
parity checks are satisfied after each iteration and stops if all parity checks are satisfied.

MaximumIterationCount

Maximum number of decoding iterations

Specify the maximum number of iterations the object uses as an integer
valued numeric scalar. The default is 50. This applies when you set the
IterationTerminationCondition property to Maximum iteration count.

NumIterationsOutputPort

Output number of iterations performed

Set this property to true to output the actual number of iterations the object performed.
The default is false.

FinalParityChecksOutputPort

Output final parity checks

Set this property to true to output the final parity checks the object calculated. The
default is false.

Methods

clone
Create GPU LDPC Decoder object with
same property values

3 Alphabetical List

3-772

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

step
Decode input signal using LDPC decoding
scheme

Algorithm

The GPU LDPC Decoder System object uses the same algorithm as the LDPC Decoder
block. See Decoding Algorithm for details.

Examples

Transmit an LDPC-encoded, QPSK-modulated bit stream through an AWGN channel,
then demodulate, decode, and count errors.

 hEnc = comm.LDPCEncoder;

 hMod = comm.PSKModulator(4, 'BitInput',true);

 hChan = comm.AWGNChannel(...

 'NoiseMethod','Signal to noise ratio (SNR)','SNR',1);

 hDemod = comm.PSKDemodulator(4, 'BitOutput',true,...

 'DecisionMethod','Approximate log-likelihood ratio', ...

 'Variance', 1/10^(hChan.SNR/10));

 hDec = comm.gpu.LDPCDecoder;

 hError = comm.ErrorRate;

 for counter = 1:10

 data = logical(randi([0 1], 32400, 1));

 encodedData = step(hEnc, data);

 modSignal = step(hMod, encodedData);

 receivedSignal = step(hChan, modSignal);

 demodSignal = step(hDemod, receivedSignal);

 receivedBits = step(hDec, demodSignal);

 errorStats = step(hError, data, receivedBits);

 end

 fprintf('Error rate = %1.2f\nNumber of errors = %d\n', ...

 comm.gpu.LDPCDecoder System object

3-773

 errorStats(1), errorStats(2))

See Also
comm.LDPCDecoder | comm.LDPCEncoder

3 Alphabetical List

3-774

clone
System object: comm.gpu.LDPCDecoder
Package: comm

Create GPU LDPC Decoder object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a GPU LDPCDecoder object C, with the same property values as
H. The clone method creates a new unlocked object with uninitialized states.

The clone method creates an instance of an object. The property values, but not internal
states, are copied into the new instance of the object.

 isLocked

3-775

isLocked
System object: comm.gpu.LDPCDecoder
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the ACPR System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

3 Alphabetical List

3-776

release
System object: comm.gpu.LDPCDecoder
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 step

3-777

step
System object: comm.gpu.LDPCDecoder
Package: comm

Decode input signal using LDPC decoding scheme

Syntax

Y = step(H,X)

[Y,NUMITER] = step(H,X)

[Y,PARITY] = step(H,X)

Description

Y = step(H,X) decodes input codeword, X, using an LDPC code that is based
on an (N-K) x N parity-check matrix. You specify the parity-check matrix in the
ParityCheckMatrix property. The input X must be a column vector of type double or
single. Each element is the log-likelihood ratio for a received bit (more likely to be 0 if the
log-likelihood ratio is positive). This System object is capable of decoding multiple frames
of input data simultaneously. The length of the input X must be a multiple of N. The first
K elements of every N elements correspond to the information part of a codeword. The
decoded data output vector, Y, contains either only the message bits or the whole code
word(s), based on the value of the OutputValue property.

[Y,NUMITER] = step(H,X) returns the actual number of iterations the object
performed when you set the NumIterationsOutputPort property to true. The step
method outputs NUMITER as a double scalar.

[Y,PARITY] = step(H,X) returns final parity checks the object calculated when you
set the FinalParityChecksOutputPort property to true. The step method outputs
PARITY as a logical vector of length (N-K).

You can combine optional output arguments when you set their enabling properties.
Optional outputs must be listed in the same order as the order of the enabling properties.
For example,

[Y,NUMITER,PARITY] = step(H,X)

3 Alphabetical List

3-778

Calling step on an object puts that object into a locked state. When locked, you
cannot change non-tunable properties or any input characteristics (size, data type and
complexity) without reinitializing (unlocking and relocking) the object.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

 comm.gpu.PSKDemodulator System object

3-779

comm.gpu.PSKDemodulator System object

Package: comm

Demodulate using M-ary PSK method with GPU

Description

The GPU PSKDemodulator object demodulates an input signal using the M-ary phase
shift keying (M-PSK) method.

Note: To use this object, you must install a Parallel Computing Toolbox license and
have access to an appropriate GPU. For more about GPUs, see “GPU Computing” in the
Parallel Computing Toolbox documentation.

A GPU-based System object accepts typical MATLAB arrays or objects that you create
using the gpuArray class as an input to the step method. GPU-based System objects
support input signals with double- or single-precision data types. The output signal
inherits its datatype from the input signal.

• If the input signal is a MATLAB array, then the output signal is also a MATLAB
array. In this case, the System object handles data transfer between the CPU and
GPU.

• If the input signal is a gpuArray, then the output signal is also a gpuArray. In this
case, the data remains on the GPU. Therefore, when the object is given a gpuArray,
calculations take place entirely on the GPU and no data transfer occurs. Invoking the
step method with gpuArray arguments provides increased performance by reducing
simulation time. For more information, see “Establish Arrays on a GPU” in the
Parallel Computing Toolbox documentation.

To demodulate a signal that was modulated using phase shift keying:

1 Define and set up your PSK demodulator object. See “Construction” on page 3-780.
2 Call step to demodulate the signal according to the properties of

comm.gpu.PSKDemodulator. The behavior of step is specific to each object in the
toolbox.

3 Alphabetical List

3-780

Construction

H = comm.gpu.PSKDemodulator returns a GPU-based demodulator System object, H.
This object demodulates the input signal using the M-ary phase shift keying (M-PSK)
method.

H = comm.gpu.PSKDemodulator(Name,Value) creates a GPU-based M-
PSK demodulator object, H, with the specified property set to the specified
value. You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN)

H = comm.gpu.PSKDemodulator(M,PHASE,Name,Value) creates a GPU-based
M-PSK demodulator object, H, with the ModulationOrder property set to M, the
PhaseOffset property set to PHASE and other specified property names set to the
specified values. M and PHASE are value-only arguments. To specify a value-only
argument, you must also specify all preceding value-only arguments. You can specify
name-value pair arguments in any order.

Properties

ModulationOrder

Number of points in signal constellation

Specify the number of points in the signal constellation as a positive, integer scalar. The
default is 8.

PhaseOffset

Phase of zeroth point of constellation

Specify the phase offset of the zeroth point of the constellation, in radians, as a real
scalar. The default is π/8.

BitOutput

Output data as bits

Specify whether the output consists of groups of bits or integer symbol values. When
you set this property to true, the step method outputs a column vector of bit values with

 comm.gpu.PSKDemodulator System object

3-781

length equal to log2(“ModulationOrder”) times the number of demodulated symbols.
When you set this property to false, the step method outputs a column vector, with a
length equal to the input data vector that contains integer symbol values between 0 and
“ModulationOrder”-1. The default is false.

SymbolMapping

Constellation encoding

Specify how the object maps an integer or group of log2(“ModulationOrder”) bits to
the corresponding symbol as Binary | Gray | Custom. The default is Gray. When
you set this property to Gray, the object uses a Gray-encoded signal constellation.
When you set this property to Binary, the integer m (0 ≤ m ≤“ModulationOrder”-1)
maps to the complex value. This value is represented as exp(j*“PhaseOffset” +
j*2*pi*m/“ModulationOrder”). When you set this property to Custom, the object uses
the signal constellation defined in the “CustomSymbolMapping” property.

CustomSymbolMapping

Custom constellation encoding

Specify a custom constellation symbol mapping vector. The default is 0:7. This property
must be a row or column vector of size ModulationOrder with unique integer values
in the range [0, ModulationOrder-1]. The values must be of data type double. The
first element of this vector corresponds to the constellation point at an angle of 0
+ “PhaseOffset”, with subsequent elements running counterclockwise. The last
element corresponds to the constellation point at an angle of -π/“ModulationOrder” +
“PhaseOffset”. This property applies when you set the SymbolMapping property to
Custom.

DecisionMethod

Demodulation decision method

Specify the decision method that the object uses as one of Hard decision | Log-
likelihood ratio | Approximate log-likelihood ratio. The default is Hard
decision. When you set “DecisionMethod” to false, the object always performs hard
decision demodulation. This property applies when you set the “BitOutput” property to
true.

VarianceSource

3 Alphabetical List

3-782

Source of noise variance

Specify the source of the noise variance as one of Property | Input port. The default
is Property. This property applies when you set the “BitOutput” property to true and
the “DecisionMethod” property to Log-likelihood ratio or Approximate log-
likelihood ratio.

Variance

Specify the variance of the noise as a positive, real scalar. The default is 1. If this value
is very small (i.e., SNR is very high), then log-likelihood ratio (LLR) computations may
yield Inf or -Inf. This occurs because the LLR algorithm computes the exponential
value of very large or very small numbers using finite precision arithmetic. In such
cases, use approximate LLR is recommended because its algorithm does not compute
exponentials. This property applies when you set the “BitOutput” property to true,
the “DecisionMethod” property to Log-likelihood ratio or Approximate log-
likelihood ratio, and the “VarianceSource” property to Property. This property
is tunable.

OutputDataType

Data type of output

When you set this property to Full precision, the output signal inherits its data type
from the input signal.

Methods

clone
Create PSK demodulator object with same
property values

constellation
Calculate or plot ideal signal constellation

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

 comm.gpu.PSKDemodulator System object

3-783

step
Demodulate using M-ary PSK method

Algorithm

The GPU PSK Demodulator System object uses the same algorithm as the
comm.PSKDemodulator Communications System Toolbox object. See Decoding
Algorithm for details.

Examples

Transmit an LDPC-encoded, QPSK-modulated bit stream through an AWGN channel.
Then demodulate, decode, and count errors.

16-PSK Modulation and Demodulation

Transmit an LDPC-encoded, QPSK-modulated bit stream through an AWGN channel.

Create a GPU-based PSK Modulator System object.

hMod = comm.gpu.PSKModulator(16, 'PhaseOffset',pi/16);

Create a GPU-based AWGN Channel System object with a signal-to-noise ratio of 15.

hAWGN = comm.gpu.AWGNChannel('NoiseMethod', ...

 'Signal to noise ratio (SNR)','SNR',15);

Create a GPU-based PSK Demodulator System object.

 hDemod = comm.gpu.PSKDemodulator(16, 'PhaseOffset',pi/16);

Create an error rate calculator System object.

hError = comm.ErrorRate;

Transmit a frame of data containing 50 symbols.

for counter = 1:100

data = gpuArray.randi([0 hMod.ModulationOrder-1], 50, 1);

3 Alphabetical List

3-784

Run the simulation by using the step method to process data.

modSignal = step(hMod, data);

noisySignal = step(hAWGN, modSignal);

receivedData = step(hDemod, noisySignal);

errorStats = step(hError, gather(data), gather(receivedData));

end

Compute the error rate results.

fprintf('Error rate = %f\nNumber of errors = %d\n',...

 errorStats(1), errorStats(2))

See Also
comm.PSKDemodulator | comm.gpu.PSKModulator

 clone

3-785

clone
Create PSK demodulator object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a GPU PSK Demodulator object, C, with the same property
values as H. The clone method creates a new unlocked object with uninitialized states.

The clone method creates an instance of an object. The property values, but not internal
states, are copied into the new instance of the object.

3 Alphabetical List

3-786

constellation

System object: comm.gpu.PSKDemodulator
Package: comm

Calculate or plot ideal signal constellation

Syntax

y = constellation(h)

constellation(h)

Description

y = constellation(h) returns the numerical values of the constellation.

constellation(h) generates a constellation plot for the object.

Examples

Calculate Ideal Signal Constellation for comm.gpu.PSKDemodulator

Create a comm.gpu.PSKDemodulator System object, and then calculate its ideal signal
constellation.

Create a comm.gpu.PSKDemodulator System object by entering the following at the
MATLAB command line:

h = comm.gpu.PSKDemodulator

Calculate and display the ideal signal constellation by calling the constellation
method.

 constellation

3-787

a = constellation(h)

Plot Ideal Signal Constellation for comm.gpu.PSKDemodulator

Create a comm.gpu.PSKDemodulator System object, and then plot the ideal signal
constellation.

Create a comm.gpu.PSKDemodulator System object by entering the following at the
MATLAB command line:

h = comm.gpu.PSKDemodulator

Plot the ideal signal constellation by calling the constellation method.

constellation(h)

3 Alphabetical List

3-788

isLocked
Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the GPU PSK Demodulator
System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

 release

3-789

release
Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

3 Alphabetical List

3-790

step
System object: comm.gpu.PSKDemodulator
Package: comm

Demodulate using M-ary PSK method

Syntax

Y = step(H,X)

Y = step(H,X,VAR)

Description

Y = step(H,X) demodulates data, X, with the GPU PSK Demodulator System object,
H, and returns Y. Input X must be a scalar or a column vector with double- or single-
precision data type. Depending on the “BitOutput” property value, output Y can be
integer or bit valued.

Y = step(H,X,VAR) uses soft decision demodulation and noise variance VAR. This
syntax applies when you set the “BitOutput” property to true, the “DecisionMethod”
property to Approximate log-likelihood ratio or Log-likelihood ratio, and
the “VarianceSource” property to Input port. The data type of input VAR must be
double or single precision.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

 comm.gpu.PSKModulator System object

3-791

comm.gpu.PSKModulator System object
Package: comm

Modulate using M-ary PSK method with GPU

Description
The GPU PSKModulator object modulates a signal using the M-ary phase shift keying
method implemented on a graphics processing unit (GPU). The input is a baseband
representation of the modulated signal. The input and output for this object are discrete-
time signals. This object accepts a scalar-valued or column vector input signal.

Note: To use this object, you must install a Parallel Computing Toolbox license and
have access to an appropriate GPU. For more about GPUs, see “GPU Computing” in the
Parallel Computing Toolbox documentation.

A GPU-based System object accepts typical MATLAB arrays or objects that you create
using the gpuArray class as an input to the step method. GPU-based System objects
support input signals with double- or single-precision data types. The output signal
inherits its datatype from the input signal.

• If the input signal is a MATLAB array, then the output signal is also a MATLAB
array. In this case, the System object handles data transfer between the CPU and
GPU.

• If the input signal is a gpuArray, then the output signal is also a gpuArray. In this
case, the data remains on the GPU. Therefore, when the object is given a gpuArray,
calculations take place entirely on the GPU and no data transfer occurs. Invoking the
step method with gpuArray arguments provides increased performance by reducing
simulation time. For more information, see “Establish Arrays on a GPU” in the
Parallel Computing Toolbox documentation.

To modulate a signal using phase shift keying:

1 Define and set up your PSK modulator object. See “Construction” on page 3-792.
2 Call step to modulate the signal according to the properties of

comm.gpu.PSKModulator. The behavior of step is specific to each object in the
toolbox.

3 Alphabetical List

3-792

Construction

H = comm.gpu.PSKModulator returns a GPU-based demodulator System object, H.
This object modulates the input signal using the M-ary phase shift keying (M-PSK)
method with soft decision using the approximate log-likelihood ratio algorithm.

H = comm.gpu.PSKModulator(Name,Value) creates a GPU-based M-PSK
modulator object, H, with the specified property Name set to the specified
Value. You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN)

H = comm.gpu.PSKModulator(M,PHASE,Name,Value) creates a GPU-based M-PSK
modulator object, H, with the ModulationOrder property set to M, the PhaseOffset
property set to PHASE and other specified property Names set to the specified Values. M
and PHASE are value-only arguments. To specify a value-only argument, you must also
specify all preceding value-only arguments. You can specify name-value pair arguments
in any order.

Properties

ModulationOrder

Number of points in signal constellation

Specify the number of points in the signal constellation as a positive, integer scalar. The
default is 8.

PhaseOffset

Phase of zeroth point of constellation

Specify the phase offset of the zeroth point of the constellation, in radians, as a real
scalar. The default is π/8.

BitInput

Assume bit inputs

Specify whether the input is bits or integers. The default is false. When you set this
property to true, the step method input must be a column vector of bit values whose
length is an integer multiple of log2(“ModulationOrder”). This vector contains bit

 comm.gpu.PSKModulator System object

3-793

representations of integers between 0 and “ModulationOrder”-1. The input data
type can be numeric or logical. When you set the “BitInput” property to false, the
step method input must be a column vector of integer symbol values between 0 and
“ModulationOrder”-1. The data type of the input must be numeric.

SymbolMapping

Constellation encoding

Specify how the object maps an integer or group of log2(“ModulationOrder”) bits to
the corresponding symbol as one of Binary | Gray | Custom. The default is Gray.
When you set this property to Gray, the object uses a Gray-encoded signal constellation.
When you set this property to Binary, the integer m (0 ≤ m ≤ ModulationOrder-1)
maps to the complex value exp(j*PhaseOffset + j*2*pi*m/ModulationOrder). When
you set this property to Custom, the object uses the signal constellation defined in the
“CustomSymbolMapping” property.

CustomSymbolMapping

Custom constellation encoding

Specify a custom constellation symbol mapping vector. This property must be a row or
column vector of size ModulationOrder with unique integer values in the range [0,
ModulationOrder-1]. The values must be of data type double. The first element of
this vector corresponds to the constellation point at an angle of 0 + PhaseOffset, with
subsequent elements running counterclockwise. The last element corresponds to the
constellation point at an angle of -π/“ModulationOrder” + PhaseOffset. This property
applies when you set the SymbolMapping property to Custom. The default is 0:7.

OutputDataType

Data type of output

Specify the output data type as one of double | single. The default is double.

Methods

clone
Create PSK Modulator object with same
property values

3 Alphabetical List

3-794

constellation
Calculate or plot ideal signal constellation

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

step
Modulate using M-ary PSK method with
GPU

Algorithm

The GPU PSK Modulator System object supports floating-point and integer input data
types. This object uses the same algorithm as the comm.PSKModulator System object.
See the Algorithms section of the comm.PSKModulator help page for details.

Examples

Modulate data using 16-PSK modulation and then visualize the data using a scatter plot.

 % Create binary data for 24, 4-bit symbols

 data = randi([0 1],96,1);

 % Create a 16-PSK modulator System object with bits as inputs

 % and Gray-coded signal constellation

 hModulator = comm.gpu.PSKModulator(16,'BitInput',true);

 % Change the phase offset to pi/16

 hModulator.PhaseOffset = pi/16;

 % Modulate and plot the data

 modData = step(hModulator, data);

 scatterplot(modData)

See Also
comm.PSKDemodulator

 clone

3-795

clone
System object: comm.gpu.PSKModulator
Package: comm

Create PSK Modulator object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a GPU PSK Modulator object C, with the same property values
as H. The clone method creates a new unlocked object with uninitialized states.

The clone method creates an instance of an object. The property values, but not internal
states, are copied into the new instance of the object.

3 Alphabetical List

3-796

constellation

System object: comm.gpu.PSKModulator
Package: comm

Calculate or plot ideal signal constellation

Syntax

y = constellation(h)

constellation(h)

Description

y = constellation(h) returns the numerical values of the constellation.

constellation(h) generates a constellation plot for the object.

Examples

Calculate Ideal Signal Constellation for comm.gpu.PSKModulator

Create a comm.gpu.PSKModulator System object, and then calculate its ideal signal
constellation.

Create a comm.gpu.PSKModulator System object by entering the following at the
MATLAB command line:

h = comm.gpu.PSKModulator

Calculate and display the ideal signal constellation by calling the constellation
method.

 constellation

3-797

a = constellation(h)

Plot Ideal Signal Constellation for comm.gpu.PSKModulator

Create a comm.gpu.PSKModulator System object, and then plot the ideal signal
constellation.

Create a comm.gpu.PSKModulator System object by entering the following at the
MATLAB command line:

h = comm.gpu.PSKModulator

Plot the ideal signal constellation by calling the constellation method.

constellation(h)

3 Alphabetical List

3-798

isLocked
System object: comm.gpu.PSKModulator
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the GPU PSK Modulator System
object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

 release

3-799

release
System object: comm.gpu.PSKModulator
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

3 Alphabetical List

3-800

step
Modulate using M-ary PSK method with GPU

Syntax

Y = step(H,X)

Description

Y = step(H,X) modulates the input data, X, using the GPU-based PSK modulator
System object, H. The object returns the baseband modulated output Y. Depending upon
the value of the “BitInput” property, input X can be an integer or bit-valued column
vector with numeric or logical data types.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

 comm.gpu.TurboDecoder class

3-801

comm.gpu.TurboDecoder class
Package: comm.gpu

Decode input signal using parallel concatenation decoding with GPU

Description
The GPU Turbo Decoder System object decodes the input signal using a parallel
concatenated decoding scheme. This scheme uses the a-posteriori probability (APP)
decoder as the constituent decoder. Both constituent decoders use the same trellis
structure and algorithm.

Note: To use this object, you must install a Parallel Computing Toolbox license and
have access to an appropriate GPU. For more about GPUs, see “GPU Computing” in the
Parallel Computing Toolbox documentation.

A GPU-based System object accepts typical MATLAB arrays or objects that you create
using the gpuArray class as an input to the step method. GPU-based System objects
support input signals with double- or single-precision data types. The output signal
inherits its datatype from the input signal.

• If the input signal is a MATLAB array, then the output signal is also a MATLAB
array. In this case, the System object handles data transfer between the CPU and
GPU.

• If the input signal is a gpuArray, then the output signal is also a gpuArray. In this
case, the data remains on the GPU. Therefore, when the object is given a gpuArray,
calculations take place entirely on the GPU and no data transfer occurs. Invoking the
step method with gpuArray arguments provides increased performance by reducing
simulation time. For more information, see “Establish Arrays on a GPU” in the
Parallel Computing Toolbox documentation.

To decode an input signal using a turbo decoding scheme:

1 Define and set up your turbo decoder object. See “Construction” on page 3-802.
2 Call step to decode a binary signal according to the properties of

comm.gpu.TurboDecoder. The behavior of step is specific to each object in the
toolbox.

3 Alphabetical List

3-802

Construction

H = comm.gpu.TurboDecoder creates a GPU-based turbo decoder System object, H.
This object uses the a-posteriori probability (APP) constituent decoder to iteratively
decode the parallel-concatenated convolutionally encoded input data.

H = comm.gpu.TurboDecoder(Name, Value) creates a GPU-based turbo decoder
object, H, with the specified property name set to the specified value. Name must appear
inside single quotes (''). You can specify several name-value pair arguments in any
order as Name1,Value1,…,NameN,ValueN.

H = comm.gpu.TurboDecoder(TRELLIS, INTERLVRINDICES, NUMITER) creates a
GPU-based turbo decoder object, H. In this object, the TrellisStructure property is
set to TRELLIS, the InterleaverIndices property set to INTERLVRINDICES, and
the NumIterations property set to NUMITER.

Properties

TrellisStructure

Trellis structure of constituent convolutional code

Specify the trellis as a MATLAB structure that contains the trellis description of the
constituent convolutional code. The default is the result of poly2trellis(4, [13
15], 13). Use the istrellis function to check if a structure is a valid trellis structure.

InterleaverIndicesSource

Source of interleaver indices

Specify the source of the interleaver indices. The only valid setting for this property is
Property.

InterleaverIndices

Interleaver indices

Specify the mapping used to permute the input bits at the encoder as a column vector
of integers. The default is (64:-1:1).'.. This mapping is a vector with the number of
elements equal to the length, L, of the output of the step method. Each element must be
an integer between 1 and L, with no repeated values.

 comm.gpu.TurboDecoder class

3-803

Algorithm

Decoding algorithm

Specify the decoding algorithm. This object implements true a posteriori probability
decoding. The only valid setting is True APP.

NumScalingBits

Number of scaling bits

The GPU version of the Turbo Decoder does not use this property.

NumIterations

Number of decoding iterations

Specify the number of decoding iterations used for each call to the step method. The
default is 6. The object iterates and provides updates to the log-likelihood ratios (LLR) of
the uncoded output bits. The output of the step method is the hard-decision output of the
final LLR update.

NumFrames

Number of independent frames present in the input and output data vectors.

Specify the number of independent frames that a single data input/output vector
contains. The default value of this property is 1. This object segments the input vector
into NumFrames segments and decodes the segments independently. The output contains
NumFrames decoded segments.

Methods

clone
Create Turbo Decoder object with same
property values

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

3 Alphabetical List

3-804

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

reset
Reset states of the turbo decoder object

step
Decode input signal using parallel
concatenated decoding scheme

Examples

Transmit and decode using turbo coding

Transmit turbo-encoded blocks of data over a BPSK-modulated AWGN channel. Then,
decode using an iterative turbo decoder and display errors.

Define a noise variable, establish a frame length of 256, and use the random stream
property so that the results are repeatable.

noiseVar = 4; frmLen = 256;

s = RandStream('mt19937ar', 'Seed', 11);

intrlvrIndices = randperm(s, frmLen);

Create a Turbo Encoder System object. The trellis structure for the constituent
convolutional code is poly2trellis(4, [13 15 17], 13). The InterleaverIndices property
specifies the mapping the object uses to permute the input bits at the encoder as a
column vector of integers.

hTEnc = comm.TurboEncoder('TrellisStructure', poly2trellis(4, ...

 [13 15 17], 13), 'InterleaverIndices', intrlvrIndices);

Create a BPSK Modulator System object.

hMod = comm.BPSKModulator;

Create an AWGN Channel System object.

 comm.gpu.TurboDecoder class

3-805

hChan = comm.AWGNChannel('NoiseMethod', 'Variance', 'Variance', ...

 noiseVar);

Create a GPU-Based Turbo Decoder System object. The trellis structure
for the constituent convolutional code is poly2trellis(4, [13 15 17], 13). The
InterleaverIndicies property specifies the mapping the object uses to permute the
input bits at the encoder as a column vector of integers.

hTDec = comm.gpu.TurboDecoder('TrellisStructure', poly2trellis(4, ...

 [13 15 17], 13), 'InterleaverIndices', intrlvrIndices, ...

 'NumIterations', 4);

Create an Error Rate System object.

hError = comm.ErrorRate;

Run the simulation by using the step method to process data.

for frmIdx = 1:8

 data = randi(s, [0 1], frmLen, 1);

 encodedData = step(hTEnc, data);

 modSignal = step(hMod, encodedData);

 receivedSignal = step(hChan, modSignal);

Convert the received signal to log-likelihood ratios for decoding.

receivedBits = step(hTDec, (-2/(noiseVar/2))*real(receivedSignal));

Compare original the data to the received data and then calculate the error rate results.

errorStats = step(hError, data, receivedBits);

end

fprintf('Error rate = %f\nNumber of errors = %d\nTotal bits = %d\n', ...

errorStats(1), errorStats(2), errorStats(3))

Algorithms

This object implements the inputs and outputs described on the Turbo Decoder block
reference page. The object properties correspond to the block parameters.

See Also
comm.TurboDecoder | comm.TurboEncoder

3 Alphabetical List

3-806

clone
Class: comm.gpu.TurboDecoder
Package: comm.gpu

Create Turbo Decoder object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a GPU Turbo Decoder object C, with the same property values
as H. The clone method creates a new unlocked object with uninitialized states.

The clone method creates an instance of an object. The property values, but not internal
states, are copied into the new instance of the object.

 getNumInputs

3-807

getNumInputs
Class: comm.gpu.TurboDecoder
Package: comm.gpu

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of
expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H)

The getNumInputs method returns a positive integer that is the number of expected
inputs (not counting the object itself) to the step method. This value will change if you
alter any properties that turn inputs on or off. You must call the step method with the
number of input arguments equal to the result of getNumInputs(H).

3 Alphabetical List

3-808

getNumOutputs
Class: comm.gpu.TurboDecoder
Package: comm.gpu

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

The getNumOutputs method returns a positive integer that is the number of outputs
from the step method. This value will change if you alter any properties that turn
outputs on or off.

 isLocked

3-809

isLocked
Class: comm.gpu.TurboDecoder
Package: comm.gpu

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

Description

TF = isLocked(H) returns the locked status, TF of the TurboDecoder System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

3 Alphabetical List

3-810

release
Class: comm.gpu.TurboDecoder
Package: comm.gpu

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 reset

3-811

reset
Class: comm.gpu.TurboDecoder
Package: comm.gpu

Reset states of the turbo decoder object

Syntax

reset(H)

Description

reset(H) resets the states of the GPU TurboDecoder object, H.

3 Alphabetical List

3-812

step
Class: comm.gpu.TurboDecoder
Package: comm.gpu

Decode input signal using parallel concatenated decoding scheme

Syntax

Y = step(H,X)

Description

Y = step(H,X) decodes the input data, X, using the parallel concatenated convolutional
coding scheme. You specify this scheme using the “TrellisStructure” and
InterleaverIndices properties. It returns the binary decoded data, Y. Both X and
Y are column vectors of double-precision data type. When the constituent convolutional
code represents a rate 1/N code, the step method sets the length of the output vector, Y,
to (M-2*numTails)/(2*N-1). M represents the input vector length and numTails is given
by log2(TrellisStructure.numStates)*N. The output length, L, is the same as the
length of the interleaver indices.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

 comm.gpu.ViterbiDecoder System object

3-813

comm.gpu.ViterbiDecoder System object
Package: comm

Decode convolutionally encoded data using Viterbi algorithm with GPU

Description

The GPU ViterbiDecoder System object decodes input symbols to produce binary
output symbols using a graphics processing unit (GPU). This object processes variable-
size signals; however, variable-size signals cannot be applied for erasure inputs.

Note: To use this object, you must install a Parallel Computing Toolbox license and
have access to an appropriate GPU. For more about GPUs, see “GPU Computing” in the
Parallel Computing Toolbox documentation.

A GPU-based System object accepts typical MATLAB arrays or objects that you create
using the gpuArray class as an input to the step method. GPU-based System objects
support input signals with double- or single-precision data types. The output signal
inherits its datatype from the input signal.

• If the input signal is a MATLAB array, then the output signal is also a MATLAB
array. In this case, the System object handles data transfer between the CPU and
GPU.

• If the input signal is a gpuArray, then the output signal is also a gpuArray. In this
case, the data remains on the GPU. Therefore, when the object is given a gpuArray,
calculations take place entirely on the GPU and no data transfer occurs. Invoking the
step method with gpuArray arguments provides increased performance by reducing
simulation time. For more information, see “Establish Arrays on a GPU” in the
Parallel Computing Toolbox documentation.

To decode input symbols and produce binary output symbols:

1 Define and set up your Viterbi decoder object. See “Construction” on page 3-814.
2 Call step to decode input symbols according to the properties of

comm.gpu.ViterbiDecoder. The behavior of step is specific to each object in the
toolbox.

3 Alphabetical List

3-814

Construction

H = comm.gpu.ViterbiDecoder creates a Viterbi decoder System object, H. This object
uses the Viterbi algorithm to decode convolutionally encoded input data.

H = comm.gpu.ViterbiDecoder(Name,Value) creates a Viterbi decoder object, H,
with the specified property Name set to the specified Value. You can specify additional
name-value pair arguments in any order as (Name1,Value1,...,NameN,ValueN.

H = comm.gpu.ViterbiDecoder(TRELLIS,Name,Value) creates a Viterbi decoder
object, H, with the TrellisStructure property set to TRELLIS, and other specified
property Names set to the specified Values.

Properties

TrellisStructure

Trellis structure of convolutional code

Specify the trellis as a MATLAB structure that contains the trellis description of the
convolutional code. Use the istrellis function to check if a structure is a valid trellis
structure. This object supports rate 1/2, 1/3 and 1/4 trellises from simple feedforward
encoders. The default value is the result of poly2trellis(7, [171 133]).

InputFormat

Input format

Specify the format of the input to the decoder as one of Unquantized | Hard | Soft.
The default is Unquantized.

When you set this property to Unquantized, the input must be a real vector of double
or single precision unquantized soft values. The object considers negative numbers to
be ones and positive numbers to be zeros. When you set this property to Hard, the input
must be a vector of hard decision values, which are zeros or ones. The data type of the
inputs can be double precision or single precision. When you set this property to Soft,
the input must be a vector of quantized soft values represented as integers between 0
and 2^SoftInputWordLength-1. The data type of the inputs can be double precision or
single precision.

 comm.gpu.ViterbiDecoder System object

3-815

SoftInputWordLength

Soft input word length

Specify the number of bits used to represent each quantized soft input value as a
positive, integer scalar. This property applies when you set the “InputFormat” property
to Soft. The default is 4 bits.

InvalidQuantizedInputAction

Action when input values are out of range

The only valid setting is Ignore which ignores out of range inputs.

TracebackDepth

Traceback depth

Specify the number of trellis branches used to construct each traceback path as a
positive, integer scalar less than or equal to 256. The traceback depth influences
the decoding accuracy and delay. The number of zero symbols that precede the
first decoded symbol in the output represent a decoding delay. When you set the
“TerminationMethod” property to Continuous, the decoding delay consists
of TracebackDepth zero symbols, or TracebackDepth zero bits for a rate 1/N
convolutional code. When you set the TerminationMethod property to Truncated or
Terminated, there is no output delay and TracebackDepth must be less than or equal
to the number of symbols in each input. If the code rate is 1/2, a typical traceback depth
value is about five times the constraint length of the code. The default is 34.

TerminationMethod

Termination method of encoded frame

Specify TerminationMethod as one of Continuous | Truncated | Terminated. The
default is Continuous. In Continuous mode, the object saves its internal state metric
at the end of each frame for use with the next frame. The object treats each traceback
path independently. Select Continuous mode when the input signal contains only one
symbol. In Truncated mode, the object treats each frame independently. The traceback
path starts at the state with the best metric and always ends in the all-zeros state. In
Terminated mode, the object treats each frame independently, and the traceback path
always starts and ends in the all-zeros state.

ResetInputPort

3 Alphabetical List

3-816

Enable decoder reset input

Set this property to true to enable an additional step method input. When the reset
input is a non-zero value, the object resets the internal states of the decoder to initial
conditions. This property applies when you set the “TerminationMethod” property to
Continuous. The default is false.

DelayedResetAction

Delay output reset

Delaying the output reset is not supported. The only valid setting is false.

PuncturePatternSource

Source of puncture pattern

Specify the source of the puncture pattern as one of None | Property. The default is
None. When you set this property to None the object assumes no puncturing. Set this
property to Property to decode punctured codewords based on a puncture pattern vector
specified via the “PuncturePattern” property.

PuncturePattern

Puncture pattern vector

Specify puncture pattern used to puncture the encoded data. The default is [1; 1;
0; 1; 0; 1]. The puncture pattern is a column vector of ones and zeros, where
the zeros indicate where to insert dummy bits. The puncture pattern must match
the puncture pattern used by the encoder. This property applies when you set the
“PuncturePatternSource” property to Property.

ErasuresInputPort

Enable erasures input

Erasures are not supported. The only valid setting is false.

OutputDataType

Data type of output

The only valid setting is Full precision which makes the output data type match the
input data type.

 comm.gpu.ViterbiDecoder System object

3-817

NumFrames

Number of independent frames present in the input and output data vectors.

Specify the number of independent frames contained in a single data input/output
vector. The input vector will be segmented into NumFrames segments and decoded
independently. The output will contain NumFrames decoded segments. The default value
of this property is 1. This property is applies when you set the “TerminationMethod” is
set to Terminated or Truncated.

Methods

clone
Create Viterbi Decoder object with same
property values

info
Display information about GPU-based
Viterbi Decoder object

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

reset
Reset states of the GPU-based Viterbi
Decoder modulator object

step
Decode convolutionally encoded data using
Viterbi algorithm

Examples

Transmit a convolutionally encoded 8-DPSK-modulated bit stream through an AWGN
channel. Then, demodulate, decode using a Viterbi decoder, and count errors.

3 Alphabetical List

3-818

hConEnc = comm.ConvolutionalEncoder;

hMod = comm.DPSKModulator('BitInput',true);

hChan = comm.gpu.AWGNChannel('NoiseMethod', ...

 'Signal to noise ratio (SNR)', 'SNR',10);

hDemod = comm.DPSKDemodulator('BitOutput',true);

hDec = comm.gpu.ViterbiDecoder('InputFormat','Hard');

% Delay in bits is TracebackDepth times the number of

% bits per symbol

 delay = hDec.TracebackDepth*...

 log2(hDec.TrellisStructure.numInputSymbols);

hError = comm.ErrorRate('ComputationDelay',3,'ReceiveDelay',delay);

 for counter = 1:20

 data = randi([0 1],30,1);

 encodedData = step(hConEnc, data);

 modSignal = step(hMod, encodedData);

 receivedSignal = step(hChan, modSignal);

 demodSignal = step(hDemod, receivedSignal);

 receivedBits = step(hDec, demodSignal);

 errorStats = step(hError, data, receivedBits);

 end

 fprintf('Error rate = %f\nNumber of errors = %d\n', ...

 errorStats(1), errorStats(2))

References

[1] Fettweis, G., H. Meyr. "Feedforward Architecture for Parallel Viterbi Decoding,”
Journal of VLSI Signal Processing, Vol. 3, June 1991.

See Also
comm.ViterbiDecoder

 clone

3-819

clone
System object: comm.gpu.ViterbiDecoder
Package: comm

Create Viterbi Decoder object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a GPU Viterbi Decoder object C, with the same property
values as H. The clone method creates a new unlocked object with uninitialized states.

The clone method creates an instance of an object. The property values, but not internal
states, are copied into the new instance of the object.

3 Alphabetical List

3-820

info
System object: comm.gpu.ViterbiDecoder
Package: comm

Display information about GPU-based Viterbi Decoder object

Syntax

S = info(OBJ)

Description

S = info(OBJ) returns a structure, S, containing characteristic information for the
System object, OBJ. If OBJ has no characteristic information, S is empty. If OBJ has
characteristic information, the fields of S vary depending on OBJ. For object specific
details, refer to the help on the infoImpl method of that object.

 isLocked

3-821

isLocked
System object: comm.gpu.ViterbiDecoder
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the ACPR System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

3 Alphabetical List

3-822

release
System object: comm.gpu.ViterbiDecoder
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 reset

3-823

reset
System object: comm.gpu.ViterbiDecoder
Package: comm

Reset states of the GPU-based Viterbi Decoder modulator object

Syntax

reset(H)

Description

reset(H) resets the states of the GPU-based ViterbiDecoder object, H.

3 Alphabetical List

3-824

step
System object: comm.gpu.ViterbiDecoder
Package: comm

Decode convolutionally encoded data using Viterbi algorithm

Syntax

Y = step(H,X)

Y = step(H,X,R)

Description

Y = step(H,X) decodes encoded data, X, using the Viterbi algorithm and returns
Y. X, must be a column vector with data type and values that depend on how you set
the InputFormat property. If the convolutional code uses an alphabet of 2^N possible
symbols, the length of the input vector, X, must be L*N for some positive integer L.
Similarly, if the decoded data uses an alphabet of 2^K possible output symbols, the
length of the output vector, Y, is L*K.

Y = step(H,X,R) resets the internal states of the decoder when you input a non-zero
reset signal, R. R must be a double precision, single precision or logical scalar. This
syntax applies when you set the TerminationMethod property to Continuous and the
ResetInputPort property to true.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

 comm.HadamardCode System object

3-825

comm.HadamardCode System object
Package: comm

Generate Hadamard code

Description

The HadamardCode object generates a Hadamard code from a Hadamard matrix,
whose rows form an orthogonal set of codes. You can use orthogonal codes for spreading
in communication systems in which the receiver is perfectly synchronized with the
transmitter. In these systems, the despreading operation is ideal, because the codes
decorrelate completely.

To generate a Hadamard code:

1 Define and set up your Hadamard code object. See “Construction” on page 3-825.
2 Call step to generate a Hadamard according to the properties of

comm.HadamardCode. The behavior of step is specific to each object in the toolbox.

Construction

H = comm.HadamardCode creates a Hadamard code generator System object, H. This
object generates Hadamard codes from a set of orthogonal codes.

H = comm.HadamardCode(Name,Value) creates a Hadamard code generator object, H,
with each specified property set to the specified value. You can specify additional name-
value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties

Length

Length of generated code

Specify the length of the generated code as a numeric, integer scalar value with a power
of two. The default is 64.

3 Alphabetical List

3-826

Index

Row index of Hadamard matrix

Specify the row index of the Hadamard matrix as a numeric, integer scalar value in the
range [0, 1, ... , N-1]. N is the value of the “Length” property. The default is 60.
An N ¥ N Hadamard matrix, denoted as P(N), is defined recursively as follows: P(1) =
[1] P(2N) = [P(N) P(N); P(N) –P(N)] The NxN Hadamard matrix has the property that
P(N) ¥ P(N)' = N ¥ eye(N). The step method outputs code samples from the row of the
Hadamard matrix that you specify in this property.

When you set this property to an integer k, the output code has exactly k zero crossings,
for k = 0, 1, ... , N–1.

SamplesPerFrame

Number of output samples per frame

Specify the number of Hadamard code samples that the step method outputs as a
numeric, positive, integer scalar value. The default is 1.

When you set this property to a value of M, the step method outputs M samples of
a Hadamard code of length N. N equals the length of the code that you specify in the
“Length” property.

OutputDataType

Data type of output

Specify the output data type as one of double | int8. The default is double.

Methods

clone
Create Hadamard code generator object
with same property values

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

 comm.HadamardCode System object

3-827

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

reset
Reset states of Hadamard code generator
object

step
Generate Hadamard code

Examples

Generate 10 samples of a Hadamard code sequence with a length of 64.

 hHCode = comm.HadamardCode('SamplesPerFrame', 10);

 seq = step(hHCode)

Algorithms

This object implements the algorithm, inputs, and outputs described on the Hadamard
Code Generator block reference page. The object properties correspond to the block
parameters, except:

• The object does not have a property to select frame based outputs.
• The object does not have a property that corresponds to the Sample time parameter.

See Also
comm.OVSFCode | comm.WalshCode

3 Alphabetical List

3-828

clone
System object: comm.HadamardCode
Package: comm

Create Hadamard code generator object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a HadamardCode object C, with the same property values as H.
The clone method creates a new unlocked object with uninitialized states.

 getNumInputs

3-829

getNumInputs
System object: comm.HadamardCode
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of
expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H)

3 Alphabetical List

3-830

getNumOutputs
System object: comm.HadamardCode
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

 isLocked

3-831

isLocked
System object: comm.HadamardCode
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the HadamardCode System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

3 Alphabetical List

3-832

release
System object: comm.HadamardCode
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H)Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 reset

3-833

reset
System object: comm.HadamardCode
Package: comm

Reset states of Hadamard code generator object

Syntax

reset(H)

Description

reset(H) resets the states of the HadamardCode object, H.

3 Alphabetical List

3-834

step
System object: comm.HadamardCode
Package: comm

Generate Hadamard code

Syntax

Y = step(H)

Description

Y = step(H) outputs a frame of the Hadamard code in column vector Y. Specify the
frame length with the SamplesPerFrame property. The Hadamard code corresponds
to one of the rows of an NxN Hadamard matrix, where N is a nonnegative power of 2,
which you specify in the Length property. Use the Index property to choose the row of
the Hadamard matrix. The step method outputs the code in a bi-polar format with 0 and
1 mapped to 1 and -1, respectively.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

 comm.HDLCRCDetector System object

3-835

comm.HDLCRCDetector System object
Package: comm

Detect errors in input data using HDL-optimized CRC

Description

This hardware-friendly cyclic redundancy code (CRC) detector System object computes
checksums for its entire input frame. The HDLCRCDetector System object is optimized
for HDL code generation. Instead of frame processing, the System object processes data
at the streaming mode. Control signals are added at both input and output for easy data
synchronization.

To compute checksums optimized for HDL code generation:

1 Define and set up your HDL CRC detector object. See “Construction” on page
3-835.

2 Call step to compute checksums according to the properties of
comm.HDLCRCDetector. The behavior of step is specific to each object in the
toolbox.

Construction

H = comm.HDLCRCDetector creates an HDL-optimized CRC detector System object, H,
that detects errors in the input data according to a specified generator polynomial.

H = comm.HDLCRCDetector(Name,Value,) creates an HDL-optimized CRC detector
System object, H, with additional options specified by one or more Name,Value pair
arguments, where Name is a property name and Value is the corresponding value.
Name must appear inside single quotes (''). You can specify several name-value pair
arguments in any order as Name1,Value1,...,NameN,ValueN.

H = comm.HDLCRCDetector(POLY,Name,Value) creates an HDL-optimized CRC
detector System object, H, with the Polynomial property set to POLY, and the other
specified properties set to the specified values.

3 Alphabetical List

3-836

Input Arguments

POLY

Sets Polynomial property to POLY at System object construction

Default:

Properties

Polynomial

Specify the generator polynomial as a binary row vector, with coefficients in descending
order of powers. If you set this property to a binary vector, its length must be equal to the
degree of the polynomial plus 1. The default value is [1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1].

InitialState

Specify the initial conditions of the shift register as a binary, double or single precision
data type scalar or vector. The vector length is the degree of the generator polynomial
that you specify in the Polynomial property. When you specify initial conditions as a
scalar, the object expands the value to a row vector of length equal to the degree of the
generator polynomial. The default value is 0.

DirectMethod

A logical quantity that specifies whether the object uses the direct algorithm for CRC
checksum calculations. The default value is false.

Refer to “Cyclic Redundancy Check Codes” to learn about the direct and non-direct
algorithms.

ReflectInput

A logical quantity that specifies whether the input data should be flipped on a bytewise
basis prior to entering the shift register. The default value is false.

ReflectCRCChecksum

A logical quantity that specifies whether the output CRC checksum should be flipped
around its center after the input data is completely through the shift register. The
default value is false.

 comm.HDLCRCDetector System object

3-837

FinalXORValue

The value with which the CRC checksum is to be XORed just prior to being appended to
the input data. This property can be specified as a binary, double or single precision data
type scalar or vector. The vector length is the degree of the generator polynomial that you
specify in the Polynomial property. When you specify Final XOR Value as a scalar, the
object expands the value to a row vector of length equal to the degree of the generator
polynomial. The default value is 0.

Methods

clone
Create HDLCRCDetector System object
with same property values

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics change

reset
Reset states of HDL CRC detector object

step
Generate CRC checksums for input
message based on control signals and
appends checksums to output message

Examples

Encode and Decode Using HDLCRC

Encode and decode a signal using the HDL-optimized CRC generator and detector.

% Construct Generator and Detector with CRC length 16 and default

% polynomial.

3 Alphabetical List

3-838

hGen = comm.HDLCRCGenerator;

hDet = comm.HDLCRCDetector;

% Assign 32 bit data to be encoded, in two 16 by 1 columns.

msg = randi([0 1],16,2);

% Run for 12 steps to accommodate the latency of both objects.

numSteps = 12;

% Assign control signals for all steps. The first two samples are the valid

% data, and the remainder are processing latency.

startIn = logical([1 0 0 0 0 0 0 0 0 0 0 0]);

endIn = logical([0 1 0 0 0 0 0 0 0 0 0 0]);

validIn = logical([1 1 0 0 0 0 0 0 0 0 0 0]);

Assign random input to the HDLCRCGenerator System object™ while it is processing
msg. The random data is not encoded because the input valid signal is zero for steps 3-10.

randIn = randi([0, 1],16,numSteps-2);

dataIn = [msg randIn];

Run HDLCRCGenerator.

% Output data: dataOutGen

% Output Control signals: startOutGen, endOutGen, validOutGen

 for i = 1: numSteps

 [dataOutGen(:,i),startOutGen(i),endOutGen(i),validOutGen(i)] = step(hGen,...

 dataIn(:,i),startIn(i),endIn(i),validIn(i));

 end

% The encoded message is the original message plus a 16 bit checksum.

Add noise by flipping a bit in the message.

dataOutNoise = dataOutGen;

dataOutNoise(2,4) = ~dataOutNoise(2,4);

Run HDLCRCDetector to decode the message.

% Output data: dataOut

% Output Control signals: startOut, endOut, validOut,err

for i = 1:numSteps

[dataOut(:,i), startOut(i),endOut(i), validOut(i),err(i)] = step(hDet,...

 dataOutNoise(:,i),startOutGen(i),endOutGen(i),validOutGen(i));

end

% The output of the Detector is the input message with the checksum

% removed. If the input checksum was not correct, the err flag is set with

% the last word of the output.

 comm.HDLCRCDetector System object

3-839

Use Logic Analyzer to view the input and output signals.

channels = {'validIn','startIn','endIn',...

 {'dataIn','Radix','Hexadecimal'},...

 'validOutGen','startOutGen','endOutGen',...

 {'dataOutGen','Radix','Hexadecimal'},...

 {'dataOutNoise','Radix','Hexadecimal'},...

 'validOut','startOut','endOut','err',...

 {'dataOut','Radix','Hexadecimal'}};

h = dsp.LogicAnalyzer('Name','CRC Encode and Decode','NumInputPorts',length(channels),...

 'BackgroundColor','Black','DisplayChannelHeight',2);

 for ii = 1:length(channels)

 if iscell(channels{ii})

 % Display data signals as hexadecimal integers

 c = channels{ii};

 addWave(h, 'InputChannel',ii,'Name',c{1}, c{2}, c{3});

 dat2 = uint16(bi2de(eval(c{1})')); % convert binary column vector to integer

 chanData{ii} = squeeze(dat2);

 else

 addWave(h, 'InputChannel',ii,'Name',channels{ii});

 chanData{ii} = squeeze(eval(channels{ii})');

 end

 end

 step(h, chanData{:});

3 Alphabetical List

3-840

Algorithms

Timing diagram for HDL-optimized CRC Detector

 comm.HDLCRCDetector System object

3-841

Initial Delay

The HDLCRCGenerator System object introduces a latency on the output. This latency
can be computed with the following equation:

initialdelay = 3 * CRC length/input data width + 2

See Also
comm.CRCDetector | comm.HDLCRCGenerator | General CRC Syndrome Detector
HDL Optimized

3 Alphabetical List

3-842

clone
System object: comm.HDLCRCDetector
Package: comm

Create HDLCRCDetector System object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates another instance of the HDLCRCDetector System object, H,
with the same property values. The clone method creates a new unlocked object with
uninitialized states.

Input Arguments

H

HDL CRC Detector System object

Default:

Output Arguments

C

New instance of the HDLCRCDetector System object, H, with the same property values.
The new unlocked object contains uninitialized states.

See Also
comm.HDLCRCDetector | comm.HDLCRCDetector.isLocked |
comm.HDLCRCDetector.release | comm.HDLCRCDetector.reset |
comm.HDLCRCDetector.step

 isLocked

3-843

isLocked
System object: comm.HDLCRCDetector
Package: comm

Locked status for input attributes and nontunable properties

Syntax

L = isLocked(H)

Description

L = isLocked(H) returns the locked status, L, of the HDL CRC Detector System object,
H.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

Input Arguments

H

HDL CRC Detector System object

Default:

Output Arguments

L

Logical value. Either 1 (true) or 0 (false).

3 Alphabetical List

3-844

See Also
comm.HDLCRCDetector | comm.HDLCRCDetector.clone |
comm.HDLCRCDetector.release | comm.HDLCRCDetector.reset |
comm.HDLCRCGenerator.step

 release

3-845

release
System object: comm.HDLCRCDetector
Package: comm

Allow property value and input characteristics change

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) of the HDL CRC Detector System object, H, and allows all its properties and
input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

Input Arguments

H

Instance of HDL CRC Detector System object

Default:

See Also
comm.HDLCRCDetector | comm.HDLCRCDetector.clone |
comm.HDLCRCDetector.isLocked | comm.HDLCRCDetector.reset |
comm.HDLCRCDetector.step

3 Alphabetical List

3-846

reset
System object: comm.HDLCRCDetector
Package: comm

Reset states of HDL CRC detector object

Syntax

reset(H)

Description

reset(H) resets the internal states of the HDL CRC Detector System object, H, to their
initial values

Input Arguments

H

Instance of HDL CRC Detector System object

Default:

See Also
comm.HDLCRCDetector | comm.HDLCRCDetector.clone |
comm.HDLCRCDetector.isLocked | comm.HDLCRCDetector.release |
comm.HDLCRCDetector.step

 step

3-847

step

System object: comm.HDLCRCDetector
Package: comm

Generate CRC checksums for input message based on control signals and appends
checksums to output message

Syntax

[Y,startOut,endOut,validOut,err] = step(H,X,startIn,endIn,validIn)

Description

[Y,startOut,endOut,validOut,err] = step(H,X,startIn,endIn,validIn)

computes CRC checksums for an input message X based on the control signals and
compares the computed checksum with input checksum. The output err is high if the two
checksums are not equal.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

Input Arguments

H

HDLCRCDetector System object

Default:

3 Alphabetical List

3-848

X

Input message

• Must be a binary column vector or a scalar integer representing several bits. That is,
vector input [0,0,0,1,0,0,1,1] is equivalent to uint8 input 19.

• If the input is a vector the data type can be double or logical. If the input is a scalar
the data type can be unsigned integer (uint8/16/32) or unsigned fixed-point (fi object)
with 0 fractional bits (fi([],0,N,0)).

• X can be part or all of the message to be encoded.
• The length of X should be less than or equal to the CRC length, and the CRC length

should be divisible by the length of X.
• The CRC length is the order of the polynomial that you specify in the Polynomial

property.

startIn

Indicates the start of an input message. startIn is scalar with logical data type.

endIn

Indicates the end of an input message. endIn is scalar with logical data type.

validIn

When validIn is high, input message is processed for CRC checksum computation.
validIn is scalar with logical data type.

Output Arguments

Y

Object output, consisting of X + checksum plus the delay. Output Y has the same length
and data type as input X.

startOut

Indicates the start of an output message. startOut is scalar with logical data type.

 step

3-849

endOut

Indicates the end of an output message. endOut is scalar with logical data type.

validOut

Indicates the validation of output message plus CRC checksums.validOut is scalar with
logical data type.

See Also
comm.HDLCRCDetector | comm.HDLCRCDetector.clone |
comm.HDLCRCDetector.isLocked | comm.HDLCRCDetector.release |
comm.HDLCRCDetector.reset

3 Alphabetical List

3-850

comm.HDLCRCGenerator System object
Package: comm

Generate HDL-optimized CRC code bits and append to input data

Description

This hardware-friendly CRC Generator System object, like the CRC Generator System
object, generates cyclic redundancy code (CRC) bits. However, the HDL CRC Generator
System object is optimized for HDL code generation. Instead of frame processing, the
System object processes data at the streaming mode. Control signals are added at both
input and output for easy data synchronization.

To generate cyclic redundancy code bits optimized for HDL code generation:

1 Define and set up your HDL CRC generator object. See “Construction” on page
3-850.

2 Call step to generate checksums according to the properties of
comm.HDLCRCGenerator. The behavior of step is specific to each object in the
toolbox.

Construction

H=comm.HDLCRCGenerator creates an HDL-optimized cyclic redundancy code (CRC)
generator System object, H. This object generates CRC bits according to a specified
generator polynomial and appends them to the input data.

H = comm.HDLCRCGenerator(Name,Value) creates an HDL-optimized CRC generator
System object, H, with additional options specified by one or more Name,Value pair
arguments, where Name is a property name and Value is the corresponding value.
Name must appear inside single quotes (''). You can specify several name-value pair
arguments in any order as Name1,Value1,...,NameN,ValueN.

H = comm.HDLCRCGenerator(POLY,Name,Value) creates an HDL-optimized CRC
generator System object, H, with the Polynomial property set to POLY, and the other
specified properties set to the specified values.

 comm.HDLCRCGenerator System object

3-851

Input Arguments

POLY

Sets Polynomial property to POLY at System object construction

Default:

Properties

Polynomial

Specify the generator polynomial as a binary row vector, with coefficients in descending
order of powers. If you set this property to a binary vector, its length must be equal to the
degree of the polynomial plus 1. The default value is [1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1].

InitialState

Specify the initial conditions of the shift register as a binary, double or single precision
data type scalar or vector. The vector length is the degree of the generator polynomial
that you specify in the Polynomial property. When you specify initial conditions as a
scalar, the object expands the value to a row vector of length equal to the degree of the
generator polynomial. The default value is 0.

DirectMethod

A logical quantity that specifies whether the object uses the direct algorithm for CRC
checksum calculations. The default value is false.

Refer to “Cyclic Redundancy Check Codes” to learn about the direct and non-direct
algorithms.

ReflectInput

A logical quantity that specifies whether the input data should be flipped on a bytewise
basis prior to entering the shift register. The default value is false.

ReflectCRCChecksum

A logical quantity that specifies whether the output CRC checksum should be flipped
around its center after the input data is completely through the shift register. The
default value is false.

3 Alphabetical List

3-852

FinalXORValue

The value with which the CRC checksum is to be XORed just prior to being appended to
the input data. This property can be specified as a binary, double or single precision data
type scalar or vector. The vector length is the degree of the generator polynomial that you
specify in the Polynomial property. When you specify Final XOR Value as a scalar, the
object expands the value to a row vector of length equal to the degree of the generator
polynomial. The default value is 0.

Methods

clone
Create HDLCRCGenerator System object
with same property values

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics change

reset
Reset states of CRC generator object

step
Generate CRC checksums for input
message based on control signals and
appends checksums to output message

Examples

Encode and Decode Using HDLCRC

Encode and decode a signal using the HDL-optimized CRC generator and detector.

% Construct Generator and Detector with CRC length 16 and default

% polynomial.

 comm.HDLCRCGenerator System object

3-853

hGen = comm.HDLCRCGenerator;

hDet = comm.HDLCRCDetector;

% Assign 32 bit data to be encoded, in two 16 by 1 columns.

msg = randi([0 1],16,2);

% Run for 12 steps to accommodate the latency of both objects.

numSteps = 12;

% Assign control signals for all steps. The first two samples are the valid

% data, and the remainder are processing latency.

startIn = logical([1 0 0 0 0 0 0 0 0 0 0 0]);

endIn = logical([0 1 0 0 0 0 0 0 0 0 0 0]);

validIn = logical([1 1 0 0 0 0 0 0 0 0 0 0]);

Assign random input to the HDLCRCGenerator System object™ while it is processing
msg. The random data is not encoded because the input valid signal is zero for steps 3-10.

randIn = randi([0, 1],16,numSteps-2);

dataIn = [msg randIn];

Run HDLCRCGenerator.

% Output data: dataOutGen

% Output Control signals: startOutGen, endOutGen, validOutGen

 for i = 1: numSteps

 [dataOutGen(:,i),startOutGen(i),endOutGen(i),validOutGen(i)] = step(hGen,...

 dataIn(:,i),startIn(i),endIn(i),validIn(i));

 end

% The encoded message is the original message plus a 16 bit checksum.

Add noise by flipping a bit in the message.

dataOutNoise = dataOutGen;

dataOutNoise(2,4) = ~dataOutNoise(2,4);

Run HDLCRCDetector to decode the message.

% Output data: dataOut

% Output Control signals: startOut, endOut, validOut,err

for i = 1:numSteps

[dataOut(:,i), startOut(i),endOut(i), validOut(i),err(i)] = step(hDet,...

 dataOutNoise(:,i),startOutGen(i),endOutGen(i),validOutGen(i));

end

% The output of the Detector is the input message with the checksum

% removed. If the input checksum was not correct, the err flag is set with

% the last word of the output.

3 Alphabetical List

3-854

Use Logic Analyzer to view the input and output signals.

channels = {'validIn','startIn','endIn',...

 {'dataIn','Radix','Hexadecimal'},...

 'validOutGen','startOutGen','endOutGen',...

 {'dataOutGen','Radix','Hexadecimal'},...

 {'dataOutNoise','Radix','Hexadecimal'},...

 'validOut','startOut','endOut','err',...

 {'dataOut','Radix','Hexadecimal'}};

h = dsp.LogicAnalyzer('Name','CRC Encode and Decode','NumInputPorts',length(channels),...

 'BackgroundColor','Black','DisplayChannelHeight',2);

 for ii = 1:length(channels)

 if iscell(channels{ii})

 % Display data signals as hexadecimal integers

 c = channels{ii};

 addWave(h, 'InputChannel',ii,'Name',c{1}, c{2}, c{3});

 dat2 = uint16(bi2de(eval(c{1})')); % convert binary column vector to integer

 chanData{ii} = squeeze(dat2);

 else

 addWave(h, 'InputChannel',ii,'Name',channels{ii});

 chanData{ii} = squeeze(eval(channels{ii})');

 end

 end

 step(h, chanData{:});

 comm.HDLCRCGenerator System object

3-855

Algorithms

Timing Diagram

Timing diagram for HDL-optimized CRC generator

3 Alphabetical List

3-856

Initial Delay

The HDL CRC Generator System object introduces a latency on the output. This latency
can be computed with the following equation:

initialdelay = (CRC length/input data width) + 2

See Also
comm.HDLCRCGenerator | comm.CRCGenerator | General CRC Generator HDL
Optimized

 clone

3-857

clone
System object: comm.HDLCRCGenerator
Package: comm

Create HDLCRCGenerator System object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates another instance of the HDLCRCGenerator System object, H,
with the same property values. The clone method creates a new unlocked object with
uninitialized states.

Input Arguments

H

HDL CRC Generator System object

Default:

Output Arguments

C

New instance of the HDLCRCGenerator System object, H, with the same property values.
The new unlocked object contains uninitialized states.

See Also
comm.HDLCRCGenerator | comm.HDLCRCGenerator.isLocked |
comm.HDLCRCGenerator.release | comm.HDLCRCGenerator.reset |
comm.HDLCRCGenerator.step

3 Alphabetical List

3-858

isLocked
System object: comm.HDLCRCGenerator
Package: comm

Locked status for input attributes and nontunable properties

Syntax

L = isLocked(H)

Description

L = isLocked(H) returns the locked status, L, of the HDL CRC Generator System
object, H.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

Input Arguments

H

HDL CRC Generator System object

Default:

Output Arguments

L

Logical value. Either 1 (true) or 0 (false).

 isLocked

3-859

See Also
comm.HDLCRCGenerator | comm.HDLCRCGenerator.clone |
comm.HDLCRCGenerator.release | comm.HDLCRCGenerator.reset |
comm.HDLCRCGenerator.step

3 Alphabetical List

3-860

release
System object: comm.HDLCRCGenerator
Package: comm

Allow property value and input characteristics change

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) of the HDL CRC Generator System object, H, and allows all its properties
and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

Input Arguments

H

Instance of HDL CRC Generator System object

Default:

See Also
comm.HDLCRCGenerator | comm.HDLCRCGenerator.clone |
comm.HDLCRCGenerator.isLocked | comm.HDLCRCGenerator.reset |
comm.HDLCRCGenerator.step

 reset

3-861

reset
System object: comm.HDLCRCGenerator
Package: comm

Reset states of CRC generator object

Syntax

reset(H)

Description

reset(H) resets the internal states of the HDL CRC Generator System object, H, to their
initial values

Input Arguments

H

Instance of HDL CRC Generator System object

Default:

See Also
comm.HDLCRCGenerator | comm.HDLCRCGenerator.clone |
comm.HDLCRCGenerator.isLocked | comm.HDLCRCGenerator.release |
comm.HDLCRCGenerator.step

3 Alphabetical List

3-862

step
System object: comm.HDLCRCGenerator
Package: comm

Generate CRC checksums for input message based on control signals and appends
checksums to output message

Syntax

[Y,startOut,endOut,validOut] = step(H,X,startIn,endIn, validIn)

Description

[Y,startOut,endOut,validOut] = step(H,X,startIn,endIn, validIn)

generates CRC checksums for input message X based on control signals and appends the
checksums to X.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

Input Arguments

H

HDL CRC Generator System object

Default:

X

Input message

 step

3-863

• Must be a binary column vector or a scalar integer representing several bits. That is,
vector input [0,0,0,1,0,0,1,1] is equivalent to uint8 input 19.

• If the input is a vector the data type can be double or logical. If the input is a scalar
the data type can be unsigned integer (uint8/16/32) or unsigned fixed-point (fi object)
with 0 fractional bits (fi([],0,N,0)).

• X can be part or all of the message to be encoded.
• The length of X must be less than or equal to the CRC length, and the CRC length

must be divisible by the length of X.
• The CRC length is the order of the polynomial that you specify in the Polynomial

property.

startIn

Indicates the start of an input message. startIn is scalar with logical data type.

endIn

Indicates the end of an input message. endIn is scalar with logical data type.

validIn

When validIn is high, input message is processed for CRC checksum computation.
validIn is scalar with logical data type.

Output Arguments

Y

Object output, consisting of X + checksum plus the delay. Output Y has the same width
and data type as input X.

startOut

Indicates the start of an output message. startOut is scalar with logical data type.

endOut

Indicates the end of an output message. endOut is scalar with logical data type.

3 Alphabetical List

3-864

validOut

Indicates the validation of output message plus CRC checksums.validOut is scalar with
logical data type.

See Also
comm.HDLCRCGenerator | comm.HDLCRCGenerator.clone |
comm.HDLCRCGenerator.isLocked | comm.HDLCRCGenerator.release |
comm.HDLCRCGenerator.reset

 comm.HDLRSDecoder System object

3-865

comm.HDLRSDecoder System object
Package: comm

Decode data using a Reed-Solomon decoder

Description
The HDL-optimized HDLRSDecoder System object recovers a message vector from a
Reed-Solomon codeword vector. For proper decoding, the property values for this object
should match those in the corresponding HDLRSEncoder System object.

To recover a message vector from a Reed-Solomon codeword vector optimized for HDL
code generation:

1 Define and set up your HDL RS decoder object. See “Construction” on page 3-865.
2 Call step to recover a message vector from a Reed-Solomon codeword vector

according to the properties of comm.HDLRSDecoder. The behavior of step is specific
to each object in the toolbox.

Construction
H = comm.HDLRSDecoder creates an HDL-optimized RS decoder System object, H, that
performs Reed-Solomon (RS) decoding.

H = comm.HDLRSDecoder(Name,Value) creates an HDL-optimized RS decoder
System object, H, with additional options specified by one or more Name,Value pair
arguments, where Name is a property name and Value is the corresponding value.
Name must appear inside single quotes (''). You can specify several name-value pair
arguments in any order as Name1,Value1,...,NameN,ValueN.

H = comm.HDLRSDecoder(N,K,Name,Value) creates an HDL-optimized RS decoder
System object, H, with the CodewordLength property set to N, the MessageLength
property set to K, and other specified property Names set to the specified Values.

Properties
B

3 Alphabetical List

3-866

B value for polynomial generation

BSource

Source of B, the starting power for roots of the primitive polynomial

Specify the source of the B value as one of these values:

• Auto: B=0
• Property

Default: Auto

CodewordLength

Codeword length

Specify the codeword length of the RS code as a double-precision, positive, integer scalar
value. The default is 7.

If you set the “PrimitivePolynomialSource” property to Auto, CodewordLength
must be in the range 3 < CodewordLength £ 216–1.

When you set the PrimitivePolynomialSource property to Property,
CodewordLength must be in the range 3 £ CodewordLength £ 2M–1. M is the degree
of the primitive polynomial that you specify with the PrimitivePolynomialSource
and “PrimitivePolynomial” properties. M must be in the range 3 £ M £ 16. The
difference (CodewordLength –“MessageLength”) must be an even integer. The value of
this property is rounded up to 2M–1.

If the value of this property is less than 2M–1, the object assumes a shortened RS code.

MessageLength

Message length

Specify the message length as a double-precision, positive integer scalar value. The
default is 3. The difference (“CodewordLength” – MessageLength) must be an even
integer.

NumErrorsOutputPort

 comm.HDLRSDecoder System object

3-867

Enable number of errors output

When you set this property to true, the step method outputs number of corrected errors.
The number of corrected errors is not valid when errOut is asserted, since there were
more errors than could be corrected. The default is false.

PrimitivePolynomialSource

Source of primitive polynomial

Specify the source of the primitive polynomial as Auto | Property. The default is Auto.

When you set this property to Auto, the object uses a primitive polynomial
of degree M = ceil(log2(“CodewordLength”+1)), which is the result of
fliplr(de2bi(primpoly(M))).

When you set this property to Property, you can specify a polynomial using the
“PrimitivePolynomial” property.

PrimitivePolynomial

Primitive polynomial

Specify the primitive polynomial that defines the finite field GF(2M) corresponding to
the integers that form messages and codewords. You must set this property to a double-
precision, binary row vector that represents a primitive polynomial over GF(2) of degree
M in descending order of powers.

This property applies when you set the “PrimitivePolynomialSource” property to
Property.

Methods

clone
Create HDLRSDecoder System object with
same property values

isLocked
Locked status for input attributes and
nontunable properties

3 Alphabetical List

3-868

release
Allow property value and input
characteristics change

step
Perform Reed-Solomon decoding

Examples

Reed-Solomon Error Detection Using HDLRSEncoder and HDLRSDecoder

Create an HDLRSEncoder object with RS(255,239) code. This is the code used in the
IEEE802.16 Broadband Wireless Access standard.

B is the starting power of the roots of the primitive polynomial.

hHDLEnc = comm.HDLRSEncoder(255,239,'BSource','Property','B',0)

hHDLEnc =

 System: comm.HDLRSEncoder

 Properties:

 CodewordLength: 255

 MessageLength: 239

 PrimitivePolynomialSource: 'Auto'

 PuncturePatternSource: 'None'

 BSource: 'Property'

 B: 0

Create a random message to encode. This message is smaller than the codeword length to
demonstrate the shortened-code capability of the objects. Pad the message with zeros to
accomodate the Chien search in the decoder and the decoder latency.

messageLength = 188;

dataIn = [randi([0,255],1,messageLength,'uint8') zeros(1,1024-messageLength)];

for ii = 1:1024

 messageStart = (ii==1);

 messageEnd = (ii==messageLength);

 validIn = (ii<=messageLength);

 [encOut(ii), startOut(ii), endOut(ii), validOut(ii)] = step(hHDLEnc, dataIn(ii), messageStart, messageEnd, validIn);

 comm.HDLRSDecoder System object

3-869

end

Inject errors at random locations in the encoded message. Reed-Solomon can correct up
to (N-K)/2 errors in each N symbols. So, in this example the error correction capability is
(255-239)/2=8 symbols.

numErrors = 8;

loc = randperm(messageLength, numErrors);

% encOut is qualified by validOut, use an offset for injecting errors

vi = find(validOut==true,1);

for i = 1:numErrors

 idx = loc(i)+vi;

 symbol = encOut(idx);

 encOut(idx) = randi([0 255],'uint8');

 fprintf('Symbol(%d), was 0x%x now 0x%x.\n', loc(i), symbol, encOut(idx));

end

Symbol(147), was 0x1f now 0x82.

Symbol(16), was 0x6b now 0x82.

Symbol(173), was 0x3 now 0xd1.

Symbol(144), was 0x66 now 0xcb.

Symbol(90), was 0x13 now 0xa4.

Symbol(80), was 0x5a now 0x60.

Symbol(82), was 0x95 now 0xcf.

Symbol(56), was 0xf5 now 0x88.

Create an RS Decoder to detect and correct errors in the message. It must have the same
code and polynomial as the encoder.

hHDLDec = comm.HDLRSDecoder(255,239,'BSource','Property','B',0)

for ii = 1:1024

 [decOut(ii), decStartOut(ii), decEndOut(ii), decValidOut(ii), decErrOut(ii)] = step(hHDLDec, encOut(ii), startOut(ii), endOut(ii), validOut(ii));

end

hHDLDec =

 System: comm.HDLRSDecoder

 Properties:

 CodewordLength: 255

 MessageLength: 239

 PrimitivePolynomialSource: 'Auto'

 BSource: 'Property'

 B: 0

3 Alphabetical List

3-870

 NumErrorsOutputPort: false

Select the valid decoder output and compare decoded symbols to the original message.

decOut = decOut(decValidOut==1);

originalMessage = dataIn(1:messageLength);

if all(originalMessage==decOut)

 fprintf('All %d message symbols were correctly decoded.\n', messageLength);

else

 for jj = 1:messageLength

 if dataIn(jj)~=decOut(jj)

 fprintf('Error in decoded symbol(%d). Original 0x%x Decoded 0x%x.\n',jj,dataIn(jj),decOut(jj));

 end

 end

end

All 188 message symbols were correctly decoded.

See Also
comm.HDLRSEncoder | comm.RSDecoder | Integer-Output RS Decoder HDL Optimized

 clone

3-871

clone
System object: comm.HDLRSDecoder
Package: comm

Create HDLRSDecoder System object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates another instance of the HDLRSDecoder System object, H,
with the same property values. The clone method creates a new unlocked object with
uninitialized states.

Input Arguments

H

HDLRSDecoder System object

Default:

Output Arguments

C

New instance of the HDLRSDecoder System object, H, with the same property values.
The new unlocked object contains uninitialized states.

See Also
comm.HDLRSDecoder | comm.HDLRSDecoder.isLocked |
comm.HDLRSDecoder.release | comm.HDLRSDecoder.step

3 Alphabetical List

3-872

isLocked
System object: comm.HDLRSDecoder
Package: comm

Locked status for input attributes and nontunable properties

Syntax

L = isLocked(H)

Description

L = isLocked(H) returns the locked status, L, of the HDLRSDecoder System object, H.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

Input Arguments

H

HDLRSDecoder System object

Default:

Output Arguments

L

Logical value. Either 1 (true) or 0 (false).

 isLocked

3-873

See Also
comm.HDLRSDecoder | comm.HDLRSDecoder.clone |
comm.HDLRSDecoder.release | comm.HDLRSDecoder.step

3 Alphabetical List

3-874

release
Allow property value and input characteristics change

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) of the HDLRSDecoder System object, H, and allows all its properties and
input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

Input Arguments

H

Instance of HDLRSDecoder System object

Default:

See Also
comm.HDLRSDecoder | comm.HDLRSDecoder.clone |
comm.HDLRSDecoder.isLocked | comm.HDLRSDecoder.step

 step

3-875

step
System object: comm.HDLRSDecoder
Package: comm

Perform Reed-Solomon decoding

Syntax

[Y,startOut,endOut,validOut,errOut] =

step(H,X,startIn,EndIn,validIn)

Description

[Y,startOut,endOut,validOut,errOut] =

step(H,X,startIn,EndIn,validIn) decodes the input data, X, and returns the
encoded data, Y, of HDLRSDecoder System object, H.

The step method for this object accepts fixed-point (fi) inputs for X.

Note: Calling step on an object puts that object into a locked state. When locked, you
cannot change nontunable properties or any input characteristics (size, data type and
complexity) without reinitializing (unlocking and relocking) the object.

Input Arguments

H

Instance of HDLRSDecoder System object

Default:

X

Message data

3 Alphabetical List

3-876

Must be an integer (uint8, uint16, uint32) or fi(). Doubles are allowed for simulation but
not for HDL code generation.

startIn

Indicates the start of a frame of data. Boolean value.

endIn

Indicates the end of a frame of data. Boolean value.

validIn

Indicates that input data is valid. Boolean value.

Output Arguments
Y

Message data followed by parity words

The data type is the same as the input data port. Will be an integer (uint8, uint16,
uint32) or fi(). Doubles are allowed for simulation but not for HDL code generation.

startOut

Indicates the start of a frame of data. Boolean value.

endOut

Indicates the end of a frame of data, including checksum. Boolean value.

validOut

Indicates that output data is valid. Boolean value.

errOut

Indicates the corruption of the received data when error is high. Boolean in and out.

Examples
RS-encode and decode a DVD-II standard packet of random data.

 step

3-877

1 Assign data and create System objects.

hHDLEnc = comm.HDLRSEncoder(204,188,'BSource','Property','B',0);

hHDLDec = comm.HDLRSDecoder(204,188,'BSource','Property','B',0);

dataIn = [randi([0,255],188,1,'uint8') ; zeros(1024-188,1)];

for ii = 1:1024

 [encOut(ii), startOut(ii), endOut(ii), validOut(ii)] = step(hHDLEnc, dataIn(ii), ii==1, ii==188, ii<=188);

 [decOut(ii), decStartOut(ii), decEndOut(ii), decValidOut(ii), decErrOut(ii)] = step(hHDLDec, encOut(ii), startOut(ii), endOut(ii), validOut(i i));

end

2 Check results.

assert(all(dataIn(1:188) == decOut(decValidOut)'))

See Also
comm.HDLRSDecoder | comm.HDLRSDecoder.clone |
comm.HDLRSDecoder.isLocked | comm.HDLRSDecoder.release

3 Alphabetical List

3-878

comm.HDLRSEncoder System object
Package: comm

Encode data using a Reed-Solomon encoder

Description

The HDL-optimized HDLRSEncoder System object creates a Reed-Solomon code with
message and codeword lengths you specify.

To create a Reed-Solomon code optimized for HDL code generation:

1 Define and set up your HDL RS encoder object. See “Construction” on page 3-865.
2 Call step to recover a message vector from a Reed-Solomon codeword vector

according to the properties of comm.HDLRSEncoder. The behavior of step is specific
to each object in the toolbox.

Construction

H = comm.HDLRSEncoder returns a block encoder System object, H, that performs Reed-
Solomon (RS) encoding in a streaming fashion for HDL.

H = comm.HDLRSEncoder(Name,Value,) creates an HDL-optimized block encoder
System object, H, with additional options specified by one or more Name,Value pair
arguments, where Name is a property name and Value is the corresponding value.
Name must appear inside single quotes (''). You can specify several name-value pair
arguments in any order as Name1,Value1,...,NameN,ValueN.

H = comm.HDLRSEncoder(N,K,Name,Value) creates an RS encoder object, H, with
the CodewordLength property set to N, the MessageLength property set to K, and other
specified property Name, Value pair arguments.

Properties

B

 comm.HDLRSEncoder System object

3-879

B value for polynomial generation

BSource

Source of B, the starting power for roots of the primitive polynomial

Specify the source of the B value as one of these values:

• Auto: B=0
• Property

Default: Auto

CodewordLength

Codeword length

Specify the codeword length of the RS code as a double-precision, positive, integer scalar
value. The default is 7.

If you set the “PrimitivePolynomialSource” property to Auto, CodewordLength
must be in the range 3 < CodewordLength £ 216–1.

When you set the PrimitivePolynomialSource property to Property,
CodewordLength must be in the range 3 £ CodewordLength £ 2M–1. M is the degree
of the primitive polynomial that you specify with the PrimitivePolynomialSource
and “PrimitivePolynomial” properties. M must be in the range 3 £ M £ 16. The
difference (CodewordLength –“MessageLength”) must be an even integer. The value of
this property is rounded up to 2M–1.

If the value of this property is less than 2M–1, the object assumes a shortened RS code.

MessageLength

Message length

Specify the message length as a double-precision, positive integer scalar value. The
default is 3. The difference (“CodewordLength” – MessageLength) must be an even
integer.

PrimitivePolynomialSource

3 Alphabetical List

3-880

Source of primitive polynomial

Specify the source of the primitive polynomial as Auto | Property. The default is Auto.

When you set this property to Auto, the object uses a primitive polynomial
of degree M = ceil(log2(“CodewordLength”+1)), which is the result of
fliplr(de2bi(primpoly(M))).

When you set this property to Property, you can specify a polynomial using the
“PrimitivePolynomial” property.

PrimitivePolynomial

Primitive polynomial

Specify the primitive polynomial that defines the finite field GF(2M) corresponding to
the integers that form messages and codewords. You must set this property to a double-
precision, binary row vector that represents a primitive polynomial over GF(2) of degree
M in descending order of powers.

This property applies when you set the “PrimitivePolynomialSource” property to
Property.

PuncturePatternSource

Source of puncture pattern

Specify the source of the puncture pattern as None | Property. The default is None. If
you set this property to None then the object does not apply puncturing to the code. If you
set this property to Property then the object punctures the code based on a puncture
pattern vector specified in the “PuncturePattern” property.

PuncturePattern

Puncture pattern vector

Specify the pattern used to puncture the encoded data as a double-precision, binary
column vector with a length of (“CodewordLength”–“MessageLength”). The default is
[ones(2,1); zeros(2,1)]. Zeros in the puncture pattern vector indicate the position
of the parity symbols that are punctured or excluded from each codeword. This property
applies when you set the “PuncturePatternSource” property to Property.

 comm.HDLRSEncoder System object

3-881

Methods

clone
Create HDLRSEncoder System object with
same property values

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics change

step
Perform Reed-Solomon encoding

Examples

Reed-Solomon Error Detection Using HDLRSEncoder and HDLRSDecoder

Create an HDLRSEncoder object with RS(255,239) code. This is the code used in the
IEEE802.16 Broadband Wireless Access standard.

B is the starting power of the roots of the primitive polynomial.

hHDLEnc = comm.HDLRSEncoder(255,239,'BSource','Property','B',0)

hHDLEnc =

 System: comm.HDLRSEncoder

 Properties:

 CodewordLength: 255

 MessageLength: 239

 PrimitivePolynomialSource: 'Auto'

 PuncturePatternSource: 'None'

 BSource: 'Property'

 B: 0

3 Alphabetical List

3-882

Create a random message to encode. This message is smaller than the codeword length to
demonstrate the shortened-code capability of the objects. Pad the message with zeros to
accomodate the Chien search in the decoder and the decoder latency.

messageLength = 188;

dataIn = [randi([0,255],1,messageLength,'uint8') zeros(1,1024-messageLength)];

for ii = 1:1024

 messageStart = (ii==1);

 messageEnd = (ii==messageLength);

 validIn = (ii<=messageLength);

 [encOut(ii), startOut(ii), endOut(ii), validOut(ii)] = step(hHDLEnc, dataIn(ii), messageStart, messageEnd, validIn);

end

Inject errors at random locations in the encoded message. Reed-Solomon can correct up
to (N-K)/2 errors in each N symbols. So, in this example the error correction capability is
(255-239)/2=8 symbols.

numErrors = 8;

loc = randperm(messageLength, numErrors);

% encOut is qualified by validOut, use an offset for injecting errors

vi = find(validOut==true,1);

for i = 1:numErrors

 idx = loc(i)+vi;

 symbol = encOut(idx);

 encOut(idx) = randi([0 255],'uint8');

 fprintf('Symbol(%d), was 0x%x now 0x%x.\n', loc(i), symbol, encOut(idx));

end

Symbol(147), was 0x1f now 0x82.

Symbol(16), was 0x6b now 0x82.

Symbol(173), was 0x3 now 0xd1.

Symbol(144), was 0x66 now 0xcb.

Symbol(90), was 0x13 now 0xa4.

Symbol(80), was 0x5a now 0x60.

Symbol(82), was 0x95 now 0xcf.

Symbol(56), was 0xf5 now 0x88.

Create an RS Decoder to detect and correct errors in the message. It must have the same
code and polynomial as the encoder.

hHDLDec = comm.HDLRSDecoder(255,239,'BSource','Property','B',0)

for ii = 1:1024

 [decOut(ii), decStartOut(ii), decEndOut(ii), decValidOut(ii), decErrOut(ii)] = step(hHDLDec, encOut(ii), startOut(ii), endOut(ii), validOut(ii));

end

 comm.HDLRSEncoder System object

3-883

hHDLDec =

 System: comm.HDLRSDecoder

 Properties:

 CodewordLength: 255

 MessageLength: 239

 PrimitivePolynomialSource: 'Auto'

 BSource: 'Property'

 B: 0

 NumErrorsOutputPort: false

Select the valid decoder output and compare decoded symbols to the original message.

decOut = decOut(decValidOut==1);

originalMessage = dataIn(1:messageLength);

if all(originalMessage==decOut)

 fprintf('All %d message symbols were correctly decoded.\n', messageLength);

else

 for jj = 1:messageLength

 if dataIn(jj)~=decOut(jj)

 fprintf('Error in decoded symbol(%d). Original 0x%x Decoded 0x%x.\n',jj,dataIn(jj),decOut(jj));

 end

 end

end

All 188 message symbols were correctly decoded.

See Also
comm.HDLRSDecoder | comm.RSEncoder | Integer-Input RS Encoder HDL Optimized

3 Alphabetical List

3-884

clone
System object: comm.HDLRSEncoder
Package: comm

Create HDLRSEncoder System object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates another instance of the HDLRSEncoder System object, H,
with the same property values. The clone method creates a new unlocked object with
uninitialized states.

Input Arguments

H

HDLRSEncoder System object

Default:

Output Arguments

C

New instance of the HDLRSEncoder System object, H, with the same property values.
The new unlocked object contains uninitialized states.

See Also
comm.HDLRSEncoder | comm.HDLRSEncoder.isLocked |
comm.HDLRSEncoder.release | comm.HDLRSEncoder.step

 isLocked

3-885

isLocked
System object: comm.HDLRSEncoder
Package: comm

Locked status for input attributes and nontunable properties

Syntax

L = isLocked(H)

Description

L = isLocked(H) returns the locked status, L, of the HDLRSEncoder System object, H.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

Input Arguments

H

HDLRSEncoder System object

Default:

Output Arguments

L

Logical value. Either 1 (true) or 0 (false).

3 Alphabetical List

3-886

See Also
comm.HDLRSEncoder | comm.HDLRSEncoder.clone |
comm.HDLRSEncoder.release | comm.HDLRSEncoder.step

 release

3-887

release
Allow property value and input characteristics change

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) of the HDLRSEncoder System object, H, and allows all its properties and
input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

Input Arguments

H

Instance of HDLRSEncoder System object

Default:

See Also
comm.HDLRSEncoder | comm.HDLRSEncoder.clone |
comm.HDLRSEncoder.isLocked | comm.HDLRSEncoder.step

3 Alphabetical List

3-888

step
System object: comm.HDLRSEncoder
Package: comm

Perform Reed-Solomon encoding

Syntax

[Y,startOut,endOut,validOut] = step(H,X,startIn,EndIn,validIn)

Description

[Y,startOut,endOut,validOut] = step(H,X,startIn,EndIn,validIn) decodes
the input data, X, and returns the encoded data, Y, of HDLRSEncoder System object, H.

The step method for this object accepts fixed-point (fi) inputs for X.

Note: Calling step on an object puts that object into a locked state. When locked, you
cannot change nontunable properties or any input characteristics (size, data type and
complexity) without reinitializing (unlocking and relocking) the object.

Input Arguments

H

Instance of HDLRSEncoder System object

Default:

X

Message data

Must be an integer (uint8, uint16, uint32) or fi(). Doubles are allowed for simulation but
not for HDL code generation.

 step

3-889

startIn

Indicates the start of a frame of data. Boolean value.

endIn

Indicates the end of a frame of data. Boolean value.

validIn

Indicates that input data is valid. Boolean value.

Output Arguments

Y

Message data followed by parity words

The data type is the same as the input data port. Will be an integer (uint8, uint16,
uint32) or fi(). Doubles are allowed for simulation but not for HDL code generation.

startOut

Indicates the start of a frame of data. Boolean value.

endOut

Indicates the end of a frame of data, including checksum. Boolean value.

validOut

Indicates that output data is valid. Boolean value.

Examples

RS-encode and decode a DVD-II standard packet of random data.

1 Assign data and create System objects.

hHDLEnc = comm.HDLRSEncoder(204,188,'BSource','Property','B',0);

3 Alphabetical List

3-890

hHDLDec = comm.HDLRSDecoder(204,188,'BSource','Property','B',0);

dataIn = [randi([0,255],188,1,'uint8') ; zeros(1024-188,1)];

for ii = 1:1024

 [encOut(ii), startOut(ii), endOut(ii), validOut(ii)] = step(hHDLEnc, dataIn(ii), ii==1, ii==188, ii<=188);

 [decOut(ii), decStartOut(ii), decEndOut(ii), decValidOut(ii), decErrOut(ii)] = step(hHDLDec, encOut(ii), startOut(ii), endOut(ii), validOut(i i));

end

2 Check results.

assert(all(dataIn(1:188) == decOut(decValidOut)'))

See Also
comm.HDLRSEncoder | comm.HDLRSEncoder.clone |
comm.HDLRSEncoder.isLocked | comm.HDLRSEncoder.release

 comm.HelicalDeinterleaver System object

3-891

comm.HelicalDeinterleaver System object

Package: comm

Restore ordering of symbols using helical array

Description

The HelicalDeinterleaver object permutes the symbols in the input signal by placing
them in a row-by-row array and then selecting groups helically to send to the output port.

To helically deinterleave input symbols:

1 Define and set up your helical deinterleaver object. See “Construction” on page
3-891.

2 Call step to deinterleave input symbols according to the properties of
comm.HelicalDeinterleaver. The behavior of step is specific to each object in
the toolbox.

Construction

H = comm.HelicalDeinterleaver creates a helical deinterleaver System object, H.
This object restores the original ordering of a sequence that was interleaved using the
helical interleaver System object.

H = comm.HelicalDeinterleaver(Name,Value) creates a helical
deinterleaver object, H, with each specified property set to the specified
value. You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties

NumColumns

Number of columns in helical array

3 Alphabetical List

3-892

Specify the number of columns in the helical array as a positive integer scalar value. The
default is 6.

GroupSize

Size of each group of input symbols

Specify the size of each group of input symbols as a positive integer scalar value. The
default is 4.

StepSize

Helical array step size

Specify number of rows of separation between consecutive input groups in their
respective columns of the helical array. This property requires a positive integer scalar
value. The default is 1.

InitialConditions

Initial conditions of helical array

Specify the value that is initially stored in the helical array as a numeric scalar value.
The default is 0.

Methods

clone
Create helical deinterleaver object with
same property values

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

 comm.HelicalDeinterleaver System object

3-893

reset
Reset states of the helical deinterleaver
object

step
Restore ordering of symbols using a helical
array

Examples

Interleave and deinterleave random data.

 hInt = comm.HelicalInterleaver('GroupSize', 2, ...

 'NumColumns', 3, ...

 'InitialConditions', -1);

 hDeInt = comm.HelicalDeinterleaver('GroupSize', 2, ...

 'NumColumns', 3, ...

 'InitialConditions', -1);

 data = randi(7, 6, 1);

 intData = step(hInt, data);

 deIntData = step(hDeInt, intData);

 % compare the original sequence, interleaved sequence, and restored sequence

 [data, intData, deIntData]

Algorithms

This object implements the algorithm, inputs, and outputs described on the Helical
Deinterleaver block reference page. The object properties correspond to the block
parameters.

See Also
comm.HelicalInterleaver | comm.MultiplexedDeinterleaver

3 Alphabetical List

3-894

clone
System object: comm.HelicalDeinterleaver
Package: comm

Create helical deinterleaver object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a HelicalDeinterleaver object C, with the same property
values as H. The clone method creates a new unlocked object with uninitialized states.

 getNumInputs

3-895

getNumInputs
System object: comm.HelicalDeinterleaver
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of
expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H)

3 Alphabetical List

3-896

getNumOutputs
System object: comm.HelicalDeinterleaver
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

 isLocked

3-897

isLocked
System object: comm.HelicalDeinterleaver
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the HelicalDeinterleaver
System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

3 Alphabetical List

3-898

release
System object: comm.HelicalDeinterleaver
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H)Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 reset

3-899

reset
System object: comm.HelicalDeinterleaver
Package: comm

Reset states of the helical deinterleaver object

Syntax

reset(H)

Description

reset(H) resets the states of the HelicalDeinterleaver object, H.

3 Alphabetical List

3-900

step
System object: comm.HelicalDeinterleaver
Package: comm

Restore ordering of symbols using a helical array

Syntax

Y = step(H,X)

Description

Y = step(H,X) restores the original ordering of the sequence, X, that was interleaved
using a helical interleaver and returns Y. The input X must be a column vector. The
data type must be numeric, logical, or fixed-point (fi objects). Y has the same data type
as X. The helical deinterleaver object uses an array for its computations. If you set the
“NumColumns” property of the object to C, then the array has C columns and unlimited
rows. If you set the “GroupSize” property to N, then the object accepts an input of length
C ¥ N and inserts it into the next N rows of the array. The object also places the value
of the “InitialConditions” property into certain positions in the top few rows of the
array. This accommodates the helical pattern and also preserves the vector indices of
symbols that pass through the HelicalInterleaver and HelicalDeinterleaver
objects. The output consists of consecutive groups of N symbols. The object selects the
k-th output group in the array from column k mod C. This selection is of type helical
because of the reduction modulo C and because the first symbol in the k-th group is in
row 1+(k-1) ¥ s, where s is the value for the “StepSize” property.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

 comm.HelicalInterleaver System object

3-901

comm.HelicalInterleaver System object

Package: comm

Permute input symbols using helical array

Description

The HelicalInterleaver object permutes the symbols in the input signal by placing
them in an array in a helical arrangement and then sending rows of the array to the
output port.

To helically interleave input symbols:

1 Define and set up your helical interleaver object. See “Construction” on page
3-901.

2 Call step to interleave input symbols according to the properties of
comm.HelicalInterleaver. The behavior of step is specific to each object in the
toolbox.

Construction

H = comm.HelicalInterleaver creates a helical interleaver System object, H. This
object permutes the input symbols in the input signal by placing them in an array in a
helical arrangement.

H = comm.HelicalInterleaver(Name,Value) creates a helical interleaver object, H,
with each specified property set to the specified value. You can specify additional name-
value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties

NumColumns

Number of columns in helical array

3 Alphabetical List

3-902

Specify the number of columns in the helical array as a positive integer scalar value. The
default is 6.

GroupSize

Size of each group of input symbols

Specify the size of each group of input symbols as a positive integer scalar value. The
default is 4.

StepSize

Helical array step size

Specify the number of rows of separation between consecutive input groups in their
respective columns of the helical array. This property requires as a positive integer scalar
value . The default is 1.

InitialConditions

Initial conditions of helical array

Specify the value that is initially stored in the helical array as a numeric scalar value.
The default is 0.

Methods

clone
Create helical interleaver object with same
property values

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

 comm.HelicalInterleaver System object

3-903

reset
Reset states of the helical interleaver object

step
Permute input symbols using a helical
array

Examples

Interleave and deinterleave random data.

 hInt = comm.HelicalInterleaver('GroupSize', 2, ...

 'NumColumns', 3, ...

 'InitialConditions', -1);

 hDeInt = comm.HelicalDeinterleaver('GroupSize', 2, ...

 'NumColumns', 3, ...

 'InitialConditions', -1);

 data = randi(7, 6, 1);

 intData = step(hInt, data);

 deIntData = step(hDeInt, intData);

 % compare the original sequence, interleaved sequence, and restored sequence

 [data, intData, deIntData]

Algorithms

This object implements the algorithm, inputs, and outputs described on the Helical
Interleaver block reference page. The object properties correspond to the block
parameters.

See Also
comm.HelicalDeinterleaver | comm.MultiplexedInterleaver

3 Alphabetical List

3-904

clone
System object: comm.HelicalInterleaver
Package: comm

Create helical interleaver object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a HelicalInterleaver object C, with the same property values
as H. The clone method creates a new unlocked object with uninitialized states.

 getNumInputs

3-905

getNumInputs
System object: comm.HelicalInterleaver
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of
expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H)

3 Alphabetical List

3-906

getNumOutputs
System object: comm.HelicalInterleaver
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

 isLocked

3-907

isLocked
System object: comm.HelicalInterleaver
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the HelicalInterleaver System
object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

3 Alphabetical List

3-908

release
System object: comm.HelicalInterleaver
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H)Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 reset

3-909

reset
System object: comm.HelicalInterleaver
Package: comm

Reset states of the helical interleaver object

Syntax

reset(H)

Description

reset(H) resets the states of the HelicalInterleaver object, H.

3 Alphabetical List

3-910

step
System object: comm.HelicalInterleaver
Package: comm

Permute input symbols using a helical array

Syntax

Y = step(H,X)

Description

Y = step(H,X) permutes input sequence, X, and returns interleaved sequence,
Y. The input X must be a column vector. The data type must be numeric, logical, or
fixed-point (fi objects). Y has the same data type as X. The helical interleaver object
places the elements of X in an array in a helical fashion. If you set the “NumColumns”
property of the object to C, then the array has C columns and unlimited rows. If you
set the “GroupSize” property to N, then the object accepts an input of length C ¥ N
and partitions the input into consecutive groups of N symbols. The object places
the k-th group in the array along column k mod C. This placement is of type helical
because of the reduction modulo C and because the first symbol in the k-th group is
in the row 1+(k-1) ¥ s, where s is the value for the “StepSize” property. Positions in
the array that do not contain input symbols have default contents specified by the
InitialConditions property. The object outputs C ¥ N symbols from the array by
reading the next N rows sequentially.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

 comm.IntegerToBit System object

3-911

comm.IntegerToBit System object
Package: comm

Convert vector of integers to vector of bits

Description

The IntegerToBit object maps each integer (or fixed-point value) in the input vector to
a group of bits in the output vector.

To map integers to bits:

1 Define and set up your integer to bit object. See “Construction” on page 3-911.
2 Call step to map integers in the input vector to groups of bits in the output vector

according to the properties of comm.IntegerToBit. The behavior of step is specific
to each object in the toolbox.

Construction

H = comm.IntegerToBit creates an integer-to-bit converter System object, H. This
object maps a vector of integer-valued or fixed-point inputs to a vector of bits.

H = comm.IntegerToBit(Name,Value) creates an integer-to-bit converter object, H,
with each specified property set to the specified value. You can specify additional name-
value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

H = comm.IntegerToBit(NUMBITS,Name,Value) creates an integer-to-bit converter
object, H. This object has the BitsPerInteger property set to NUMBITS and the other
specified properties set to the specified values.

Properties

BitsPerInteger

Number of bits per integer

3 Alphabetical List

3-912

Specify the number of bits the System object uses to represent each input integer. You
must set this property to a scalar integer between 1 and 32. The default is 3.

MSBFirst

Output bit words with first bit as most significant bit

Set this property to true to indicate that the first bit of the output bit words is the most
significant bit (MSB). The default is true. Set this property to false to indicate that the
first bit of the output bit words is the least significant bit (LSB).

SignedIntegerInput

Assume inputs are signed integers

Set this property to true if the integer inputs are signed. The default is false. Set this
property to false if the integer inputs are unsigned. If the “SignedIntegerInput”
property is false, the input values must be between 0 and (2^N)–1. In this case, N is the
value you specified in the “BitsPerInteger” property. When you set this property to
true, the input values must be between –(2(N–1)) and (2(N–1))–1.

OutputDataType

Data type of output

Specify output data type as one of Full precision | Smallest unsigned integer
| Same as input | double | single | int8 | uint8 | int16 | uint16 | int32 |
uint32 | logical. The default is Full precision.

When the input signal is an integer data type, you must have a Fixed-Point Designer
user license to use this property in Smallest unsigned integer or Full precision
mode.

When you set this property to Full precision, the object determines the output data
type based on the input data type. If the input data type is double- or single-precision,
the output data has the same data type as the input data. Otherwise, the output
data type is determined in the same way as when you set this property to Smallest
unsigned integer.

When you set this property to Same as input, and the input data type is numeric or
fixed-point integer (fi object), the output data has the same data type as the input data.

 comm.IntegerToBit System object

3-913

Methods

clone
Create an integer-to-bit converter object
with same property values

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

step
Convert vector of integers to vector of bits

Examples

Convert random integers to 4-bit words

 hIntToBit = comm.IntegerToBit(4);

 intData = randi([0 2^hIntToBit.BitsPerInteger-1],3,1);

 bitData = step(hIntToBit,intData)

bitData =

 1

 1

 0

 1

 1

 1

 1

 0

 0

3 Alphabetical List

3-914

 0

 1

 0

Algorithms

This object implements the algorithm, inputs, and outputs described on the Integer
to Bit Converter block reference page. The object properties correspond to the block
parameters.

See Also
comm.BitToInteger | de2bi | dec2bin

 clone

3-915

clone
System object: comm.IntegerToBit
Package: comm

Create an integer-to-bit converter object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a IntegerToBit object C, with the same property values as H.
The clone method creates a new unlocked object with uninitialized states.

3 Alphabetical List

3-916

getNumInputs
System object: comm.IntegerToBit
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of
expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H)

 getNumOutputs

3-917

getNumOutputs
System object: comm.IntegerToBit
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

3 Alphabetical List

3-918

isLocked
System object: comm.IntegerToBit
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the IntegerToBit System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

 release

3-919

release
System object: comm.IntegerToBit
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H)Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

3 Alphabetical List

3-920

step
System object: comm.IntegerToBit
Package: comm

Convert vector of integers to vector of bits

Syntax

Y = step(H,X)

Description

Y = step(H,X) converts integer input, X, to corresponding bits, Y. The input must be
scalar or a column vector and the data type can be numeric or fixed-point (fi objects).
The output is a column vector with length equal to length(X) ¥ N, where N is the value of
the BitsPerInteger property. If any input value is outside the range of N, the object
issues an error. If the SignedIntegerInput property is false, the input values must
be between 0 and (2N)-1. If you set the SignedIntegerInput property to true, the
input values must be between -(2(N-1)) and (2(N-1))-1.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

 comm.IntegrateAndDumpFilter System object

3-921

comm.IntegrateAndDumpFilter System object
Package: comm

Integrate discrete-time signal with periodic resets

Description

The IntegrateAndDumpFilter object creates a cumulative sum of the discrete-time
input signal, while resetting the sum to zero according to a fixed schedule. When the
simulation begins, the object discards the number of samples specified in the Offset
property. After this initial period, the object sums the input signal along columns and
resets the sum to zero every Ninput samples, set by the integration period property. The
reset occurs after the object produces output at that time step.

To integrate discrete-time signals with periodic resets:

1 Define and set up your integrate and dump filter object. See “Construction” on page
3-921.

2 Call step to integrate discrete-time signals according to the properties of
comm.IntegrateAndDumpFilter. The behavior of step is specific to each object in
the toolbox.

Construction

H = comm.IntegrateAndDumpFilter creates an integrate and dump filter System
object, H. this object integrates over a number of samples in an integration period, and
then resets at the end of that period.

H = comm.IntegrateAndDumpFilter(Name,Value) creates an integrate
and dump filter object, H, with each specified property set to the specified
value. You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

H = comm.IntegrateAndDumpFilter(PERIOD,Name,Value) creates an integrate
and dump filter object, H. This object has the IntegrationPeriod property set to
PERIOD and the other specified properties set to the specified values.

3 Alphabetical List

3-922

Properties

IntegrationPeriod

Integration period

Specify the integration period, in samples, as a positive, integer scalar value greater
than 1. The integration period defines the length of the sample blocks that the object
integrates between resets. The default is 8.

Offset

Number of offset samples

Specify a nonnegative, integer vector or scalar specifying the number of input samples
that the object discards from each column of input data at the beginning of data
processing. Discarding begins when you call the step method for the first time. The
default is 0.

When you set the “Offset” property to a nonzero value, the object outputs one or more
zeros during the initial period while discarding input samples.

When you specify this property as a vector of length L, the i-th element of the vector
corresponds to the offset for the i-th column of the input data matrix, which has L
columns.

When you specify this property as a scalar value, the object applies the same offset to
each column of the input data matrix. The offset creates a transient effect, rather than a
persistent delay.

DecimateOutput

Decimate output

Specify whether the step method returns intermediate cumulative sum results or
decimates intermediate results. The default is true.

When you set this property to true, the step method returns one output sample,
consisting of the final integration value, for each block of “IntegrationPeriod” input
samples. If the inputs are (K ¥ IntegrationPeriod) ¥ L matrices, then the outputs are
K ¥ L matrices.

 comm.IntegrateAndDumpFilter System object

3-923

When you set this property to false, the step method returns IntegrationPeriod
output samples, comprising the intermediate cumulative sum values, for each block of
IntegrationPeriod input samples. In this case, inputs and outputs have the same
dimensions.

Fixed-Point Properties

FullPrecisionOverride

Full precision override for fixed-point arithmetic

Specify whether to use full precision rules. If you set FullPrecisionOverride to
true, which is the default, the object computes all internal arithmetic and output
data types using full precision rules. These rules provide the most accurate fixed-point
numerics. It also turns off the display of other fixed-point properties because they do
not apply individually. These rules guarantee that no quantization occurs within the
object. Bits are added, as needed, to ensure that no roundoff or overflow occurs. If you
set FullPrecisionOverride to false, fixed-point data types are controlled through
individual fixed-point property settings. For more information, see “Full Precision for
Fixed-Point System Objects”.

RoundingMethod

Rounding of fixed-point numeric values

Specify the rounding method as one of Ceiling | Convergent | Floor | Nearest |
Round | Simplest | Zero. The default is Floor. This property applies only if the object
is not in full precision mode.

OverflowAction

Action when fixed-point numeric values overflow

Specify the overflow action as one of Wrap | Saturate. The default is Wrap. This
property applies only if the object is not in full precision mode.

AccumulatorDataType

Data type of accumulator

Specify the accumulator data type as one of Full precision | Same as input
| Custom. The default is Full precision. When you set this property to Full

3 Alphabetical List

3-924

precision the object automatically calculates the accumulator output word and fraction
lengths. Set this property to Custom to specify the accumulator data type using the
“CustomAccumulatorDataType” property. This property applies when you set the
“FullPrecisionOverride” property to false.

CustomAccumulatorDataType

Fixed-point data type of accumulator

Specify the accumulator fixed-point type as a scaled numerictype object with
a signedness of Auto. The default is numerictype([],32,30). This property
applies when you set the “FullPrecisionOverride” property to false and the
“AccumulatorDataType” property to Custom.

OutputDataType

Data type of output

Specify the output fixed-point type as one of Same as accumulator | Same as input
| Custom. The default is Same as accumulator. This property applies when you set
the “FullPrecisionOverride” property to false.

CustomOutputDataType

Fixed-point data type of output

Specify the output fixed-point type as a scaled numerictype object with a signedness of
Auto. The default is numerictype([],32,30). This property applies when you set the
“FullPrecisionOverride” property to false and the “OutputDataType” property to
Custom.

Methods

clone
Create integrate and dump filter object
with same property values

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

 comm.IntegrateAndDumpFilter System object

3-925

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

step
Integrate discrete-time signal with periodic
resets

Examples

Integrate a signal specifying an integration period of 5 samples.

 hInt = comm.IntegrateAndDumpFilter(5);

 hInt.Offset = 3;

 % Data matrix contains three columns (i.e. three channels)

 data = reshape(1:30, 10, 3);

 result = step(hInt, data)

Algorithms

This object implements the algorithm, inputs, and outputs described on the Integrate and
Dump block reference page. The object properties correspond to the block parameters,
except:
The Output intermediate values parameter corresponds to the “DecimateOutput”
property.

3 Alphabetical List

3-926

clone
System object: comm.IntegrateAndDumpFilter
Package: comm

Create integrate and dump filter object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a IntegrateAndDumpFilter object C, with the same property
values as H. The clone method creates a new unlocked object with uninitialized states.

 getNumInputs

3-927

getNumInputs
System object: comm.IntegrateAndDumpFilter
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of
expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H)

3 Alphabetical List

3-928

getNumOutputs
System object: comm.IntegrateAndDumpFilter
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

 isLocked

3-929

isLocked
System object: comm.IntegrateAndDumpFilter
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the IntegrateAndDumpFilter
System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

3 Alphabetical List

3-930

release
System object: comm.IntegrateAndDumpFilter
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H)Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 step

3-931

step
System object: comm.IntegrateAndDumpFilter
Package: comm

Integrate discrete-time signal with periodic resets

Syntax

Y = step(H,X)

Description

Y = step(H,X) periodically integrates blocks of N samples from the input data,
X, and returns the result in Y. N is the number of samples that you specify in the
IntegrationPeriod property. X is a column vector or a matrix and the data type is
double, single or fixed-point (fi objects). X must have K*N rows for some positive integer
K, with one or more columns. The object treats each column as an independent channel
with integration occurring along every column. The dimensions of output Y depend on the
value you set for the DecimateOutput property.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

3 Alphabetical List

3-932

comm.KasamiSequence System object
Package: comm

Generate Kasami sequence

Description

The KasamiSequence object generates a sequence from the set of Kasami sequences.
The Kasami sequences are a set of sequences that have good cross-correlation properties.

To generate a Kasami sequence:

1 Define and set up your Kasami sequence object. See “Construction” on page 3-932.
2 Call step to generate a Kasami sequence according to the properties of

comm.KasamiSequence. The behavior of step is specific to each object in the
toolbox.

Construction

H = comm.KasamiSequence creates a KasamiSequence System object, H. This object
generates a Kasami sequence.

H = comm.KasamiSequence(Name,Value) creates a Kasami sequence
generator object, H, with each specified property set to the specified value.
You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties

Polynomial

Generator polynomial

Specify the polynomial that determines the shift register's feedback connections. The
default is [1 0 0 0 0 1 1].

 comm.KasamiSequence System object

3-933

You can specify the generator polynomial as a binary numeric vector that lists the
coefficients of the polynomial in descending order of powers. The first and last elements
must equal 1. Specify the length of this vector as n+1, where n is the degree of the
generator polynomial and must be even.

Alternatively, you can specify the generator polynomial as a vector containing the
exponents of z for the nonzero terms of the polynomial in descending order of powers. The
last entry must be 0. For example, [1 0 0 0 0 0 1 0 1] and [8 2 0] represent the
same polynomial, g z z z() = + +

8 2
1 .

InitialConditions

Initial conditions of shift register

Specify the initial values of the shift register as a binary numeric scalar or as binary
numeric vector. The default is [0 0 0 0 0 1]. Set the vector length equal to the degree
of the generator polynomial.

When you set this property to a vector value, each element of the vector corresponds to
the initial value of the corresponding cell in the shift register.

When you set this property to a scalar value, that value specifies the initial conditions
of all the cells of the shift register. The scalar, or at least one element of the specified
vector, requires a nonzero value for the object to generate a nonzero sequence.

Index

Sequence index

Specify the index to select a Kasami sequence of interest from the set of possible
sequences. The default is 0. Kasami sequences have a period equal to N = 2n –1, where
n indicates a nonnegative, even integer equal to the degree of the generator polynomial
that you specify in the “Polynomial” property.

There are two classes of Kasami sequences: those obtained from a small set and those
obtained from a large set. You choose a Kasami sequence from the small set by setting
this property to a numeric, scalar, integer value in the range [0...2n/2–2]. You choose a
sequence from the large set by setting this property to a numeric 1 ¥ 2 integer vector [k
m] for k in [–2,..., 2n–2], and m in [–1,..., 2n/2–2].

Shift

3 Alphabetical List

3-934

Sequence offset from initial time

Specify the offset of the Kasami sequence from its starting point as a numeric, integer
scalar value that can be positive or negative. The default is 0. The Kasami sequence has
a period of N = 2n–1, where n is the degree of the generator polynomial that you specify
in the “Polynomial” property. The shift value is wrapped with respect to the sequence
period.

VariableSizeOutput

Enable variable-size outputs

Set this property to true to enable an additional input to the step method. The default is
false. When you set this property to true, the enabled input specifies the output size of
the Kasami sequence used for the step. The input value must be less than or equal to the
value of the MaximumOutputSize property.

When you set this property to false, the SamplesPerFrame property specifies the
number of output samples.

MaximumOutputSize

Maximum output size

Specify the maximum output size of the Kasami sequence as a positive integer 2-element
row vector. The second element of the vector must be 1. The default is [10 1].

This property applies when you set the VariableSizeOutput property to true.

SamplesPerFrame

Number of output samples per frame

Specify the number of Kasami sequence samples that the step method outputs as a
numeric, positive, integer scalar value . The default value is 1.

When you set this property to a value of M, then the step method outputs M samples of
a Kasami sequence that has a period of N = 2n–1. The value n equals the degree of the
generator polynomial that you specify in the “Polynomial” property.

ResetInputPort

Enable generator reset input

 comm.KasamiSequence System object

3-935

Set this property to true to enable an additional input to the step method. The default
is false. The additional input resets the states of the Kasami sequence generator to the
initial conditions that you specify in the “InitialConditions” property.

OutputDataType

Data type of output

Specify the output data type as one of double | logical. The default is double.

Methods

clone
Create Kasami sequence generator object
with same property values

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

reset
Reset states of Kasami sequence generator
object

step
Generate a Kasami sequence

Examples

Generate 5 samples of a Kasami sequence of length 63.

 hks = comm.KasamiSequence('SamplesPerFrame', 5);

3 Alphabetical List

3-936

 x = step(hks)

Algorithms

This object implements the algorithm, inputs, and outputs described on the Kasami
Sequence Generator block reference page. The object properties correspond to the block
parameters, except:

• The object does not have a property to select frame based outputs.
• The object does not have a property that corresponds to the Sample time parameter.

See Also
comm.GoldSequence | comm.PNSequence

 clone

3-937

clone
System object: comm.KasamiSequence
Package: comm

Create Kasami sequence generator object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a KasamiSequence object C, with the same property values as H.
The clone method creates a new unlocked object with uninitialized states.

3 Alphabetical List

3-938

getNumInputs
System object: comm.KasamiSequence
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of
expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H)

 getNumOutputs

3-939

getNumOutputs
System object: comm.KasamiSequence
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

3 Alphabetical List

3-940

isLocked
System object: comm.KasamiSequence
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the KasamiSequence System
object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

 release

3-941

release
System object: comm.KasamiSequence
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H)Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

3 Alphabetical List

3-942

reset
System object: comm.KasamiSequence
Package: comm

Reset states of Kasami sequence generator object

Syntax

reset(H)

Description

reset(H) resets the states of the KasamiSequence object, H.

 step

3-943

step
System object: comm.KasamiSequence
Package: comm

Generate a Kasami sequence

Syntax

Y = step(H)

Y = step(H,RESET)

Description

Y = step(H) outputs a frame of the Kasami sequence in column vector Y. Specify the
frame length with the SamplesPerFrame property. The Kasami sequence has a period
of N = 2n-1, where n is the degree of the generator polynomial that you specify in the
Polynomial property.

Y = step(H,RESET) uses RESET as the reset signal when you set the ResetInputPort
property to true. The data type of the RESET input must be double precision or logical.
RESET can be a scalar value or a column vector with a length equal to the number of
samples per frame that you specify in the SamplesPerFrame property. When the RESET
input is a non-zero scalar, the object resets to the initial conditions that you specify in the
InitialConditions property. It then generates a new output frame. A column vector
RESET input allows multiple resets within an output frame. A non-zero value at the i-th
element of the vector causes a reset at the i-th output sample time.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

3 Alphabetical List

3-944

comm.LDPCDecoder System object
Package: comm

Decode binary low-density parity-check code

Description

The LDPCDecoder object decodes a binary low-density parity-check code.

To decode a binary low-density parity-check code:

1 Define and set up your binary low-density parity-check decoder object. See
“Construction” on page 3-944.

2 Call step to decode a binary low-density parity-check code according to the
properties of comm.LDPCDecoder. The behavior of step is specific to each object in
the toolbox.

Construction

h = comm.LDPCDecoder creates a binary low-density parity-check (LDPC) decoder
System object, h. This object performs LDPC decoding based on the specified parity-check
matrix, where the object does not assume any patterns in the parity-check matrix.

h = comm.LDPCDecoder('PropertyName','ValueName') creates an
LDPC encoder object, h, with each specified property set to the specified
value. You can specify additional name-value pair arguments in any order as
('PropertyName1','PropertyValue1',...,'PropertyNameN','PropertyValueN').

h = comm.LDPCDecoder(PARITY) creates an LDPC decoder object, h, with the
ParityCheckMatrix property set to PARITY.

Properties

ParityCheckMatrix

Parity-check matrix

 comm.LDPCDecoder System object

3-945

Specify the parity-check matrix as a binary valued sparse matrix P with dimension (N-
by-K) by N, where N > K > 0. The last N−K columns in the parity check matrix must be
an invertible matrix in GF(2). Alternatively, you can specify a two-column, non-sparse
integer index matrix I that defines the row and column indices of the 1s in the parity-
check matrix, such that P = sparse(I(:,1), I(:,2), 1).

This property accepts numeric data types. When you set this property to a sparse matrix,
it also accepts a logical data type. The upper bound for the value of N is 231-1.

The default is the sparse parity-check matrix of the half-rate LDPC code from the DVB-
S.2 standard, which is the result of dvbs2ldpc(1/2).

To generate code, set this property to a non-sparse index matrix. For instance, you can
obtain the index matrix for the DVB-S.2 standard from dvbs2ldpc(R, 'indices')
with the second input argument explicitly specified to indices, where R represents the
code rate.

OutputValue

Select output value format

Specify the output value format as one of 'Information part' | 'Whole codeword'. The
default is 'Information part'. When you set this property to 'Information part', the output
contains only the message bits and is a K element column vector, assuming an (N-
by-K)xK parity check matrix. When you set this property to 'Whole codeword', the output
contains the codeword bits and is an N element column vector.

DecisionMethod

Decision method

Specify the decision method used for decoding as one of 'Hard decision' | 'Soft decision'.
The default is 'Hard decision'. When you set this property to 'Hard decision', the output is
decoded bits of double or logical data type. When you set this property to 'Soft decision',
the output is log-likelihood ratios of double data type.

IterationTerminationCondition

Condition for iteration termination

Specify the condition to stop the decoding iterations as one of 'Maximum iteration count'
| 'Parity check satisfied'. The default is 'Maximum iteration count'. When you set this

3 Alphabetical List

3-946

property to 'Maximum iteration count', the object will iterate for the number of iterations
you specify in the MaximumIterationCount property. When you set this property to
'Parity check satisfied', the object will determine if the parity checks are satisfied after
each iteration and stops if all parity checks are satisfied.

MaximumIterationCount

Maximum number of decoding iterations

Specify the maximum number of iterations the object uses as an integer
valued numeric scalar. The default is 50. This applies when you set the
IterationTerminationCondition property to 'Maximum iteration count'.

NumIterationsOutputPort

Output number of iterations performed

Set this property to true to output the actual number of iterations the object performed.
The default is false.

FinalParityChecksOutputPort

Output final parity checks

Set this property to true to output the final parity checks the object calculated. The
default is false.

Methods

clone
Create LDPC Decoder object with same
property values

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

step
Decode input using LDPC decoding scheme

 comm.LDPCDecoder System object

3-947

Examples

Transmit an LDPC-encoded, QPSK-modulated bit stream through an AWGN channel,
then demodulate, decode, and count errors.

 hEnc = comm.LDPCEncoder;

 hMod = comm.PSKModulator(4, 'BitInput',true);

 hChan = comm.AWGNChannel(...

 'NoiseMethod','Signal to noise ratio (SNR)','SNR',1);

 hDemod = comm.PSKDemodulator(4, 'BitOutput',true,...

 'DecisionMethod','Approximate log-likelihood ratio', ...

 'Variance', 1/10^(hChan.SNR/10));

 hDec = comm.LDPCDecoder;

 hError = comm.ErrorRate;

 for counter = 1:10

 data = logical(randi([0 1], 32400, 1));

 encodedData = step(hEnc, data);

 modSignal = step(hMod, encodedData);

 receivedSignal = step(hChan, modSignal);

 demodSignal = step(hDemod, receivedSignal);

 receivedBits = step(hDec, demodSignal);

 errorStats = step(hError, data, receivedBits);

 end

 fprintf('Error rate = %1.2f\nNumber of errors = %d\n', ...

 errorStats(1), errorStats(2))

Algorithms

This object implements the algorithm, inputs, and outputs described on the LDPC
Decoder block reference page. The object properties correspond to the block parameters.

See Also
comm.BCHDecoder | comm.LDPCEncoder | comm.gpu.LDPCDecoder

3 Alphabetical List

3-948

clone
System object: comm.LDPCDecoder
Package: comm

Create LDPC Decoder object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates an LDPC Decoder object C, with the same property values as H.
The clone method creates a new unlocked object with uninitialized states.

The clone method creates an instance of an object. The property values, but not internal
states, are copied into the new instance of the object.

 isLocked

3-949

isLocked
System object: comm.LDPCDecoder
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

Description

TF = isLocked(H) returns the locked status, TF of the LDPCEncode System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

3 Alphabetical List

3-950

release
System object: comm.LDPCDecoder
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 step

3-951

step
System object: comm.LDPCDecoder
Package: comm

Decode input using LDPC decoding scheme

Syntax
Y = step(H,X)

[Y,NUMITER] = step(H,X)

[Y,PARITY] = step(H,X)

Description
Y = step(H,X) decodes input codeword, X, using an LDPC code that is based
on an (N-K) x N parity-check matrix. You specify the parity-check matrix in the
ParityCheckMatrix property. Input X must be a double column vector with length
equal N. Each element is the log-likelihood ratio for a received bit (more likely to be 0 if
the log-likelihood ratio is positive). The first K elements correspond to the information
part of a codeword. The decoded data output vector, Y, contains either only the message
bits or the whole code word, based on the value of the OutputValue property.

[Y,NUMITER] = step(H,X) returns the actual number of iterations the object
performed when you set the NumIterationsOutputPort property to true. The step
method outputs NUMITER as a double scalar.

[Y,PARITY] = step(H,X) returns final parity checks the object calculated when you
set the FinalParityChecksOutputPort property to true. The step method outputs
PARITY as a double vector of length (N-K). You can combine optional output arguments
when you set their enabling properties. Optional outputs must be listed in the same
order as the order of the enabling properties. For example, [Y,NUMITER,PARITY] =
step(H,X)

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,

3 Alphabetical List

3-952

complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

 comm.LDPCEncoder System object

3-953

comm.LDPCEncoder System object

Package: comm

Encode binary low-density parity-check code

Description

The LDPCEncoder object encodes a binary low-density parity-check code.

To encode a binary low-density parity-check code:

1 Define and set up your binary low-density parity-check encoder object. See
“Construction” on page 3-953.

2 Call step to encode a binary low-density parity-check code according to the
properties of comm.LDPCEncoder. The behavior of step is specific to each object in
the toolbox.

Construction

h = comm.LDPCEncoder creates a binary low-density parity-check (LDPC) encoder
System object, h. This object performs LDPC encoding based on the specified parity-check
matrix.

h = comm.LDPCEncoder('PropertyName','ValueName') creates an LDPC
encoder object, h, with each specified property set to the specified value.

h = comm.LDPCEncoder(PARITY) creates an LDPC encoder object, h, with the
ParityCheckMatrix property set to PARITY.

output_args = function(input_args,Name,Value) with additional options
specified by one or more Name,Value pair arguments. Name can also be a property name
and Value is the corresponding value. Name must appear inside single quotes ('').
You can specify several name-value pair arguments in any order as Name1,Value1,
…,NameN,ValueN.

3 Alphabetical List

3-954

Properties

ParityCheckMatrix

Parity-check matrix

Specify the parity-check matrix as a binary valued sparse matrix P with dimension (N-
by-K) by N, where N > K > 0. The last N−K columns in the parity check matrix must be
an invertible matrix in GF(2). Alternatively, you can specify a two-column, non-sparse
integer index matrix I that defines the row and column indices of the 1s in the parity-
check matrix, such that P = sparse(I(:,1), I(:,2), 1).

This property accepts numeric data types. When you set this property to a sparse matrix,
it also accepts a logical data type. The upper bound for the value of N is 231-1.

The default is the sparse parity-check matrix of the half-rate LDPC code from the DVB-
S.2 standard, which is the result of dvbs2ldpc(1/2).

To generate code, set this property to a non-sparse index matrix. For instance, you can
obtain the index matrix for the DVB-S.2 standard from dvbs2ldpc(R, 'indices')
with the second input argument explicitly specified to indices, where R represents the
code rate.

Methods

clone
Create LDPC Encoder object with same
property values

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

step
Encode input using LDPC coding scheme

 comm.LDPCEncoder System object

3-955

Examples

Transmit an LDPC-encoded, QPSK-modulated bit stream through an AWGN channel,
then demodulate, decode, and count errors.

 hEnc = comm.LDPCEncoder;

 hMod = comm.PSKModulator(4, 'BitInput',true);

 hChan = comm.AWGNChannel(...

 'NoiseMethod','Signal to noise ratio (SNR)','SNR',1);

 hDemod = comm.PSKDemodulator(4, 'BitOutput',true,...

 'DecisionMethod','Approximate log-likelihood ratio', ...

 'Variance', 1/10^(hChan.SNR/10));

 hDec = comm.LDPCDecoder;

 hError = comm.ErrorRate;

 for counter = 1:10

 data = logical(randi([0 1], 32400, 1));

 encodedData = step(hEnc, data);

 modSignal = step(hMod, encodedData);

 receivedSignal = step(hChan, modSignal);

 demodSignal = step(hDemod, receivedSignal);

 receivedBits = step(hDec, demodSignal);

 errorStats = step(hError, data, receivedBits);

 end

 fprintf('Error rate = %1.2f\nNumber of errors = %d\n', ...

 errorStats(1), errorStats(2))

Algorithms

This object implements the algorithm, inputs, and outputs described on the LDPC
Encoder block reference page. The object properties correspond to the block parameters.

See Also
comm.BCHEncoder | comm.LDPCDecoder

3 Alphabetical List

3-956

clone
System object: comm.LDPCEncoder
Package: comm

Create LDPC Encoder object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates an LDPC Encoder object C, with the same property values as H.
The clone method creates a new unlocked object with uninitialized states.

The clone method creates an instance of an object. The property values, but not internal
states, are copied into the new instance of the object.

 isLocked

3-957

isLocked
System object: comm.LDPCEncoder
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the LDPCEncode System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

3 Alphabetical List

3-958

release
System object: comm.LDPCEncoder
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 step

3-959

step
System object: comm.LDPCEncoder
Package: comm

Encode input using LDPC coding scheme

Syntax

Y = step(H,X)

Description

Y = step(H,X) encodes input binary message, X, using an LDPC code that is based
on an (N-K) x N parity-check matrix. You specify the parity-check matrix in the
ParityCheckMatrix property. Input X must be a numeric or logical column vector with
length equal K. The length of the encoded data output vector, Y, is N. It is a solution to
the parity-check equation, with the first K bits equal to the input, X.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

3 Alphabetical List

3-960

comm.LTEMIMOChannel System object

Package: comm

Filter input signal through LTE MIMO multipath fading channel

Description

The comm.LTEMIMOChannel System object filters an input signal through an LTE
multiple-input multiple-output (MIMO) multipath fading channel.

A specialization of the comm.MIMOChannel System object, the comm.LTEMIMOChannel
System objects offers pre-set configurations for use with LTE link level simulations. In
addition to the comm.MIMOChannel System object, the comm.LTEMIMOChannel System
object also corrects the correlation matrix to be positive semi-definite, after rounding to
4-digit precision. This System object models Rayleigh fading for each of its links.

To filter an input signal using an LTE MIMO multipath fading channel:

1 Define and set up your LTE MIMO multipath fading channel object. See
“Construction” on page 3-960.

2 Call step to filter the input signal using an LTE MIMO multipath fading channel
according to the properties of comm.LTEMIMOChannel. The behavior of step is
specific to each object in the toolbox.

Construction

H = comm.LTEMIMOChannel creates a 3GPP Long Term Evolution (LTE) Release 10
specified multiple-input multiple-output (MIMO) multipath fading channel System
object, H. This object filters a real or complex input signal through the multipath LTE
MIMO channel to obtain the channel impaired signal.

H = comm.LTEMIMOChannel(Name,Value) creates an LTE MIMO multipath
fading channel object, H, with the specified property Name set to the specified
Value. You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

 comm.LTEMIMOChannel System object

3-961

Properties

SampleRate

Input signal sample rate (Hertz)

Specify the sample rate of the input signal in hertz as a double-precision, real, positive
scalar. The default value of this property is 30.72 MHz, as defined in the LTE
specification.

Profile

Channel propagation profile

Specify the propagation conditions of the LTE multipath fading channel as one of EPA
5Hz | EVA 5Hz | EVA 70Hz | ETU 70Hz | ETU 300Hz, which are supported in the LTE
specification Release 10. The default value of this property is EPA 5Hz.

This property defines the delay profile of the channel to be one of EPA, EVA, and ETU.
This property also defines the maximum Doppler shift of the channel to be 5 Hz, 70 Hz,
or 300 Hz. The Doppler spectrum always has a Jakes shape in the LTE specification. The
EPA profile has seven paths. The EVA and ETU profiles have nine paths.

The following tables list the delay and relative power per path associated with each
profile.

Extended Pedestrian A Model (EPA)

Excess tap delay [ns] Relative power [db]

0 0.0
30 -1.0
70 -2.0
90 -3.0

110 -8.0
190 -17.2

3 Alphabetical List

3-962

Excess tap delay [ns] Relative power [db]

410 -20.8

Extended Vehicular A Model (EVA)

Excess tap delay [ns] Relative power [db]

0 0.0
30 -1.5

150 -1.4
310 -3.6
370 -0.6
710 -9.1

1090 -7.0
1730 -12.0
2510 -16.9

Extended Typical Urban Model (ETU)

Excess tap delay [ns] Relative power [db]

0 -1.0
50 -1.0

120 -1.0
200 0.0
230 0.0
500 0.0

1600 -3.0
2300 -5.0
5000 -7.0

AntennaConfiguration

 comm.LTEMIMOChannel System object

3-963

Antenna configuration

Specify the antenna configuration of the LTE MIMO channel as one of 1x2 | 2x2 | 4x2 |
4x4. These configurations are supported in the LTE specification Release 10. The default
value of this property is 2x2.

The property value is in the format of Nt-by-Nr. Nt represents the number of transmit
antennas and Nr represents the number of receive antennas.

CorrelationLevel

Spatial correlation strength

Specify the spatial correlation strength of the LTE MIMO channel as one of Low |
Medium | High. The default value of this property is Low. When you set this property to
Low, the MIMO channel is spatially uncorrelated.

The transmit and receive spatial correlation matrices are defined from this property
according to the LTE specification Release 10. See the Algorithms section for more
information.

AntennaSelection

Antenna selection

Specify the antenna selection scheme as one of Off | Tx | Rx | Tx and Rx, where Tx
represents transmit antennas and Rx represents receive antennas. When you select Tx
and/or Rx, additional input(s) are required to specify which antennas are selected for
signal transmission. The default value of this property is Off.

RandomStream

Source of random number stream

Specify the source of random number stream as one of Global stream | mt19937ar
with seed. The default value of this property is Global stream. When you set this
property to Global stream, the current global random number stream is used for
normally distributed random number generation. In this case, the reset method only
resets the filters. If you set RandomStream to mt19937ar with seed, the object uses
the mt19937ar algorithm for normally distributed random number generation. In this
case, the reset method resets the filters and reinitializes the random number stream to
the value of the “Seed” property.

3 Alphabetical List

3-964

Seed

Initial seed of mt19937ar random number stream

Specify the initial seed of an mt19937ar random number generator algorithm as a
double-precision, real, nonnegative integer scalar. The default value of this property is
73. This property applies when you set the “RandomStream” property to mt19937ar
with seed. The Seed reinitializes the mt19937ar random number stream in the reset
method.

NormalizePathGains

Normalize path gains (logical)

Set this property to true to normalize the fading processes so that the total power of the
path gains, averaged over time, is 0 dB. The default value of this property is true. When
you set this property to false, there is no normalization for path gains.

NormalizeChannelOutputs

Normalize channel outputs (logical)

Set this property to true to normalize the channel outputs by the number of receive
antennas. The default value of this property is true. When you set this property to
false, there is no normalization for channel outputs.

PathGainsOutputPort

Enable path gain output (logical)

Set this property to true to output the channel path gains of the underlying fading
process. The default value of this property is false.

Methods

clone
Create LTEMIMOChannel object with same
property values

getNumInputs
Number of expected inputs to step method

 comm.LTEMIMOChannel System object

3-965

getNumOutputs
Number of outputs from step method

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

reset
Reset states of the LTEMIMOChannel object

step
Filter input signal through LTE MIMO
multipath fading channel

Examples

Configure Equivalent MIMO Channel System Object Using an LTE MIMO Channel System Object

Configure an equivalent MIMOChannel System Object using the LTEMIMOChannel
System Object. Then, verify that the channel output and the path gain output from the
two objects are the same.

Create a PSK Modulator System object to modulate randomly generated data.

hMod = comm.PSKModulator;

modData = step(hMod, randi([0 hMod.ModulationOrder-1],2e3,1));

Split modulated data into two spatial streams.

channelInput = reshape(modData, [2, 1e3]).';

Create an LTEMIMOChannel System object with a 2-by-2 antenna configuration and a
medium correlation level.

hLTEChan = comm.LTEMIMOChannel(...

 'Profile', 'EVA 5Hz',...

 'AntennaConfiguration', '2x2',...

 'CorrelationLevel', 'Medium',...

 'AntennaSelection', 'Off',...

 'RandomStream', 'mt19937ar with seed',...

3 Alphabetical List

3-966

 'Seed', 99,...

 'PathGainsOutputPort', true);

Filter the modulated data using the LTEMIMOChannel System object, hLTEChan.

[LTEChanOut, LTEPathGains] = step(hLTEChan, channelInput);

Create an equivalent MIMOChannel System object, hMIMOChan, using the properties of
the LTEMIMOChannel System object, hLTEChan.

The KFactor, DirectPathDopplerShift and DirectPathInitialPhase properties
only exist for the MIMOChannel System object. All other MIMOChannel System object
properties also exist for the LTEMIMOChannel System object; however, some properties
are hidden and read-only.

hMIMOChan = comm.MIMOChannel(...

 'SampleRate', hLTEChan.SampleRate,...

 'PathDelays', hLTEChan.PathDelays,...

 'AveragePathGains', hLTEChan.AveragePathGains,...

 'NormalizePathGains', hLTEChan.NormalizePathGains,...

 'FadingDistribution', hLTEChan.FadingDistribution,...

 'MaximumDopplerShift', hLTEChan.MaximumDopplerShift,...

 'DopplerSpectrum', hLTEChan.DopplerSpectrum,...

 'SpatialCorrelation', hLTEChan.SpatialCorrelation,...

 'TransmitCorrelationMatrix', hLTEChan.TransmitCorrelationMatrix,...

 'ReceiveCorrelationMatrix', hLTEChan.ReceiveCorrelationMatrix,...

 'AntennaSelection', hLTEChan.AntennaSelection,...

 'NormalizeChannelOutputs', hLTEChan.NormalizeChannelOutputs,...

 'RandomStream', hLTEChan.RandomStream,...

 'Seed', hLTEChan.Seed,...

 'PathGainsOutputPort', hLTEChan.PathGainsOutputPort);

Filter the modulated data using the equivalent hMIMOChan and use the step method to
process data.

[MIMOChanOut, MIMOPathGains] = step(hMIMOChan, channelInput);

Verify that the channel output and the path gain output from the two objects are the
same.

display(isequal(LTEChanOut, MIMOChanOut));

display(isequal(LTEPathGains, MIMOPathGains));

You can repeat the preceding process with AntennaConfiguration set to 4x2 or
4x4 and CorrelationLevel set to Medium or High for hLTEChan. If you do so, the

 comm.LTEMIMOChannel System object

3-967

resulting channel output and path gain output from the two objects are slightly different.
This difference occurs because an LTE channel with such configurations has its spatial
correlation matrix rounded to 4-digit precision. See the LTE specification Release 10 for
more details.

Algorithms

This System object is a specialized implementation of the comm.MIMOChannel System
object. For additional algorithm information, see the comm.MIMOChannel System object
help page.

Spatial Correlation Matrices

The following table defines the transmitter eNodeB correlation matrix.

 One Antenna Two Antennas Four Antennas

eNodeB Correlation ReNB = 1
R

eNB
=

Ê

Ë
ÁÁ

ˆ

¯
˜̃*

1

 1

a

a

ReNB =

Ê

Ë

Á
Á
Á
Á
Á
Á
ÁÁ

ˆ
1

1

1

1

1
9

4
9

1
9

1
9

4
9

4
9

1
9

1
9

4
9

1
9

a a a

a a a

a a a

a a a

*

* *

* * *
¯̄

˜
˜
˜
˜
˜
˜
˜̃

The following table defines the receiver UE correlation matrix.

 One Antenna Two Antennas Four Antennas

UE Correlation RUE = 1
R

UE
=

Ê

Ë
ÁÁ

ˆ

¯
˜̃*

1

 1

b

b

RUE =

Ê

Ë

Á
Á
Á
Á
Á
Á
ÁÁ

ˆ

¯

1

1

1

1

1
9

4
9

1
9

1
9

4
9

4
9

1
9

1
9

4
9

1
9

b b b

b b b

b b b

b b b

*

* *

* * *

˜̃
˜
˜
˜
˜
˜
˜̃

3 Alphabetical List

3-968

The following table describes the Rspat channel spatial correlation matrix between the
transmitter and receiver antennas.

Tx-by-Rx Configuration Correlation Matrix

1-by-2
R Rspat UE= =

È

Î
Í
Í

˘

˚
˙
˙

1

1

b

b *

2-by-2

R R Rspat eNB UE= ƒ =
È

Î
Í
Í

˘

˚
˙
˙

ƒ
È

Î
Í
Í

˘

˚
˙
˙

=
1

1

1

1

1

1a

a

b

b

b a ab

b ab a

a a* *

* *

* **

* * * *

b b

a b a b

1

1

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

4-by-2

R R Rspat eNB UE= ƒ =

È
1

1

1

1

1
9

4
9

1
9

1
9

4
9

4
9

1
9

1
9

4
9

1
9

a a a

a a a

a a a

a a a

*

* *

* *

*
ÎÎ

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

ƒ
È

Î
Í
Í

˘

˚
˙
˙

1

1

b

b *

4-by-4

R R Rspat eNB UE= ƒ =

È
1

1

1

1

1
9

4
9

1
9

1
9

4
9

4
9

1
9

1
9

4
9

1
9

a a a

a a a

a a a

a a a

*

* *

* *

*
ÎÎ

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

ƒ

1

1

1

1
9

4
9

1
9

1
9

4
9

4
9

1
9

1
9

4
9

b b b

b b b

b b b

b b

*

* *

* * bb
1

9 1
*

Ê

Ë

Á
Á
Á
Á
Á
Á
ÁÁ

ˆ

¯

˜
˜
˜
˜
˜
˜
˜̃

Spatial Correlation Correction

Low Correlation Medium Correlation High Correlation

α β α β α β
0 0 0.3 0.9 0.9 0.9

 comm.LTEMIMOChannel System object

3-969

To insure the correlation matrix is positive semi-definite after round-off to 4 digit
precision, this System object uses the following equation:

R R aI ahigh spatial n= +È
Î

˘
˚ +/ ()1

Where

α represents the scaling factor such that the smallest value is used to obtain a positive
semi-definite result.

For the 4-by-2 high correlation case, α=0.00010.

For the 4-by-4 high correlation case, α=0.00012.

The object uses the same method to adjust the 4-by-4 medium correlation matrix to
insure the correlation matrix is positive semi-definite after rounding to 4 digit precision
with α = 0.00012.

Selected Bibliography

[1] 3rd Generation Partnership Project, Technical Specification Group Radio Access
Network, Evolved Universal Terrestrial Radio Access (E-UTRA), Base Station
(BS) radio transmission and reception, Release 10, 2009–2010, 3GPP TS 36.104,
Vol. 10.0.0.

[2] 3rd Generation Partnership Project, Technical Specification Group Radio Access
Network, Evolved Universal Terrestrial Radio Access (E-UTRA), User Equipment
(UE) radio transmission and reception, Release 10, 2010, 3GPP TS 36.101, Vol.
10.0.0.

[3] Oestges, C., and B. Clerckx. MIMO Wireless Communications: From Real-World
Propagation to Space-Time Code Design, Academic Press, 2007.

[4] Correira, L. M. Mobile Broadband Multimedia Networks: Techniques, Models and
Tools for 4G, Academic Press, 2006.

[5] Jeruchim, M., P. Balaban, and K. S. Shanmugan. Simulation of Communication
Systems, Second Edition, New York, Kluwer Academic/Plenum, 2000.

3 Alphabetical List

3-970

See Also
comm.MIMOChannel

 clone

3-971

clone
System object: comm.LTEMIMOChannel
Package: comm

Create LTEMIMOChannel object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates an LTEMIMOChannel object C, with the same property values as
H. The clone method creates a new unlocked object with uninitialized states.

3 Alphabetical List

3-972

getNumInputs
System object: comm.LTEMIMOChannel
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of
expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H)

The getNumInputs method returns a positive integer that is the number of expected
inputs (not counting the object itself) to the step method. This value will change if you
alter any properties that turn inputs on or off. You must call the step method with the
number of input arguments equal to the result of getNumInputs(H).

 getNumOutputs

3-973

getNumOutputs
System object: comm.LTEMIMOChannel
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

The getNumOutputs method returns a positive integer that is the number of outputs
from the step method. This value will change if you alter any properties that turn
outputs on or off.

3 Alphabetical List

3-974

isLocked
System object: comm.LTEMIMOChannel
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the LTEMIMOChannel System
object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

 release

3-975

release
System object: comm.LTEMIMOChannel
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

3 Alphabetical List

3-976

reset
System object: comm.LTEMIMOChannel
Package: comm

Reset states of the LTEMIMOChannel object

Syntax

reset(H)

Description

reset(H) resets the states of the LTEMIMOChannel object, H.

If you set the “RandomStream” property of H to Global stream, the reset method
only resets the filters. If you set RandomStream to mt19937ar with seed, the reset
method not only resets the filters but also reinitializes the random number stream to the
value of the “Seed” property.

 step

3-977

step
System object: comm.LTEMIMOChannel
Package: comm

Filter input signal through LTE MIMO multipath fading channel

Syntax

Y = step(H,X)

[Y,PATHGAINS] = step(H,X)

Description

Y = step(H,X) filters input signal X through an LTE MIMO multipath fading channel
and returns the result in Y. The input X can be a double-precision data type scalar,
vector, or 2-D matrix with real or complex values. X is of size Ns-by-Nt. Ns represents
the number of samples and Nt represents the number of transmit antennas that must
match the “AntennaConfiguration” property setting of H. Y is the output signal of
size Ns-by-Nr. Nr represents the number of receive antennas that is specified by the
AntennaConfiguration property of H. Y is of double-precision data type with complex
values.

[Y,PATHGAINS] = step(H,X) returns the LTE MIMO channel path gains of
the underlying fading process in PATHGAINS. This applies when you set the
“PathGainsOutputPort” property to true. PATHGAINS is of size Ns-by-Np-by-Nt-by-
Nr. Np represents the number of discrete paths of the channel implicitly defined by the
“Profile” property of H. PATHGAINS is of double-precision data type with complex
values.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

3 Alphabetical List

3-978

comm.MatrixDeinterleaver System object
Package: comm

Deinterleave input symbols using permutation matrix

Description
The MatrixDeinterleaver object performs block deinterleaving by filling a matrix
with the input symbols column by column and then sending the matrix contents to the
output port row by row. The number of rows and number of columns properties set the
dimensions of the matrix that the object uses internally for computations.

To deinterleave input symbols using a permutation vector:

1 Define and set up your matrix deinterleaver object. See “Construction” on page
3-978.

2 Call step to deinterleave the input signal according to the properties of
comm.MatrixDeinterleaver. The behavior of step is specific to each object in the
toolbox.

Construction
H = comm.MatrixDeinterleaver creates a matrix deinterleaver System object, H.
This object restores the original ordering of a sequence that was interleaved using the
matrix interleaver object.

H = comm.MatrixDeinterleaver(Name,Value) creates a matrix
deinterleaver object, H, with each specified property set to the specified
value. You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

H = comm.MatrixDeinterleaver(N,M) creates a matrix deinterleaver object, H. This
object has the NumRows property set to N, the NumColumns property set to M.

Properties
NumRows

 comm.MatrixDeinterleaver System object

3-979

Number of rows of permutation matrix

Specify the number of permutation matrix rows as a scalar, positive integer. The default
is 3.

NumColumns

Number of columns of permutation matrix

Specify the number of permutation matrix columns as a scalar, positive integer. The
default is 4.

Methods

clone
Create matrix deinterleaver object with
same property values

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

step
Deinterleave input symbols using
permutation matrix

Examples

Interleave and deinterleave data.

 hInt = comm.MatrixInterleaver('NumRows', 2, ...

 'NumColumns', 5);

3 Alphabetical List

3-980

 hDeInt = comm.MatrixDeinterleaver('NumRows', 2, ...

 'NumColumns', 5);

 data = randi(7, 10, 1);

 intData = step(hInt, data);

 deIntData = step(hDeInt, intData);

 [data, intData, deIntData]

Algorithms

This object implements the algorithm, inputs, and outputs described on the Matrix
Deinterleaver block reference page. The object properties correspond to the block
parameters.

See Also
comm.MatrixInterleaver | comm.BlockDeinterleaver

 clone

3-981

clone
System object: comm.MatrixDeinterleaver
Package: comm

Create matrix deinterleaver object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a MatrixDeinterleaver object C, with the same property
values as H. The clone method creates a new unlocked object with uninitialized states.

3 Alphabetical List

3-982

getNumInputs
System object: comm.MatrixDeinterleaver
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of
expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H)

 getNumOutputs

3-983

getNumOutputs
System object: comm.MatrixDeinterleaver
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

3 Alphabetical List

3-984

isLocked
System object: comm.MatrixDeinterleaver
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the MatrixDeinterleaver
System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

 release

3-985

release
System object: comm.MatrixDeinterleaver
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H)Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

3 Alphabetical List

3-986

step
System object: comm.MatrixDeinterleaver
Package: comm

Deinterleave input symbols using permutation matrix

Syntax

Y = step(H,X)

Description

Y = step(H,X) restores the original ordering of the sequence, X, that was interleaved
using a block interleaver. The object fills a permutation matrix with the input symbols
column by column and outputs the matrix contents row by row in the output, Y. The
input X must be a column vector of length equal to “NumRows” ¥ “NumColumns”. The data
type for X can be numeric, logical, or fixed-point (fi objects). Y has the same data type as
X.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

 comm.MatrixInterleaver System object

3-987

comm.MatrixInterleaver System object
Package: comm

Permute input symbols using permutation matrix

Description

The MatrixInterleaver object performs block interleaving by filling a matrix with the
input symbols row by row and then outputs the matrix contents column-by-column.

To perform block interleaving using a permutation matrix:

1 Define and set up your matrix interleaver object. See “Construction” on page
3-987.

2 Call step to interleave the input symbols according to the properties of
comm.MatrixInterleaver. The behavior of step is specific to each object in the
toolbox.

Construction

H = comm.MatrixInterleaver creates a matrix interleaver System object, H. This
object permutes the input by filling a permutation matrix with the input symbols row by
row. The object then outputs the matrix contents column by column.

H = comm.MatrixInterleaver(Name,Value) creates a matrix interleaver object, H,
with each specified property set to the specified value. You can specify additional name-
value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

H = comm.MatrixInterleaver(N,M) creates a matrix interleaver object, H. This
object has the NumRows property set to N, the NumColumns property set to M.

Properties

NumRows

Number of rows of permutation matrix

3 Alphabetical List

3-988

Specify the number of permutation matrix rows as a scalar, positive integer. The default
is 3.

NumColumns

Number of columns of permutation matrix

Specify the number of permutation matrix columns as a scalar, positive integer. The
default is 4.

Methods

clone
Create matrix interleaver object with same
property values

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

step
Permute input symbols using permutation
matrix

Examples

Interleave and deinterleave data

 hInt = comm.MatrixInterleaver('NumRows', 2, ...

 'NumColumns', 5);

 hDeInt = comm.MatrixDeinterleaver('NumRows', 2, ...

 'NumColumns', 5);

 comm.MatrixInterleaver System object

3-989

 data = randi(7, 10, 1);

 intData = step(hInt, data);

 deIntData = step(hDeInt, intData);

 % compare the original sequence, interleaved sequence, and restored sequence

 [data, intData, deIntData]

Algorithms

This object implements the algorithm, inputs, and outputs described on the Matrix
Deinterleaver block reference page. The object properties correspond to the block
parameters.

See Also
comm.MatrixDeinterleaver | comm.BlockInterleaver

3 Alphabetical List

3-990

clone
System object: comm.MatrixInterleaver
Package: comm

Create matrix interleaver object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a MatrixInterleaver object C, with the same property values
as H. The clone method creates a new unlocked object with uninitialized states.

 getNumInputs

3-991

getNumInputs
System object: comm.MatrixInterleaver
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of
expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H)

3 Alphabetical List

3-992

getNumOutputs
System object: comm.MatrixInterleaver
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

 isLocked

3-993

isLocked
System object: comm.MatrixInterleaver
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the MatrixInterleaver System
object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

3 Alphabetical List

3-994

release
System object: comm.MatrixInterleaver
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H)Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 step

3-995

step
System object: comm.MatrixInterleaver
Package: comm

Permute input symbols using permutation matrix

Syntax

Y = step(H,X)

Description

Y = step(H,X) permutes input sequence, X, and returns interleaved sequence, Y.
The object fills a permutation matrix with the input symbols row by row and outputs
the matrix contents column by column. The input X must be a column vector of length
“NumRows” ¥ “NumColumns” and the data type can be numeric, logical, or fixed-point (fi
objects). Y has the same data type as X.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

3 Alphabetical List

3-996

comm.MatrixHelicalScanDeinterleaver System object
Package: comm

Deinterleave input symbols by filling a matrix along diagonals

Description

The MatrixHelicalScanDeinterleaver object performs block deinterleaving by
filling a matrix with the input symbols helically and then outputs the matrix contents
row by row. The number of rows and number of columns properties represent the
dimensions of the matrix that the object uses internally for computations.

To deinterleave the input symbols by filling a matrix with the input symbols helically
and then outputting the matrix contents row-by-row:

1 Define and set up your matrix helical scan deinterleaver object. See “Construction”
on page 3-996.

2 Call step to deinterleave the input signal according to the properties of
comm.MatrixHelicalScanDeinterleaver. The behavior of step is specific to
each object in the toolbox.

Construction

H = comm.MatrixHelicalScanDeinterleaver creates a matrix helical scan
deinterleaver object, H. This object restores the original ordering of a sequence that was
interleaved using the matrix helical scan interleaver System object.

H = comm.MatrixHelicalScanDeinterleaver(Name,Value) creates a matrix
helical scan deinterleaver object, H, with each specified property set to the specified
value. You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties

NumRows

 comm.MatrixHelicalScanDeinterleaver System object

3-997

Number of rows of permutation matrix

Specify the number of rows in the permutation matrix as a scalar, positive integer. The
default is 64.

NumColumns

Number of columns of permutation matrix

Specify the number of columns in the permutation matrix as a scalar, positive integer.
The default is 64.

StepSize

Slope of diagonals

Specify slope as a scalar integer between 0 and the value you specify in the “NumRows”
property. The default is 1. The slope value indicates the amount by which the row index
increases as the column index increases by 1. When you set the value of this property to
0, the object does not interleave and the output matches the input.

Methods

clone
Create matrix helical scan deinterleaver
object with same property values

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

step
Deinterleave input symbols by filling a
matrix along diagonals

3 Alphabetical List

3-998

Examples

Interleave and deinterleave random data.

 hInt = comm.MatrixHelicalScanInterleaver('NumRows', 4, ...

 'NumColumns', 4);

 hDeInt = comm.MatrixHelicalScanDeinterleaver('NumRows', 4, ...

 'NumColumns', 4);

 data = randi(7, 16, 1);

 intData = step(hInt, data);

 deIntData = step(hDeInt, intData);

 % compare the original sequence, interleaved sequence and restored sequence.

 [data, intData, deIntData];

Algorithms

This object implements the algorithm, inputs, and outputs described on the Matrix
Helical Scan Deinterleaver block reference page. The object properties correspond to the
block parameters.

See Also
comm.MatrixHelicalScanInterleaver | comm.BlockDeinterleaver

 clone

3-999

clone
System object: comm.MatrixHelicalScanDeinterleaver
Package: comm

Create matrix helical scan deinterleaver object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a MatrixHelicalScanDeinterleaver object C, with the same
property values as H. The clone method creates a new unlocked object with uninitialized
states.

3 Alphabetical List

3-1000

getNumInputs
System object: comm.MatrixHelicalScanDeinterleaver
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of
expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H)

 getNumOutputs

3-1001

getNumOutputs
System object: comm.MatrixHelicalScanDeinterleaver
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

3 Alphabetical List

3-1002

isLocked
System object: comm.MatrixHelicalScanDeinterleaver
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the
MatrixHelicalScanDeinterleaver System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

 release

3-1003

release
System object: comm.MatrixHelicalScanDeinterleaver
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H)Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

3 Alphabetical List

3-1004

step
System object: comm.MatrixHelicalScanDeinterleaver
Package: comm

Deinterleave input symbols by filling a matrix along diagonals

Syntax

Y = step(H,X)

Description

Y = step(H,X) restores the original ordering of the sequence, X. The object fills a
permutation matrix with the input symbols in a helical fashion and output the contents
row by row, and returns Y. The input X must be a “NumRows” ¥ “NumColumns” long
column vector and the data type can be numeric, logical, or fixed-point (fi objects). Y has
the same data type as X.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

 comm.MatrixHelicalScanInterleaver System object

3-1005

comm.MatrixHelicalScanInterleaver System object
Package: comm

Permute input symbols by selecting matrix elements along diagonals

Description

The MatrixHelicalScanInterleaver object performs block interleaving by filling
a matrix with the input symbols row by row and then outputs the matrix contents
helically. The number of rows and number of columns properties are the dimensions of
the matrix that the object uses internally for computations.

To interleave the input signal by filling a matrix row-by-row with the input symbols and
then outputting the matrix contents helically:

1 Define and set up your matrix helical scan interleaver object. See “Construction” on
page 3-1005.

2 Call step to interleave the input signal according to the properties of
comm.MatrixHelicalScanInterleaver. The behavior of step is specific to each
object in the toolbox.

Construction

H = comm.MatrixHelicalScanInterleaver creates a matrix helical scan interleaver
object, H. This object permutes the input by filling a permutation matrix with the input
symbols row by row and then outputs the matrix contents helically.

H = comm.MatrixHelicalScanInterleaver(Name,Value) creates a matrix
helical scan interleaver object, H, with each specified property set to the specified
value. You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties

NumRows

3 Alphabetical List

3-1006

Number of rows of permutation matrix

Specify the number of rows in the permutation matrix as a scalar, positive integer. The
default is 64.

NumColumns

Number of columns of permutation matrix

Specify the number of columns in the permutation matrix as a scalar, positive integer.
The default is 64.

StepSize

Slope of diagonals

Specify slope as a scalar integer between 0 and the value you specify in the “NumRows”
property. The slope value represents the amount by which the row index increases as the
column index increases by 1. When you set the value of this property to 0, the object does
not interleave and the output matches the input. The default is 1.

Methods

clone
Create matrix helical scan interleaver
object with same property values

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

step
Permute input symbols by selecting matrix
elements along diagonals

 comm.MatrixHelicalScanInterleaver System object

3-1007

Examples

Interleave and deinterleave random data.

 hInt = comm.MatrixHelicalScanInterleaver('NumRows', 4, ...

 'NumColumns', 4);

 hDeInt = comm.MatrixHelicalScanDeinterleaver('NumRows', 4, ...

 'NumColumns', 4);

 data = randi(7, 16, 1);

 intData = step(hInt, data);

 deIntData = step(hDeInt, intData);

 % compare the original sequence, interleaved sequence and restored sequence.

 [data, intData, deIntData]

Algorithms

This object implements the algorithm, inputs, and outputs described on the Matrix
Helical Scan Deinterleaver block reference page. The object properties correspond to the
block parameters.

See Also
comm.MatrixHelicalScanDeinterleaver | comm.BlockInterleaver

3 Alphabetical List

3-1008

clone
System object: comm.MatrixHelicalScanInterleaver
Package: comm

Create matrix helical scan interleaver object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a MatrixHelicalScanInterleaver object C, with the same
property values as H. The clone method creates a new unlocked object with uninitialized
states.

 getNumInputs

3-1009

getNumInputs
System object: comm.MatrixHelicalScanInterleaver
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of
expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H)

3 Alphabetical List

3-1010

getNumOutputs
System object: comm.MatrixHelicalScanInterleaver
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

 isLocked

3-1011

isLocked
System object: comm.MatrixHelicalScanInterleaver
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the
MatrixHelicalScanInterleaver System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

3 Alphabetical List

3-1012

release
System object: comm.MatrixHelicalScanInterleaver
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H)Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 step

3-1013

step
System object: comm.MatrixHelicalScanInterleaver
Package: comm

Permute input symbols by selecting matrix elements along diagonals

Syntax

Y = step(H,X)

Description

Y = step(H,X) permutes input sequence, X, and returns interleaved sequence, Y. The
input X must be a “NumRows” ¥ “NumColumns” long column vector and the data type can
be numeric, logical, or fixed-point (fi objects). Y has the same data type as X.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

3 Alphabetical List

3-1014

comm.MemorylessNonlinearity System object

Package: comm

Apply memoryless nonlinearity to input signal

Description

The MemorylessNonlinearity object applies a memoryless nonlinearity to a complex,
baseband signal. You can use the object to model radio frequency (RF) impairments to a
signal at the receiver.

To apply memoryless nonlinearity to the input signal:

1 Define and set up your memoryless nonlinearity object. See “Construction” on page
3-1014.

2 Call step to apply memoryless nonlinearity according to the properties of
comm.MemorylessNonlinearity. The behavior of step is specific to each object in
the toolbox.

Construction

H = comm.MemorylessNonlinearity creates a memoryless nonlinearity System
object, H. This object models receiver radio frequency (RF) impairments.

H = comm.MemorylessNonlinearity(Name,Value) creates a memoryless
nonlinearity object, H, with each specified property set to the specified value.
You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties

Method

Method used to model nonlinearity

 comm.MemorylessNonlinearity System object

3-1015

Specify the nonlinearity method as one of Cubic polynomial | Hyperbolic tangent
| Saleh model | Ghorbani model | Rapp model. The default is Cubic polynomial.
This property is non-tunable.

InputScaling

Scale factor applied to input signal

Specify the scale factor in decibels. The object applies this factor to the input signal as a
real scalar value of double- or single-precision data type. The default is 0. This property
applies when you set the “Method” property to Saleh model or Ghorbani model. This
property is tunable.

LinearGain

Linear gain applied to output signal

Specify the linear gain (in decibels) that the object applies to the output signal as a real
scalar value of double- or single-precision data type. The default is 0. This property
applies when you set the “Method” property to Cubic polynomial, Hyperbolic
tangent, or Rapp model. This property is tunable.

IIP3

Third-order input intercept point

Specify the third-order input intercept point (in decibels relative to a milliwatt) as a real
scalar value of double- or single-precision data type. The default is 30. This property
applies when you set the “Method” property to Cubic polynomial or Hyperbolic
tangent. This property is tunable.

AMPMConversion

AM/PM conversion factor

Specify the AM/PM conversion factor (in degrees per decibel) as a real scalar value of
double- or single-precision data type. The default is 10. This property applies when
you set the “Method” property to Cubic polynomial or Hyperbolic tangent. This
property is tunable.

AMAMParameters

AM/AM conversion parameters

3 Alphabetical List

3-1016

Specify the AM/AM conversion parameters that the object uses to compute the amplitude
gain for an input signal as a real vector of double- or single-precision data type. The
default is [2.1587 1.1517] for the Saleh model and [8.1081 1.5413 6.5202
-0.0718] for the Ghorbani model.

This property applies when you set the “Method” property to Saleh model or Ghorbani
model.

When you set the Method property to Saleh model, this property is a two-element
vector that specifies alpha and beta values. Otherwise, this property is a four-element
vector that specifies x1, x2, x3, and x4 values. This property is tunable.

AMPMParameters

AM/PM conversion parameters

Specify the AM/PM conversion parameters used to compute the phase change for an
input signal as a real vector of double- or single-precision data type. The default is
[4.0033 9.1040] for the Saleh model and [4.6645 2.0965 10.88 -0.003] for the
Ghorbani model.

This property applies when you set the “Method” property to Saleh model or Ghorbani
model.

When you set the Method property to Saleh model, this property is a two-element
vector that specifies alpha and beta values. Otherwise, this property is a four-element
vector that specifies y1, y2, y3, and y4 values. This property is tunable.

PowerLowerLimit

Lower input power limit

Specify the minimum input power (in decibels relative to a milliwatt) for which AM/PM
conversion scales linearly with input power value. The default is 10. Below this value,
the phase shift resulting from AM/PM conversion is zero. You must set this property to
a real scalar value of double- or single-precision data type. This property applies when
you set the “Method” property to Cubic polynomial or Hyperbolic tangent. This
property is tunable.

PowerUpperLimit

Upper input power limit

 comm.MemorylessNonlinearity System object

3-1017

Specify the maximum input power (in decibels relative to a milliwatt) for which AM/
PM conversion scales linearly with input power value. The default is inf. Above this
value, the phase shift resulting from AM/PM conversion is constant. You must set
the “PowerUpperLimit” property to a real scalar value, which is greater than the
“PowerLowerLimit” property and of double- or single-precision data type. This property
applies when you set the “Method” property to Cubic polynomial or Hyperbolic
tangent.This property is tunable.

OutputScaling

Scale factor applied to output signal

Specify the scale factor (in decibels) that the object applies to the output signal as a
real scalar value of double- or single-precision data type. The default is 0. This property
applies when you set the “Method” property to Saleh model or Ghorbani model. This
property is tunable.

Smoothness

Smoothness factor

Specify the smoothness factor as a real scalar value of double- or single-precision data
type. The default is 0.5. This property applies when you set the “Method” property to
Rapp model. This property is tunable.

OutputSaturationLevel

Output saturation level

Specify the output saturation level as a real scalar value of double- or single-precision
data type. This property applies when you set the “Method” property to Rapp model.
The default is 1. This property is tunable.

Methods

clone
Create memoryless nonlinearity object with
same property values

getNumInputs
Number of expected inputs to step method

3 Alphabetical List

3-1018

getNumOutputs
Number of outputs from step method

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

step
Apply memoryless nonlinearity to input
signal

Examples

Apply "Saleh model" nonlinearity to a 16-QAM signal.

 % Create 16-QAM modulator

 hMod = comm.RectangularQAMModulator('ModulationOrder',16,...

 'NormalizationMethod','Average power', 'AveragePower',1e-2);

 % Create Memoryless Nonlinearity System object

 hNonlin = comm.MemorylessNonlinearity('Method', 'Saleh model');

 % Generate modulated symbols

 modData = step(hMod, randi([0 15], 1000, 1));

 % Apply Nonlinearity model and plot the result

 y = step(hNonlin, modData);

 scatterplot(y)

Algorithms

This object implements the algorithm, inputs, and outputs described on the Memoryless
Nonlinearity block reference page. The object properties correspond to the block
parameters.

See Also
comm.PhaseNoise

 clone

3-1019

clone
System object: comm.MemorylessNonlinearity
Package: comm

Create memoryless nonlinearity object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a MemorylessNonlinearity object C, with the same property
values as H. The clone method creates a new unlocked object with uninitialized states.

3 Alphabetical List

3-1020

getNumInputs
System object: comm.MemorylessNonlinearity
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of
expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H)

 getNumOutputs

3-1021

getNumOutputs
System object: comm.MemorylessNonlinearity
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

3 Alphabetical List

3-1022

isLocked
System object: comm.MemorylessNonlinearity
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the MemorylessNonlinearity
System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

 release

3-1023

release
System object: comm.MemorylessNonlinearity
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H)Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

3 Alphabetical List

3-1024

step
System object: comm.MemorylessNonlinearity
Package: comm

Apply memoryless nonlinearity to input signal

Syntax

Y = step(H,X)

Description

Y = step(H,X) applies memoryless nonlinearity to the input, X, using the nonlinearity
method you specify in the Method property, and returns the result in Y. The input X
must be a complex scalar or column vector of data type double or single precision. The
output, Y, is of the same data type as the input, X.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

 comm.MER System object

3-1025

comm.MER System object

Package: comm

Measure modulation error ratio

Description

The Modulation Error Ratio (MER) MER object measures the signal-to-noise ratio
(SNR) in digital modulation applications. You can use these types of measurements
to determine system performance in communications applications. For example,
determining whether a DVB-T system conforms to applicable radio transmission
standards requires accurate MER measurements. The block measures all outputs in
decibels.

To measure modulation error ratio:

1 Define and set up your MER object. See “Construction” on page 3-1025.
2 Call step to measure the modulation error ratio according to the properties of

comm.MER. The behavior of step is specific to each object in the toolbox.

Construction

H = comm.MER creates a modulation error ratio (MER) System object, H. This object
measures the signal-to-noise ratio (SNR) in digital modulation applications.

H = comm.MER(Name,Value) creates an MER object, H, with each specified property
set to the specified value. You can specify additional name-value pair arguments in any
order as (Name1,Value1,...,NameN,ValueN).

Properties

MinimumMEROutputPort

Enable minimum MER measurement output

3 Alphabetical List

3-1026

When you set this property to true, the step method outputs minimum MER
measurements. The default is false. The step method outputs the minimum MER
output as the minimum MER value measured in the current input frame.

XPercentileMEROutputPort

Enable X-percentile MER measurement output

When you set this property to true, the step method outputs X-percentile MER
measurements. The default is false. The X-percentile MER measurements persist.
These measurements are based on all the input frames since the last reset.

XPercentileValue

X-percentile value

Specify the X-percentile value (as a percentage) that the object uses to calculate the x
th

percentile of the MER measurements. The default is 95. Set this property to a real scalar
value between 0 and 100, inclusive. This property can have a data type of double, single,
or integer. This property applies when you set the “XPercentileMEROutputPort”
property to true. The x -th percentile is the MER value above which x % of all the
computed MER values lie.

SymbolCountOutputPort

Enable symbol count output

When you set this property to true, the step method outputs the number of
accumulated symbols that have been used to calculate the x -Percentile MER
measurements since the last reset. The default is false. This property applies when you
set the “XPercentileMEROutputPort” property to true.

Methods

clone
Create MER measurement object with
same property values

getNumInputs
Number of expected inputs to step method

 comm.MER System object

3-1027

getNumOutputs
Number of outputs from step method

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

reset
Reset states of MER measurement object

step
Measure modulation error ratio

Examples

Measure MER of a noisy 16-QAM modulated signal

% Create a rectangular QAM modulator and an AWGN Channel

 hMod = comm.RectangularQAMModulator(16);

 hAWGN = comm.AWGNChannel('NoiseMethod',...

 'Signal to noise ratio (SNR)',...

 'SNR', 20, 'SignalPower', 10);

 % Create an MER object, output minimum and 90-percentile MER, and symbol

 % count

 hMER = comm.MER('MinimumMEROutputPort', true, ...

 'XPercentileMEROutputPort', true,'XPercentileValue', 90,...

 'SymbolCountOutputPort',true);

 % Generate modulated symbols and add noise

 refsym = step(hMod, randi([0 15], 1000, 1));

 rxsym = step(hAWGN, refsym);

 % Calculate measurements

 [MERdB,MinMER,PercentileMER,NumSym] = step(hMER,refsym,rxsym)

MERdB =

 20.1071

MinMER =

3 Alphabetical List

3-1028

 11.4248

PercentileMER =

 16.5850

NumSym =

 1000

Algorithms

This object implements the algorithm, inputs, and outputs described on the MER
Measurement block reference page. The object properties correspond to the block
parameters.

See Also
comm.EVM | comm.CCDF | comm.ACPR

 clone

3-1029

clone
System object: comm.MER
Package: comm

Create MER measurement object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a MER object C, with the same property values as H. The clone
method creates a new unlocked object with uninitialized states.

3 Alphabetical List

3-1030

getNumInputs
System object: comm.MER
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of
expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H)

 getNumOutputs

3-1031

getNumOutputs
System object: comm.MER
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

3 Alphabetical List

3-1032

isLocked
System object: comm.MER
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the MER System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

 release

3-1033

release
System object: comm.MER
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H)Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

3 Alphabetical List

3-1034

reset
System object: comm.MER
Package: comm

Reset states of MER measurement object

Syntax

reset(H)

Description

reset(H) resets the states of the MER object, H.

 step

3-1035

step
System object: comm.MER
Package: comm

Measure modulation error ratio

Syntax

MERDB = step(H,REFSYM,RXSYM)

[MERDB,MINMER] = step(H,REFSYM,RXSYM)

[MERDB,PMER] = step(H,REFSYM,RXSYM)

[MERDB,NUMSYM] = step(H,REFSYM,RXSYM)

Description

MERDB = step(H,REFSYM,RXSYM) outputs MER (in dB), MERDB, measured in the
received signal, RXSYM, based on the reference signal, REFSYM. REFSYM, and RXSYM
inputs are complex column vectors of equal dimensions and data type. The data type can
be double, single, signed integer, or signed fixed point with power-of-two slope and zero
bias. The step method outputs the MERDB measurement based solely on the current input
frame. All outputs of this object are of data type double.

[MERDB,MINMER] = step(H,REFSYM,RXSYM) outputs the minimum MER
(in dB), MINMER, measured in the received signal, RXSYM, when you set the
MinimumMEROutputPort property to true. The step method outputs the MINMER
measurement based on the reference signal, REFSYM. MINMER is the minimum MER
value measured in the current input frame.

[MERDB,PMER] = step(H,REFSYM,RXSYM) outputs the percentile MER (in dB), PMER,
measured in the received signal, RXSYM, when you set the XPercentileMEROutputPort
property to true. The step method outputs the PMER measurement based on the
reference signal, REFSYM. The object sets PMER equal to a value just smaller than
the XPercentileValue percent of all the MER values. For example, if you set the
XPercentileValue property to 95, then 95% of all MER measurements are above the
PMER value. The object calculates the persistent measurement PMER, using all the input
frames since the last reset.

3 Alphabetical List

3-1036

[MERDB,NUMSYM] = step(H,REFSYM,RXSYM) outputs the number of symbols,
NUMSYM, used to calculate the X-Percentile MER measurements when you set the
SymbolCountOutputPort property to true. You can combine optional output arguments
when you set their enabling properties. Optional outputs must be listed in the same
order as the order of the enabling properties. For example,

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

 comm.MIMOChannel System object

3-1037

comm.MIMOChannel System object
Package: comm

Filter input signal through MIMO multipath fading channel

Description
The MIMOChannel System object filters an input signal through a multiple-input
multiple-output (MIMO) multipath fading channel. This object models both Rayleigh
and Rician fading and employs the Kronecker model for modeling the spatial correlation
between the links.

The fading processing per link is per the “Methodology for Simulating Multipath Fading
Channels” section and assumes the same parameters for all NT × NR links of the MIMO
channel. Each link comprises all multipaths for that link.

To filter an input signal using a MIMO multipath fading channel:

1 Define and set up your MIMO channel object. See “Construction” on page 3-1037.
2 Call step to filter the input signal through a MIMO multipath fading channel

according to the properties of comm.MIMOChannel. The behavior of step is specific
to each object in the toolbox.

Construction
H = comm.MIMOChannel creates a multiple-input multiple-output (MIMO) frequency
selective or frequency flat fading channel System object, H. This object filters a real
or complex input signal through the multipath MIMO channel to obtain the channel
impaired signal.

H = comm.MIMOChannel(Name,Value) creates a MIMO channel object, H, with the
specified property Name set to the specified Value. You can specify additional name-
value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties
SampleRate

3 Alphabetical List

3-1038

Input signal sample rate (hertz)

Specify the sample rate of the input signal in hertz as a double-precision, real, positive
scalar. The default value of this property is 1 Hz.

PathDelays

Discrete path delay vector (seconds)

Specify the delays of the discrete paths in seconds as a double-precision, real, scalar or
row vector. The default value of this property is 0. When you set PathDelays to a scalar,
the MIMO channel is frequency flat. When you set PathDelays to a vector, the MIMO
channel is frequency selective.

AveragePathGains

Average path gain vector (decibels)

Specify the average gains of the discrete paths in decibels as a double-precision, real,
scalar or row vector. The default value of this property is 0. AveragePathGains must
have the same size as “PathDelays”.

NormalizePathGains

Normalize path gains (logical)

Set this property to true to normalize the fading processes such that the total power of
the path gains, averaged over time, is 0 dB. The default value of this property is true.
When you set this property to false, there is no normalization on path gains. The
average powers of the path gains are specified by the “AveragePathGains” property.

FadingDistribution

Rayleigh or Rician fading

Specify the fading distribution of the channel as one of Rayleigh or Rician. The default
value of this property is Rayleigh, i.e., the channel is Rayleigh fading.

KFactor

Rician K-factor scalar or vector (linear scale)

Specify the K-factor of a Rician fading channel as a double-precision, real, positive scalar
or positive row vector of the same length as “PathDelays”. This property applies when

 comm.MIMOChannel System object

3-1039

you set the “FadingDistribution” property to Rician. The default value of this
property is 3.

If KFactor is a scalar, the first discrete path is a Rician fading process with a Rician
K-factor of KFactor. The remaining discrete paths are independent Rayleigh fading
processes. If KFactor is a row vector, the discrete path corresponding to a positive
element of the KFactor vector is a Rician fading process with a Rician K-factor specified
by that element. The discrete path corresponding to a zero-valued element of the
KFactor vector is a Rayleigh fading process.

DirectPathDopplerShift

Doppler shifts of line-of-sight components (hertz)

Specify the Doppler shifts for the line-of-sight components of a Rician fading channel in
hertz as a double-precision, real scalar or row vector. The default value of this property is
0. This property applies when you set the “FadingDistribution” property to Rician.

DirectPathDopplerShift must have the same size as “KFactor”. If
DirectPathDopplerShift is a scalar, this value represents the line-of-sight component
Doppler shift of the first discrete path. This path exhibits a Rician fading process.
If DirectPathDopplerShift and “KFactor” are row vectors, the discrete path
corresponding to a positive element of the “KFactor” vector is a Rician fading process.
Its line-of-sight component Doppler shift is specified by the corresponding element of
“DirectPathDopplerShift”.

DirectPathInitialPhase

Initial phases of line-of-sight components (radians)

Specify the initial phases of the line-of-sight components of a Rician fading channel
in radians as a double precision, real scalar or row vector. The default value of this
property is 0. This property applies when you set the “FadingDistribution” property
to Rician.

DirectPathInitialPhase must have the same size as “KFactor”. If
DirectPathInitialPhase is a scalar, this value represents the line-of-sight component
initial phase of the first discrete path. This path exhibits a Rician fading process.
If DirectPathInitialPhase and “KFactor” are row vectors, the discrete path
corresponding to a positive element of the “KFactor” vector is a Rician fading process.
Its line-of-sight component initial phase is specified by the corresponding element of
DirectPathInitialPhase.

3 Alphabetical List

3-1040

MaximumDopplerShift

Maximum Doppler shift (hertz)

Specify the maximum Doppler shift for all channel paths in hertz as a double precision,
real, nonnegative scalar. The default value of this property is 0.001 Hz.

The Doppler shift applies to all the paths of the channel. When you set the
MaximumDopplerShift to 0, the channel remains static for the entire input. You can
use the reset method to generate a new channel realization.

The MaximumDopplerShift must be smaller than SampleRate/10/fc for each path,
where fc represents the cutoff frequency factor of the path. For a Doppler spectrum type
other than Gaussian and BiGaussian, the value of fc is 1. For these two Doppler spectrum
types, fc is dependent on the Doppler spectrum structure fields. See “Algorithms” on page
3-1070 for more details about how fc is defined.

DopplerSpectrum

Doppler spectrum object

Specify the Doppler spectrum shape for the path(s) of the channel. This property accepts
a single Doppler spectrum structure returned from the doppler function or a row cell
array of such structures. The maximum Doppler shift value necessary to specify the
Doppler spectrum/spectra is given by the “MaximumDopplerShift” property. This
property applies when you set the “MaximumDopplerShift” property value greater than
0. The default value of this property is doppler('Jakes').

If you assign a single Doppler spectrum structure to DopplerSpectrum, all paths have
the same specified Doppler spectrum.

If you assign the “FadingTechnique” property to Sum of sinusoids, you must
set DopplerSpectrum to doppler('Jakes'). Otherwise, if FadingTechnique is
Filtered Gaussian noise, select from the following:

• doppler('Jakes')

• doppler('Flat')

• doppler('Rounded', ...)

• doppler('Bell', ...)

• doppler('Asymmetric Jakes', ...)

 comm.MIMOChannel System object

3-1041

• doppler('Restricted Jakes', ...)

• doppler('Gaussian', ...)

• doppler('BiGaussian', ...)

If you assign a row cell array of different Doppler spectrum structures to
DopplerSpectrum, each path has the Doppler spectrum specified by the corresponding
structure in the cell array. The elements can be chosen from the previous list. In this
case, the length of DopplerSpectrum must be equal to the length of “PathDelays”.

Alternatively, you can specify DopplerSpectrum as a single Doppler spectrum
object or a row vector of such objects that must have a length equal to the length of
“PathDelays”. The possible Doppler spectrum objects are

• doppler.jakes

• doppler.flat

• doppler.rounded(...)

• doppler.bell(...)

• doppler.ajakes(...)

• doppler.rjakes(...)

• doppler.gaussian(...)

• doppler.bigaussian(...)

This object supports C code generation. To generate C code, specify this property to a
single Doppler spectrum structure.

SpatialCorrelation

Spatial correlation

Set this property to true to specify the transmit and receive spatial correlation matrices
from which the number of transmit and receive antennas can be derived. Set this
property to false to specify the number of transmit and receive antennas instead.
In this case, the transmit and receive spatial correlation matrices are both identity
matrices. The default value of this property is true.

NumTransmitAntennas

Number of transmit antennas

3 Alphabetical List

3-1042

Specify the number of transmit antennas as a numeric, real, positive integer
scalar between 1 and 8, inclusive. This property applies when you set the
“SpatialCorrelation” property to false. The default value of this property is 2.

NumReceiveAntennas

Number of receive antennas

Specify the number of receive antennas as a numeric, real, positive integer
scalar between 1 and 8, inclusive. This property applies when you set the
“SpatialCorrelation” property to false. The default value of this property is 2.

TransmitCorrelationMatrix

Transmit correlation matrix (or 3D array)

Specify the spatial correlation of the transmitter as a double-precision, real or complex,
2D matrix or 3D array. The default value of this property is [1 0;0 1]. This property
applies when you set the “SpatialCorrelation” property to true.

The first dimension of TransmitCorrelationMatrix determines the number of
transmit antennas, Nt. This dimension must be a value between 1 and 8, inclusive.

If the channel is frequency flat, i.e., “PathDelays” is a scalar,
TransmitCorrelationMatrix is a 2D Hermitian matrix of size Nt-by-Nt. The main
diagonal elements must be all ones. The off-diagonal elements must be real or complex
numbers with a magnitude smaller than or equal to one.

If the channel is frequency selective, i.e., “PathDelays” is a row vector of length Np, you
can specify TransmitCorrelationMatrix as an Nt-by-Nt matrix. In this case, each
path has the same transmit spatial correlation matrix. Alternatively, you can specify
the value as a 3D array of size Nt-by-Nt-by-Np. In this case, each path can have its own
transmit spatial correlation matrix.

ReceiveCorrelationMatrix

Receive correlation matrix (or 3D array)

Specify the spatial correlation of the receiver as a double-precision, real or complex,
2D matrix or 3D array. The default value of this property is [1 0;0 1]. This property
applies when you set the “SpatialCorrelation” property to true.

 comm.MIMOChannel System object

3-1043

The first dimension of ReceiveCorrelationMatrix determines the number of receive
antennas, Nr. This dimension must be a value between 1 and 8, inclusive.

If the channel is frequency flat, i.e., “PathDelays” is a scalar,
ReceiveCorrelationMatrix is a 2D Hermitian matrix of size Nr-by-Nr. The main
diagonal elements must be all ones. The off-diagonal elements must be real or complex
numbers with a magnitude smaller than or equal to one.

If the channel is frequency selective, i.e., “PathDelays” is a row vector of length Np, you
can specify ReceiveCorrelationMatrix as an Nr-by-Nr matrix. In this case, each path
has the same receive spatial correlation matrix. Alternatively, you can specify the value
as a 3D array of size Nr-by-Nr-by-Np. In this case, each path can have its own receive
spatial correlation matrix.

AntennaSelection

Optional transmit and/or receive antenna selection

Specify the antenna selection scheme as one of Off | Tx | Rx | Tx and Rx. The default
value of this property is Off.

Tx represents transmit antennas and Rx represents receive antennas. When you
configure any antenna selection other than the default setting, the object requires one or
more inputs to specify which antennas are selected for signal transmission. Refer to the
“Antenna Selection ” on page 3-1072 section for more details.

NormalizeChannelOutputs

Normalize channel outputs (logical)

Set this property to true to normalize the channel outputs by the number of receive
antennas. The default value of this property is true. When you set this property to
false, there is no normalization for channel outputs.

FadingTechnique

Fading technique used to model the channel

Specify how to model the channel as Filtered Gaussian noise or Sum of
sinusoids. The default value is Filtered Gaussian noise.

NumSinusoids

Number of sinusoids used to model the fading process

3 Alphabetical List

3-1044

Specify the number of sinusoids used to model the channel as a positive integer scalar.
The property applies when the FadingTechnique property is Sum of sinusoids. The
default value is 48.

InitialTimeSource

Source to control the start time of the fading process

Specify the initial time source as either Property or Input port. This property is
available when the FadingTechnique property is set to Sum of sinusoids. When the
InitialTimeSource property is set to Input port, specify the start time of the fading
process using the INITIALTIME input to the step function. The input value can change
in consecutive calls to the step function. The default is value is Property.

InitialTime

Start time of the fading process (s)

Specify the time offset of the fading process as a real nonnegative scalar. This property
applies when the FadingTechnique property is set to Sum of sinusoids and the
InitialTimeSource property is set to Property. The default value is 0.

RandomStream

Source of random number stream

Specify the source of random number stream as one of Global stream | mt19937ar
with seed. The default value of this property is Global stream. If you set
RandomStream to Global stream, the current global random number stream is used
for normally distributed random number generation. In this case, the reset method only
resets the filters. If you set RandomStream to mt19937ar with seed, the mt19937ar
algorithm is used for normally distributed random number generation. In this case, the
reset method not only resets the filters but also reinitializes the random number stream
to the value of the “Seed” property.

Seed

Initial seed of mt19937ar random number stream

Specify the initial seed of a mt19937ar random number generator algorithm as a double
precision, real, nonnegative integer scalar. The default value of this property is 73. This
property applies when you set the “RandomStream” property to mt19937ar with seed.
The Seed reinitializes the mt19937ar random number stream in the reset method.

 comm.MIMOChannel System object

3-1045

PathGainsOutputPort

Enable path gain output (logical)

Set this property to true to output the channel path gains of the underlying fading
process. The default value of this property is false.

Visualization

Enable channel visualization

Specify the type of channel visualization to display as one of Off | Impulse response
| Frequency response | Impulse and frequency responses | Doppler
spectrum. Visualization is available only when the FadingTechnique property is set to
Filtered Gaussian noise. The default value of this property is Off.

AntennaPairsToDisplay

Antenna pair to display

Specify the transmit-receive antenna pair to display as a 1-by-2 row vector, where the
first element corresponds to the desired transmit antenna and the second corresponds
to the desired receive antenna. At this time, only a single pair can be displayed. This
property applies when Visualization is set to any value other than Off. The default
value is [1 1].

SamplesToDisplay

Percentage of samples to display

Specify the percentage of samples to display as one of 10% | 25% | 50% | 100%.
Displaying fewer samples results in better performance at the expense of lower accuracy.
This property applies when Visualization is set to Impulse response, Frequency
response, or Impulse and frequency responses. The default value is 25%.

PathsForDopplerDisplay

Path for Doppler display

Specify, as an integer scalar, the path for which the Doppler spectrum is displayed. The
specified path must be an element of {1, 2, ..., Np}, where Np is the number of discrete
paths per link specified in the object. At this time, only a single path can be displayed.

3 Alphabetical List

3-1046

This property applies when Visualization is set to Doppler spectrum. The default
value is 1.

Methods

clone
Create MIMOChannel object with same
property values

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

info
Characteristic information about MIMO
Channel

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

reset
Reset states of the MIMOChannel object

step
Filter input signal through MIMO
multipath fading channel

Visualization

Impulse Response

The Impulse Response plot displays the path gains, the channel filter coefficients, and
the interpolated path gains of the channel. The path gains shown in magenta occur at
time instances that correspond to the specified PathDelays property. These might not

 comm.MIMOChannel System object

3-1047

be aligned with the input sampling time. The channel filter coefficients shown in yellow
are used to model the channel. They are interpolated from the actual path gains and are
aligned with the input sampling time. When the path gains align with the sampling time,
they overlap the filter coefficients. Sinc interpolation is used to generate the blue points
that appear between the channel filter coefficients. These points are used solely for
display purposes and not used in subsequent channel filtering. For a flat fading channel
(one path), the sinc interpolation points are not displayed. For all impulse response plots,
the frame and sample numbers appear in the upper left corner of the display.

The impulse response plot shares the same toolbar and menus as the System object it
was based on, dsp.ArrayPlot.

The figure shows the impulse response of a channel in which the path gains align with
the sample time. The path gains and channel filter coefficients overlap.

3 Alphabetical List

3-1048

The case in which the specified path gains are not aligned with the SampleRate property
is shown below. Observe that the path gains and the channel filter coefficients do not
overlap and that the filter coefficients are equally distributed.

The impulse response for a frequency flat channel is shown below. As the channel
is represented by a single coefficient, no interpolation is done; consequently, the
interpolated path gains do not appear.

 comm.MIMOChannel System object

3-1049

Note:

• The displayed and specified path gain locations can differ by as much as 5% of the
input sample time.

• When the AntennaSelection property is set to any value other than Off and if the
specified transmit-receive pair is not selected for the current frame transmission,
nothing will be displayed.

• The visualization display speed is controlled by the combination of the
SamplesToDisplay property and the Playback > Reduce Updates to Improve
Performance menu item. Reducing the percentage of samples to display and the
enabling reduced updates speeds up the rendering of the impulse response.

3 Alphabetical List

3-1050

• After the impulse response plots are manually closed, the step call for the MIMO
channel object executes at its normal speed.

• Code generation is available only when the Visualization property is set to Off.

Frequency Response

The Frequency Response plot displays the MIMO channel spectrum for a specified
transmit-receive antenna pair by taking a discrete Fourier transform of the channel
filter coefficients. The frequency response plot shares the same toolbar and menus as the
System object it was based on, dsp.SpectrumAnalyzer. The default parameter settings
are shown below. These parameters can be changed from their default values by using
the View > Spectrum Settings menu.

Parameter Default

Window Rectangular

WindowLength Channel filter length
FFTLength 512
PowerUnits dBW

YLimits Based on NormalizePathGains and
AveragePathGains properties

The frequency response plot for a frequency selective channel is shown.

 comm.MIMOChannel System object

3-1051

Note:

• The visualization display speed is controlled by the combination of the
SamplesToDisplay property and the Reduce Plot Rate to Improve

Performance menu item. Reducing the percentage of samples to display and the
enabling reduced updates will speed up the rendering of the frequency response.

• After the frequency response plots are manually closed, the step call for the MIMO
channel object executes at its normal speed.

• Code generation is available only when the Visualization property is set to Off.

3 Alphabetical List

3-1052

Doppler Spectrum

The Doppler Spectrum plot displays both the theoretical Doppler spectrum and the
empirically determined data points. The theoretical data is displayed as a yellow line
for the case of non-static channels and as a yellow point for static channels, while the
empirical data is shown in blue. There is an internal buffer which must be completely
filled with filtered Gaussian samples before the empirical plot is updated. The empirical
plot is the running mean of the spectrum calculated from each full buffer. For non-static
channels, the number of input samples needed before the next update is displayed in
the upper left hand corner. The samples needed is a function of the sample rate and the
maximum Doppler shift. For static channels, the text Reset fading channel for
next update is displayed.

 comm.MIMOChannel System object

3-1053

Note:

• After the Doppler spectrum plots are manually closed, the step call for the MIMO
channel object will be executed at its normal speed.

• Code generation is available only when the Visualization property is Off.

3 Alphabetical List

3-1054

Examples

Pass QPSK Data through a 4x2 MIMO Channel

This example shows how to create a 4x2 MIMO channel using the MIMO channel System
object. Modulated and spatially encoded data is passed through the channel.

Create a QPSK modulator object and generate a stream of random integers. Invoke the
step function to modulate the data.

hMod = comm.QPSKModulator;

data = randi([0 3],1000,1);

modData = step(hMod,data);

Create an orthogonal space-time block encoder to encode the modulated data into four
spatially separated streams. Invoke the step function to encode the data.

hEnc = comm.OSTBCEncoder('NumTransmitAntennas',4,'SymbolRate',1/2);

txSig = step(hEnc,modData);

Create a MIMO channel object using name-value pairs to set the properties. The
channel consists of two paths with a maximum Doppler shift of 5 Hz. Set the
SpatialCorrelation property to false, which requires that you specify the number
of transmit and receive antennas. Set the number of transmit antennas to 4 and the
number of receive antennas to 2.

hChan = comm.MIMOChannel(...

 'SampleRate',1000, ...

 'PathDelays',[0 2e-3], ...

 'AveragePathGains',[0 -5], ...

 'MaximumDopplerShift',5, ...

 'SpatialCorrelation',false, ...

 'NumTransmitAntennas',4, ...

 'NumReceiveAntennas',2);

Pass the modulated and encoded data through the MIMO channel.

rxSig = step(hChan,txSig);

Create a time vector, t, to use for plotting the power of the received signal.

ts = 1/hChan.SampleRate;

 comm.MIMOChannel System object

3-1055

t = (0:ts:(size(txSig,1)-1)*ts)';

Calculate and plot the power of the signal received by antenna 1.

pwrdB = 20*log10(abs(rxSig(:,1)));

plot(t,pwrdB)

xlabel('Time (sec)')

ylabel('Power (dBW)')

Examine Spatial Correlation Characteristics of a 2-by-2 Rayleigh Fading Channel

Filter PSK modulated data through a 2-by-2 Rayleigh fading channel, and then examine
the spatial correlation characteristics of the channel realization.

3 Alphabetical List

3-1056

Create a PSK Modulator System object to modulate randomly generated data.

hMod = comm.PSKModulator;

modData = step(hMod, randi([0 hMod.ModulationOrder-1],1e5,1));

Split modulated data into two spatial streams.

channelInput = reshape(modData, [2, 5e4]).';

Create a 2-by-2 MIMOChannel System object with two discrete paths. Each
path has different transmit and receive correlation matrices, specified by the
TransmitCorrelationMatrix and ReceiveCorrelationMatrix properties.

hMIMOChan = comm.MIMOChannel(...

 'SampleRate', 1000,...

 'PathDelays', [0 1e-3],...

 'AveragePathGains', [3 5],...

 'NormalizePathGains', false,...

 'MaximumDopplerShift', 5,...

 'TransmitCorrelationMatrix', cat(3, eye(2), [1 0.1;0.1 1]),...

 'ReceiveCorrelationMatrix', cat(3, [1 0.2;0.2 1], eye(2)),...

 'RandomStream', 'mt19937ar with seed',...

 'Seed', 33,...

 'PathGainsOutputPort', true);

Filter the modulated data using hMIMOChan and use the step method to process data.

[~, pathGains] = step(hMIMOChan, channelInput);

The transmit spatial correlation for the first discrete path at the first receive antenna is
specified as an identity matrix in the TransmitCorrelationMatrix property. Confirm
that the channel output pathGains exhibits the same statistical characteristics using
the corrcoef function.

disp('Tx spatial correlation, first path, first Rx:');

disp(corrcoef(squeeze(pathGains(:,1,:,1))));

The transmit spatial correlation for the second discrete path at the second receive
antenna is specified as [1 0.1;0.1 1] in the TransmitCorrelationMatrix property.
Confirm that the channel output pathGains exhibits the same statistical characteristics.

disp('Tx spatial correlation, second path, second Rx:');

disp(corrcoef(squeeze(pathGains(:,2,:,2))));

 comm.MIMOChannel System object

3-1057

The receive spatial correlation for the first discrete path at the second transmit antenna
is specified as [1 0.2;0.2 1] in the ReceiveCorrelationMatrix property. Confirm
that the channel output pathGains exhibits the same statistical characteristics.

disp('Rx spatial correlation, first path, second Tx:');

disp(corrcoef(squeeze(pathGains(:,1,2,:))));

The receive spatial correlation for the second discrete path at the first transmit antenna
is specified as an identity matrix in the ReceiveCorrelationMatrix property.
Confirm that the channel output pathGains exhibits the same statistical characteristics.

disp('Rx spatial correlation, second path, first Tx:');

disp(corrcoef(squeeze(pathGains(:,2,1,:))));

Now enable transmit and receive antenna selection for the System object hMIMOChan.
The input frame size is shortened to 100.

release(hMIMOChan);

hMIMOChan.AntennaSelection = 'Tx and Rx';

modData = step(hMod,randi([0 hMod.ModulationOrder-1],1e2,1));

Select the first transmit and second receive antennas.

[channelOutput, pathGains] = step(hMIMOChan, modData, [1 0], [0 1]);

Confirm that the path gains MATLAB returns have NaN values for the unselected
transmit-receive antenna pairs.

 disp('Return 1 if the path gains for the second transmit antenna are NaN:');

 disp(isequal(isnan(squeeze(pathGains(:,:,2,:))), ones(1e2, 2, 2)));

 disp('Return 1 if the path gains for the first receive antenna are NaN:');

 disp(isequal(isnan(squeeze(pathGains(:,:,:,1))), ones(1e2, 2, 2)));

Display Impulse and Frequency Responses of a Frequency Selective Channel

This example shows how to create a frequency selective MIMO channel and display its
impulse and frequency responses.

Set the sample rate to 10 MHz and specify path delays and gains using the extended
vehicular A (EVA) channel parameters. Set the maximum Doppler shift to 70 Hz.

fs = 10e6; % Hz

pathDelays = [0 30 150 310 370 710 1090 1730 2510]*1e-9; % sec

3 Alphabetical List

3-1058

avgPathGains = [0 -1.5 -1.4 -3.6 -0.6 -9.1 -7 -12 -16.9]; % dB

fD = 70; % Hz

Create a 2x2 MIMO channel System object with the previously defined parameters and
set the Visualization property to Impulse and frequency responses using
name-value pairs. By default, the antenna pair corresponding to transmit antenna 1 and
receive antenna 1 will be displayed.

h = comm.MIMOChannel('SampleRate',fs, ...

 'PathDelays',pathDelays, ...

 'AveragePathGains',avgPathGains, ...

 'MaximumDopplerShift',fD, ...

 'Visualization','Impulse and frequency responses');

Generate random binary data and pass it through the MIMO channel using the step
function. The impulse response plot allows you to easily identify the individual paths and
their corresponding filter coefficients. The frequency selective nature of the EVA channel
is shown by the frequency response plot.

x = randi([0 1],1000,2);

y = step(h,x);

 comm.MIMOChannel System object

3-1059

3 Alphabetical List

3-1060

Release h and set the AntennaPairsToDisplay property to [2 1] to view the antenna
pair corresponding to transmit antenna 2 and receive antenna 1. It is necessary to
release the object as the property is non-tunable.

release(h)

h.AntennaPairsToDisplay = [2 1];

y = step(h,x);

 comm.MIMOChannel System object

3-1061

3 Alphabetical List

3-1062

Display Doppler for a MIMO Channel

Create and visualize the Doppler spectra of a MIMO channel having two paths.

Construct a cell array of Doppler structures to be used in creating the channel. The
Doppler spectrum of the first path is set to have a bell shape while the second path is set
to be flat.

 comm.MIMOChannel System object

3-1063

dp{1} = doppler('Bell');

dp{2} = doppler('Flat');

Create a default 2x2 MIMO channel with two paths and a 100 Hz maximum Doppler
shift using name-value pairs. Set the Visualization property to Doppler spectrum
and set PathsForDopplerDisplay to 1. The Doppler spectrum of the first path will be
displayed.

h = comm.MIMOChannel('SampleRate',1000, ...

 'PathDelays',[0 0.002],'AveragePathGains',[0 -3], ...

 'MaximumDopplerShift',100, ...

 'DopplerSpectrum',dp, ...

 'Visualization','Doppler spectrum', ...

 'PathsForDopplerDisplay',1);

Call the step function of the MIMO object to generate the Doppler spectrum of the first
path. Since the Doppler spectrum plot only updates when its buffer is filled, the step
function is invoked multiple times to improve the accuracy of the estimate. Observe that
the spectrum has a bell shape and that its minimum and maximum frequencies fall
within the limits set by MaximumDopplerShift.

for k = 1:25

 x = randi([0 1],10000,2);

 y = step(h,x);

end

3 Alphabetical List

3-1064

Release h and set the PathsForDopplerDisplay property to 2. It is necessary to
release the object as the property is non-tunable. Invoke the step function multiple
times to display the Doppler spectrum of the second path. Observe that the spectrum is
flat.

release(h)

h.PathsForDopplerDisplay = 2;

for k = 1:25

 comm.MIMOChannel System object

3-1065

 x = randi([0 1],10000,2);

 y = step(h,x);

end

3 Alphabetical List

3-1066

Model MIMO Channel Using the Sum-of-Sinusoids Technique

The example shows how to create MIMO channel object and pass data through it using
the sum-of-sinusoids technique. The example demonstrates how the channel state is
maintained in cases in which data is discontinuously transmitted.

Define the overall simulation time and three time segments for which data will be
transmitted. In this case, the channel is simulated for 1 s with a 1000 Hz sampling rate.

 comm.MIMOChannel System object

3-1067

One 1000-sample, continuous data sequence is transmitted at time 0. Three 100-sample,
data packets are transmitted at time 0.1 s, 0.4 s, and 0.7 s.

t0 = 0:0.001:0.999; % Transmission 0

t1 = 0.1:0.001:0.199; % Transmission 1

t2 = 0.4:0.001:0.499; % Transmission 2

t3 = 0.7:0.001:0.799; % Transmission 3

Generate random binary data corresponding to the previously defined time intervals.

d0 = randi([0 1],1000,2); % 1000 samples

d1 = randi([0 1],100,2); % 100 samples

d2 = randi([0 1],100,2); % 100 samples

d3 = randi([0 1],100,2); % 100 samples

Create a flat fading 2x2 MIMO channel System object with the Sum of sinusoids
fading technique. So that results can be repeated, specify a seed using a name-value pair.
As the InitialTime property is not specified, the fading channel will be simulated from
time 0. Enable the path gains output port.

g = comm.MIMOChannel('SampleRate',1000, ...

 'MaximumDopplerShift',5, ...

 'RandomStream','mt19937ar with seed', ...

 'Seed',17, ...

 'FadingTechnique','Sum of sinusoids', ...

 'PathGainsOutputPort',true);

Create a clone of the MIMO channel System object. Set the InitalTimeSource property
to Input port so that the fading channel offset time can be specified as an input
argument to the step function.

h = clone(g);

h.InitialTimeSource = 'Input port';

Pass random binary data through the first channel object, g. Data is transmitted over all
1000 time samples. For this example, only the complex path gain is needed.

[~,pg0] = step(g,d0);

Pass random data through the second channel object, h, where the initial time offsets are
provided as arguments to the step function.

[~,pg1] = step(h,d1,0.1);

3 Alphabetical List

3-1068

[~,pg2] = step(h,d2,0.4);

[~,pg3] = step(h,d3,0.7);

Compare the number of samples processed by the two channels using the info method.
You can see that 1000 samples were processed by g while only 300 were processed by h.

G = info(g);

H = info(h);

[G.NumSamplesProcessed H.NumSamplesProcessed]

ans =

 1000 300

Convert the path gains into decibels for the path corresponding to the first transmit and
first receive antenna.

pathGain0 = 20*log10(abs(pg0(:,1,1,1)));

pathGain1 = 20*log10(abs(pg1(:,1,1,1)));

pathGain2 = 20*log10(abs(pg2(:,1,1,1)));

pathGain3 = 20*log10(abs(pg3(:,1,1,1)));

Plot the path gains for the continuous and discontinuous cases. Observe that the gains
for the three segments perfectly match the gain for the continuous case. The alignment of
the two highlights that the sum-of-sinusoids technique is ideally suited to the simulation
of packetized data as the channel characteristics are maintained even when data is not
transmitted.

plot(t0,pathGain0,'r--')

hold on

plot(t1,pathGain1,'b')

plot(t2,pathGain2,'b')

plot(t3,pathGain3,'b')

grid

xlabel('Time (sec)')

ylabel('Path Gain (dB)')

legend('Continuous','Discontinuous','location','nw')

 comm.MIMOChannel System object

3-1069

Calculate Execution Time Advantage Using Sum of Sinusoids

This example demonstrates the advantage of using the sum of sinusoids fading technique
when simulating a channel with burst data.

Set the simulation parameters such that the sampling rate is 100 kHz, the total
simulation time is 100 seconds, and the duty cycle for the burst data is 25%.

fs = 1e5; % Hz

tsim = 100; % seconds

dutyCycle = 0.25;

Create a flat fading 2x2 MIMO channel object using the default Filtered Gaussian
noise technique.

3 Alphabetical List

3-1070

hFGN = comm.MIMOChannel('SampleRate',fs);

Create a similar MIMO channel object using the Sum of sinusoids technique where
the fading process start times are given as an input to the step function.

hSOS = comm.MIMOChannel('SampleRate',fs, ...

 'FadingTechnique','Sum of sinusoids', ...

 'NumSinusoids',48, ...

 'InitialTimeSource','Input port');

Run a continuous sequence of random bits through the filtered Gaussian noise MIMO
chanel object. Use the tic/toc stopwatch timer functions to measure the execution time of
the function call.

tic

y = step(hFGN,randi([0 1],fs*tsim,2));

tFGN = toc;

To transmit a data burst each second, pass random bits through the sum of sinusoids
MIMO channel object by calling the step function inside of a for loop. Use the tic/toc
stopwatch timer to measure the execution time.

tic

for k = 1:tsim

 z = step(hSOS,randi([0 1],fs*dutyCycle,2),0.5+(k-1));

end

tSOS = toc;

Compare the ratio of the sum of sinusoids execution time to the filtered Gaussian noise
execution time. Observe that the ratio is roughly equal to the 25% duty cycle.

tSOS/tFGN

ans =

 0.2154

Algorithms
The fading processing per link is per the “Methodology for Simulating Multipath Fading
Channels” section and assumes the same parameters for all NT· NR links of the MIMO
channel. Each link comprises all multipaths for that link.

 comm.MIMOChannel System object

3-1071

The Kronecker Model

The Kronecker model assumes that the spatial correlations at the transmit and receive
sides are separable. Equivalently, the direction of departure (DoD) and directions of
arrival (DoA) spectra are assumed to be separable. The full correlation matrix can then
be obtained as:

R E R R
H t r

= ƒ[]

where:

The ⩽ symbol represents the Kronecker product.

Rt represents the correlation matrix at the transmit side, i.e. R E H H
t

H= È
Î

˘
˚

, of size Nt-

by-Nt.

Rr represents the correlation matrix at the receive side, i.e. R E HH
r

H= È
Î

˘
˚ , of size Nr-

by-Nr.

You can obtain a realization of the MIMO channel matrix as:

H R ARr t=

1

2

1

2

where: A is an Nr-by-Nt matrix of i.i.d. complex Gaussian variables with zero mean and
unit variance.

Cutoff Frequency Factor

The following information explains how this object determines the cutoff frequency
factor, fc for different Doppler spectrum types:

• For any Doppler spectrum type, other than Gaussian and BiGaussian, fc equals 1.
• For a “Gaussian Doppler” spectrum type, fc equals the Doppler spectrum structure

NormalizedStandardDeviations field value times sqrt(2∙log(2)).
• For a “BiGaussian Doppler” spectrum type:

3 Alphabetical List

3-1072

• If the Doppler spectrum structure PowerGains field is [0,0], then fc equals the
SigmaGaussian2 (SigmaGaussian1) property value times sqrt(2∙log(2)).

• If the CenterFreqGaussian1 and CenterFreqGaussian2 property values
are both 0 and the SigmaGaussian1 and SigmaGaussian2 property values
are the same, then fc is also equal to the SigmaGaussian2 property value times
sqrt(2∙log(2)).

• In all other cases, fc equals 1.

Antenna Selection

When the object is in antenna selection mode, it uses the following algorithms to process
an input signal:

• The random path gains are always generated and keep evolving for each link, no
matter whether the link is being selected or not. The path gain values for the non-
selected links are marked as NaN in the path gain output.

• The spatial correlation only applies to the selected transmit and/or receive
antennas, and the correlation coefficients are the corresponding entries in
the transmit and/or receive correlation matrices. In other words, the spatial
correlation matrix for the selected transmit/receive antennas is a submatrix of the
“TransmitCorrelationMatrix”/“ReceiveCorrelationMatrix” property value.

• The input filtering through the path gains only happens to the selected links.
• Whenever a link associated with a specific transmitter transitions from a selected

state to a non-selected state, its channel filter is reset. For example, if the
AntennaSelection property is set to Tx and the selected transmit antenna is
changed from 2 to 1, the channel filter corresponding to antenna 2 will be reset.

• Channel output normalization happens over the number of selected receive antennas.

Selected Bibliography

[1] Oestges, C., and B. Clerckx. MIMO Wireless Communications: From Real-World
Propagation to Space-Time Code Design, Academic Press, 2007.

[2] Correira, L. M. Mobile Broadband Multimedia Networks: Techniques, Models and
Tools for 4G, Academic Press, 2006.

 comm.MIMOChannel System object

3-1073

[3] Kermoal, J. P., L. Schumacher, K. I. Pedersen, P. E. Mogensen, and F. Frederiksen.
“A stochastic MIMO radio channel model with experimental validation." IEEE
Journal on Selected Areas of Communications. Vol. 20, Number 6, 2002, pp.
1211–1226.

[4] Jeruchim, M., P. Balaban, and K. S. Shanmugan. Simulation of Communication
Systems, Second Edition, New York, Kluwer Academic/Plenum, 2000.

[5] Pätzold, Matthias, Cheng-Xiang Wang, and Bjorn Olav Hogstand. “Two New Sum-of-
Sinusoids-Based Methods for the Efficient Generation of Multiple Uncorrelated
Rayleigh Fading Waveforms.” IEEE Transactions on Wireless Communications.
Vol. 8, Number 6, 2009, pp. 3122–3131.

See Also
comm.AWGNChannel | comm.RicianChannel | comm.LTEMIMOChannel |
comm.RayleighChannel | MIMO Channel

3 Alphabetical List

3-1074

clone
System object: comm.MIMOChannel
Package: comm

Create MIMOChannel object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a MIMOChannel object C, with the same property values as H.
The clone method creates a new unlocked object with uninitialized states.

The clone method creates an instance of an object. The property values, but not internal
states, are copied into the new instance of the object.

 getNumInputs

3-1075

getNumInputs
System object: comm.MIMOChannel
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of
expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H)

The getNumInputs method returns a positive integer that is the number of expected
inputs (not counting the object itself) to the step method. This value will change if you
alter any properties that turn inputs on or off. You must call the step method with the
number of input arguments equal to the result of getNumInputs(H).

3 Alphabetical List

3-1076

getNumOutputs
System object: comm.MIMOChannel
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

The getNumOutputs method returns a positive integer that is the number of outputs
from the step method. This value will change if you alter any properties that turn
outputs on or off.

 info

3-1077

info
System object: comm.MIMOChannel
Package: comm

Characteristic information about MIMO Channel

Syntax

S = info(OBJ)

Description

S = info(OBJ) returns a structure, S, containing characteristic information for the
System object, OBJ. If OBJ has no characteristic information, S is empty. If OBJ has
characteristic information, the fields of S vary depending on OBJ. For object specific
details, refer to the help on the infoImpl method of that object.

3 Alphabetical List

3-1078

isLocked
System object: comm.MIMOChannel
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the MIMOChannel System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

 release

3-1079

release
System object: comm.MIMOChannel
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

3 Alphabetical List

3-1080

reset
System object: comm.MIMOChannel
Package: comm

Reset states of the MIMOChannel object

Syntax

reset(H)

Description

reset(H) resets the states of the MIMOChannel object, H.

If you set the “RandomStream” property of H to Global stream, the reset method
only resets the filters. If you set RandomStream to mt19937ar with seed, the reset
method not only resets the filters but also reinitializes the random number stream to the
value of the “Seed” property.

 step

3-1081

step

System object: comm.MIMOChannel
Package: comm

Filter input signal through MIMO multipath fading channel

Syntax

Y = step(H,X)

Y = step(H,X,SELTX)

Y = step(H,X,SELRX)

Y = step(H,X,SELTX,SELRX)

[Y,PATHGAINS] = step(H,X)

[Y,PATHGAINS] = step(H,X,SELTX/SELRX)

step(H,X,SELTX,SELRX)

Y = step(H,...,INITIALTIME)

step(H,...,INITIALTIME)

[Y,PATHGAINS] = step(H,...,INITIALTIME)

Description

Y = step(H,X) filters input signal X through a MIMO fading channel and returns the
result in Y. The input X can be a double-precision data type scalar, vector, or 2-D matrix
with real or complex values. X is of size Ns-by-Nt, where Ns represents the number of
samples and Nt represents the number of transmit antennas that is determined by the
“TransmitCorrelationMatrix” or “NumTransmitAntennas” property value of H. Y is
the output signal of size Ns-by-Nr, where Nr represents the number of receive antennas
that is determined by the “ReceiveCorrelationMatrix” or “NumReceiveAntennas”
property value of H. Y is of double-precision data type with complex values.

Y = step(H,X,SELTX) turns on selected transmit antennas for X transmission. This
syntax applies when you set the “AntennaSelection” property of H to Tx. SELTX is
a numeric type binary-valued 1-by-Nt row vector. In this row vector, the ones indicate
the selected transmit antennas. X is size Ns-by-Nst, where Nst represents the number of
selected transmit antennas, i.e., the number of ones in SELTX. Y is size Ns-by-Nr.

3 Alphabetical List

3-1082

Y = step(H,X,SELRX) turns on selected receive antennas for X transmission. This
syntax applies when you set the “AntennaSelection” property of H to Rx. SELRX is a
numeric type binary-valued 1-by-Nr row vector, in which the ones indicate the selected
receive antennas. X is of size Ns-by-Nt. Y is of size Ns-by-Nsr, where Nsr represents the
number of selected receive antennas, i.e., the number of ones in SELRX.

Y = step(H,X,SELTX,SELRX) turns on selected transmit and receive antennas for X
transmission. This syntax applies when you set the “AntennaSelection” property of H
to Tx and Rx. X is of size Ns-by-Nst, and Y is of size Ns-by-Nsr.

[Y,PATHGAINS] = step(H,X) returns the MIMO channel path gains of the
underlying fading process in PATHGAINS. This syntax applies when you set the
“PathGainsOutputPort” property of H to true. PATHGAINS is of size Ns-by-Np-by-Nt-
by-Nr, where Np represents the number of paths, i.e., the length of the “PathDelays”
property value of H. PATHGAINS is of double-precision data type with complex values.

[Y,PATHGAINS] = step(H,X,SELTX/SELRX) or step(H,X,SELTX,SELRX) returns
the MIMO channel path gains for antenna selection schemes. PATHGAINS is still of size
Ns-by-Np-by-Nt-by-Nr with NaN values for the unselected transmit-receive antenna pairs.

Y = step(H,...,INITIALTIME) or step(H,...,INITIALTIME), passes data
through the MIMO channel beginning at INITIALTIME, where INITIALTIME
is a nonnegative real scalar measured in seconds. This syntax applies when
the “FadingTechnique” property of H is set to Sum of sinusoids and the
“InitialTimeSource” property of H is set to Input port.

[Y,PATHGAINS] = step(H,...,INITIALTIME) returns the MIMO channel path
gains of the underlying fading process in PATHGAINS beginning at INITIALTIME.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

 comm.MLSEEqualizer System object

3-1083

comm.MLSEEqualizer System object

Package: comm

Equalize using maximum likelihood sequence estimation

Description

The MLSEEqualizer object uses the Viterbi algorithm to equalize a linearly modulated
signal through a dispersive channel. The object processes input frames and outputs the
maximum likelihood sequence estimate (MLSE) of the signal. This processing uses an
estimate of the channel modeled as a finite impulse response (FIR) filter.

To equalize a linearly modulated signal and output the maximum likelihood sequence
estimate:

1 Define and set up your maximum likelihood sequence estimate equalizer object. See
“Construction” on page 3-1083.

2 Call step to equalize a linearly modulated signal and output the maximum
likelihood sequence estimate according to the properties of comm.MLSEEqualizer.
The behavior of step is specific to each object in the toolbox.

Construction

H = comm.MLSEEqualizer creates a maximum likelihood sequence estimation
equalizer (MLSEE) System object, H. This object uses the Viterbi algorithm and a
channel estimate to equalize a linearly modulated signal that has been transmitted
through a dispersive channel.

H = comm.MLSEEqualizer(Name,Value) creates an MLSEE object, H, with each
specified property set to the specified value. You can specify additional name-value pair
arguments in any order as (Name1,Value1,...,NameN,ValueN).

H = comm.MLSEEqualizer(CHANNEL,Name,Value) creates an MLSEE object, H. This
object has the Channel property set to CHANNEL, and the other specified properties set to
the specified values.

3 Alphabetical List

3-1084

Properties
ChannelSource

Source of channel coefficients

Specify the source of the channel coefficients as one of Input port | Property. The
default is Property.

Channel

Channel coefficients

Specify the channel as a numeric, column vector containing the coefficients of an FIR
filter. The default is [1;0.7;0.5;0.3]. The length of this vector determines the
memory length of the channel. This must be a multiple of the samples per symbol, that
you specify in the “SamplesPerSymbol” property. This property applies when you set
the “ChannelSource” property to Property.

Constellation

Input signal constellation

Specify the constellation of the input modulated signal as a complex vector. The default is
[1+1i -1+1i -1-1i 1-1i].

TracebackDepth

Traceback depth of Viterbi algorithm

Specify the number of trellis branches (the number of symbols), the Viterbi algorithm
uses to construct each traceback path. The default is 21. The traceback depth influences
the decoding accuracy and delay. The decoding delay represents the number of
zero symbols that precede the first decoded symbol in the output. When you set the
“TerminationMethod” property to Continuous, the decoding delay equals the number
of zero symbols of this property. When you set the TerminationMethod property to
Truncated, there is no output delay.

TerminationMethod

Termination method of Viterbi algorithm

Specify the termination method of the Viterbi algorithm as one of Continuous |
Truncated. The default is Truncated. When you set this property to Continuous,

 comm.MLSEEqualizer System object

3-1085

the object initializes the Viterbi algorithm metrics of all the states to 0 in the first call
to the step method. Then, the object saves its internal state metric at the end of each
frame, for use with the next frame. When you set this property to Truncated, the object
resets at every frame. The Viterbi algorithm processes each frame of data independently,
resetting the state metric at the end of each frame. The traceback path always starts at
the state with the minimum metric. The initialization of the state metrics depends on
whether you specify a preamble or postamble. If you set the “PreambleSource” property
to None, the object initializes the metrics of all the states to 0 at the beginning of each
data frame. If you set the PreambleSource property to Property, the object uses the
preamble that you specify at the “Preamble” property, to initialize the state metrics at
the beginning of each data frame. When you specify a preamble, the traceback path ends
at one of the states represented by that preamble. If you set the “PostambleSource”
property to None, the traceback path starts at the state with the smallest metric. If
you set the PostambleSource property to Property, the traceback path begins at
the state represented by the postamble that you specify at the “Postamble” property.
If the postamble does not decode to a unique state, the decoder identifies the smallest
of all possible decoded states that are represented by the postamble. The decoder then
begins traceback decoding at that state. When you set this property to Truncated, the
step method input data signal must contain at least “TracebackDepth” symbols, not
including an optional preamble.

ResetInputPort

Enable equalizer reset input

Set this property to true to enable an additional input to the step method. The
default is false. When this input is a nonzero, double-precision or logical scalar value,
the object resets the states of the equalizer. This property applies when you set the
“TerminationMethod” property to Continuous.

PreambleSource

Source of preamble

Specify the source of the preamble that is expected to precede the input signal. Choose
from None | Property. The default is None. Set this property to Property to specify
a preamble using the “Preamble” property. This property applies when you set the
“TerminationMethod” property to Truncated.

Preamble

Preamble that precedes input signals

3 Alphabetical List

3-1086

Specify a preamble that is expected to precede the data in the input signal as an integer,
row vector. The default is [0 3 2 1]. The values of the preamble should be between
0 and M-1, where M is the length of the signal constellation that you specify in the
“Constellation” property. An integer value of k–1 in the vector corresponds to the k-th
entry in the vector stored in the Constellation property. This property applies when
you set the “TerminationMethod” property to Truncated and the “PreambleSource”
property to Property.

PostambleSource

Source of postamble

Specify the source of the postamble that is expected to follow the input signal. Choose
from None | Property. The default is None. Set this property to Property to specify
a postamble in the “Postamble” property. This property applies when you set the
“TerminationMethod” property to Truncated.

Postamble

Postamble that follows input signals

Specify a postamble that is expected to follow the data in the input signal as an
integer row vector. The default is [0 2 3 1]. The values of the postamble should
be between 0 and M–1. In this case, M indicates the length of the “Constellation”
property. An integer value of k–1 in the vector corresponds to the k-th entry in the
vector specified in the Constellation property. This property applies when you set the
“TerminationMethod” property to Truncated and the “PostambleSource” property to
Property. The default is [0 2 3 1].

SamplesPerSymbol

Number of samples per symbol

Specify the number of samples per symbol in the input signal as an integer scalar value.
The default is 1.

Methods

clone
Create MLSEE object with same property
values

 comm.MLSEEqualizer System object

3-1087

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

reset
Reset states of MLSEE object

step
Equalize using maximum likelihood
sequence estimation

Examples

Equalize a QPSK signal transmitted through a dispersive channel.

 hMod = comm.QPSKModulator(0,'SymbolMapping','Binary');

 hDemod = comm.QPSKDemodulator(0,'SymbolMapping','Binary');

 % Channel coefficients

 chCoeffs = [.986; .845; .237; .12345+.31i];

 hMLSEE = comm.MLSEEqualizer('TracebackDepth',10,...

 'Channel',chCoeffs, 'Constellation',[1 1i -1 -1i]);

 % Create an error rate calculator

 hError = comm.ErrorRate;

 for n = 1:50

 data= randi([0 3],100,1);

 modSignal = step(hMod, data);

 % Introduce channel distortion.

 chanOutput = filter(chCoeffs,1,modSignal);

 % Equalize the channel output and demodulate

 eqSignal = step(hMLSEE,chanOutput);

 demodData = step(hDemod,eqSignal);

 % Compute BER

3 Alphabetical List

3-1088

 errorStats = step(hError, data, demodData);

 end

 fprintf('Error rate = %f\nNumber of errors = %d\n', ...

 errorStats(1), errorStats(2))

Algorithms

This object implements the algorithm, inputs, and outputs described on the MLSE
Equalizer block reference page. The object properties correspond to the block parameters.

See Also
comm.ViterbiDecoder

 clone

3-1089

clone
System object: comm.MLSEEqualizer
Package: comm

Create MLSEE object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a MLSEEqualizer object C, with the same property values as H.
The clone method creates a new unlocked object with uninitialized states.

3 Alphabetical List

3-1090

getNumInputs
System object: comm.MLSEEqualizer
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of
expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H)

 getNumOutputs

3-1091

getNumOutputs
System object: comm.MLSEEqualizer
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

3 Alphabetical List

3-1092

isLocked
System object: comm.MLSEEqualizer
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the MLSEEqualizer System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

 release

3-1093

release
System object: comm.MLSEEqualizer
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H)Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

3 Alphabetical List

3-1094

reset
System object: comm.MLSEEqualizer
Package: comm

Reset states of MLSEE object

Syntax

reset(H)

Description

reset(H) resets the states of the MLSEEqualizer object, H.

 step

3-1095

step
System object: comm.MLSEEqualizer
Package: comm

Equalize using maximum likelihood sequence estimation

Syntax

Y = step(H,X)

Y = step(H,X,CHANNEL)

Y = step(H,X,RESET)

Y = step(H,X,CHANNEL,RESET)

Description

Y = step(H,X) equalizes the linearly modulated data input, X, using the Viterbi
algorithm. The step method outputs Y, the maximum likelihood sequence estimate of the
signal. Input X must be a column vector of data type double or single.

Y = step(H,X,CHANNEL) uses CHANNEL as the channel coefficients when you set the
ChannelSource property to 'Input port'. The channel coefficients input, CHANNEL, must
be a numeric, column vector containing the coefficients of an FIR filter in descending
order of powers of z. The length of this vector is the channel memory, which must be a
multiple of the samples per input symbol specified in the SamplesPerSymbol property.

Y = step(H,X,RESET) uses RESET as the reset signal when you set the
TerminationMethod property to 'Continuous' and the ResetInputPort property
to true. The object resets when RESET has a non-zero value. RESET must be a double
precision or logical scalar. You can combine optional input arguments when you set their
enabling properties. Optional inputs must be listed in the same order as the order of the
enabling properties. For example,

Y = step(H,X,CHANNEL,RESET)

Note: H specifies the System object on which to run this step method.

3 Alphabetical List

3-1096

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

 comm.MSKDemodulator System object

3-1097

comm.MSKDemodulator System object

Package: comm

Demodulate using MSK method and the Viterbi algorithm

Description

The MSKDemodulator object demodulates a signal that was modulated using the
minimum shift keying method. The input is a baseband representation of the modulated
signal. The initial phase offset property sets the initial phase of the modulated waveform.

To demodulate a signal that was modulated using minimum shift keying:

1 Define and set up your MSK demodulator object. See “Construction” on page
3-1097.

2 Call step to demodulate the signal according to the properties of
comm.MSKDemodulator. The behavior of step is specific to each object in the
toolbox.

Construction

H = comm.MSKDemodulator creates a demodulator System object, H. This object
demodulates the input minimum shift keying (MSK) modulated data using the Viterbi
algorithm.

H = comm.MSKDemodulator(Name,Value) creates an MSK demodulator object, H,
with each specified property set to the specified value. You can specify additional name-
value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties

BitOutput

Output data as bits

3 Alphabetical List

3-1098

Specify whether the output consists of groups of bits or integer values. The default is
false.

When you set this property to false, the step method outputs a column vector with a
length equal to N/“SamplesPerSymbol”. N represents the length of the input signal,
which is the number of input baseband modulated symbols. The elements of the output
vector are -1 or 1.

When you set the “BitOutput” property to true, the step method outputs a binary
column vector with a length equal to N/SamplesPerSymbol. The vector elements are bit
values of 0 or 1.

InitialPhaseOffset

Initial phase offset

Specify the initial phase offset of the input modulated waveform in radians as a real,
numeric scalar value. The default is 0.

SamplesPerSymbol

Number of samples per input symbol

Specify the expected number of samples per input symbol as a positive, integer scalar
value. The default is 8.

TracebackDepth

Traceback depth for Viterbi algorithm

Specify the number of trellis branches that the Viterbi algorithm uses to construct each
traceback path as a positive, integer scalar value. The default is 16. The value of this
property is also the output delay This value indicates number of zero symbols that
precede the first meaningful demodulated symbol in the output.

OutputDataType

Data type of output

Specify the output data type as one of int8 | int16 | int32 | double, when you set
the “BitOutput” property to false. The default is double.

 comm.MSKDemodulator System object

3-1099

When you set the BitOutput property to true, specify the output data type as one of
logical | double.

Methods

clone
Create MSK demodulator object with same
property values

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

reset
Reset states of the MSK demodulator object

step
Demodulate using MSK method and the
Viterbi algorithm

Examples

Demodulate an MSK signal with bit inputs and phase offset

% Create an MSK modulator, an AWGN channel, and an MSK demodulator. Use a

% phase offset of pi/4.

 hMod = comm.MSKModulator('BitInput', true, ...

 'InitialPhaseOffset', pi/4);

 hAWGN = comm.AWGNChannel('NoiseMethod', ...

 'Signal to noise ratio (SNR)','SNR',0);

 hDemod = comm.MSKDemodulator('BitOutput', true, ...

 'InitialPhaseOffset', pi/4);

3 Alphabetical List

3-1100

 % Create an error rate calculator, account for the delay caused by the Viterbi algorithm

 hError = comm.ErrorRate('ReceiveDelay', hDemod.TracebackDepth);

 for counter = 1:100

 % Transmit 100 3-bit words

 data = randi([0 1],300,1);

 modSignal = step(hMod, data);

 noisySignal = step(hAWGN, modSignal);

 receivedData = step(hDemod, noisySignal);

 errorStats = step(hError, data, receivedData);

 end

 fprintf('Error rate = %f\nNumber of errors = %d\n', ...

 errorStats(1), errorStats(2))

Error rate = 0.000000

Number of errors = 0

Algorithms

This object implements the algorithm, inputs, and outputs described on the MSK
Demodulator Baseband block reference page. The object properties correspond to the
block parameters.

See Also
comm.CPMModulator | comm.MSKModulator | comm.CPMDemodulator

 clone

3-1101

clone
System object: comm.MSKDemodulator
Package: comm

Create MSK demodulator object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a MSKDemodulator object C, with the same property values as H.
The clone method creates a new unlocked object with uninitialized states.

3 Alphabetical List

3-1102

getNumInputs
System object: comm.MSKDemodulator
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of
expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H)

 getNumOutputs

3-1103

getNumOutputs
System object: comm.MSKDemodulator
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

3 Alphabetical List

3-1104

isLocked
System object: comm.MSKDemodulator
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the MSKDemodulator System
object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

 release

3-1105

release
System object: comm.MSKDemodulator
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H)Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

3 Alphabetical List

3-1106

reset
System object: comm.MSKDemodulator
Package: comm

Reset states of the MSK demodulator object

Syntax

reset(H)

Description

reset(H) resets the states of the MSKDemodulator object, H.

 step

3-1107

step
System object: comm.MSKDemodulator
Package: comm

Demodulate using MSK method and the Viterbi algorithm

Syntax

Y = step(H,X)

Description

Y = step(H,X) demodulates input data, X, with the MSK demodulator System object,
H, and returns Y. X must be a double or single precision column vector with a length
equal to an integer multiple of the number of samples per symbol you specify in the
SamplesPerSymbol property.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

3 Alphabetical List

3-1108

comm.MSKModulator System object
Package: comm

Modulate using MSK method

Description

The MSKModulator object modulates using the minimum shift keying method. The
output is a baseband representation of the modulated signal. The initial phase offset
property sets the initial phase of the output waveform, measured in radians.

To modulate a signal using minimum shift keying:

1 Define and set up your MSK modulator object. See “Construction” on page 3-1108.
2 Call step to modulate the signal according to the properties of

comm.MSKModulator. The behavior of step is specific to each object in the toolbox.

Construction

H = comm.MSKModulator creates a modulator System object, H. This object modulates
the input signal using the minimum shift keying (MSK) modulation method.

H = comm.MSKModulator(Name,Value) creates an MSK modulator object, H, with
each specified property set to the specified value. You can specify additional name-value
pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties

BitInput

Assume bit inputs

Specify whether the input is bits or integers. The default is false.

When you set the “BitInput” property to false, the step method input must be a
column vector with a double-precision or signed integer data type and of values equal to
-1 or 1.

 comm.MSKModulator System object

3-1109

When you set the BitInput property to true, the step method input requires double-
precision or logical data type column vector of 0s and 1s.

InitialPhaseOffset

Initial phase offset

Specify the initial phase of the modulated waveform in radians as a real, numeric scalar
value. The default is 0.

SamplesPerSymbol

Number of samples per output symbol

Specify the upsampling factor at the output as a real, positive, integer scalar value. The
default is 8. The upsampling factor indicates the number of output samples that the step
method produces for each input sample.

OutputDataType

Data type of output

Specify output data type as one of double | single. The default is double.

Methods

clone
Create MSK modulator object with same
property values

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

3 Alphabetical List

3-1110

reset
Reset states of the MSK modulator object

step
Modulate using MSK method

Examples

Modulate an MSK signal with bit inputs and phase offset

% Create an MSK modulator, an AWGN channel, and an MSK demodulator. Use a

% phase offset of pi/4.

 hMod = comm.MSKModulator('BitInput', true, ...

 'InitialPhaseOffset', pi/4);

 hAWGN = comm.AWGNChannel('NoiseMethod', ...

 'Signal to noise ratio (SNR)','SNR',0);

 hDemod = comm.MSKDemodulator('BitOutput', true, ...

 'InitialPhaseOffset', pi/4);

 % Create an error rate calculator, account for the delay caused by the Viterbi algorithm

 hError = comm.ErrorRate('ReceiveDelay', hDemod.TracebackDepth);

 for counter = 1:100

 % Transmit 100 3-bit words

 data = randi([0 1],300,1);

 modSignal = step(hMod, data);

 noisySignal = step(hAWGN, modSignal);

 receivedData = step(hDemod, noisySignal);

 errorStats = step(hError, data, receivedData);

 end

 fprintf('Error rate = %f\nNumber of errors = %d\n', ...

 errorStats(1), errorStats(2))

Error rate = 0.000000

Number of errors = 0

Algorithms

This object implements the algorithm, inputs, and outputs described on the MSK
Demodulator Baseband block reference page. The object properties correspond to the
block parameters.

 comm.MSKModulator System object

3-1111

See Also
comm.CPMModulator | comm.MSKDemodulator | comm.CPMDemodulator

3 Alphabetical List

3-1112

clone
System object: comm.MSKModulator
Package: comm

Create MSK modulator object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a MSKModulator object C, with the same property values as H.
The clone method creates a new unlocked object with uninitialized states.

 getNumInputs

3-1113

getNumInputs
System object: comm.MSKModulator
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of
expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H)

3 Alphabetical List

3-1114

getNumOutputs
System object: comm.MSKModulator
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

 isLocked

3-1115

isLocked
System object: comm.MSKModulator
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the MSKModulator System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

3 Alphabetical List

3-1116

release
System object: comm.MSKModulator
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H)Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 reset

3-1117

reset
System object: comm.MSKModulator
Package: comm

Reset states of the MSK modulator object

Syntax

reset(H)

Description

reset(H) resets the states of the MSKModulator object, H.

3 Alphabetical List

3-1118

step
System object: comm.MSKModulator
Package: comm

Modulate using MSK method

Syntax

Y = step(H,X)

Description

Y = step(H,X) modulates input data, X, with the MSK modulator object, H. It returns
the baseband modulated output, Y. Depending on the value of the BitInput property,
input X can be a double precision, signed integer, or logical column vector. The length of
output vector, Y, is equal to the number of input samples times the number of samples
per symbol you specify in the SamplesPerSymbol property.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

 comm.MSKTimingSynchronizer System object

3-1119

comm.MSKTimingSynchronizer System object
Package: comm

Recover symbol timing phase using fourth-order nonlinearity method

Description

The MSKTimingSynchronizer object recovers the symbol timing phase of the input
signal using a fourth-order nonlinearity method. This object implements a general non-
data-aided feedback method that is independent of carrier phase recovery. This method
requires prior compensation for the carrier frequency offset. This object is suitable for
systems that use baseband minimum shift keying (MSK) modulation.

To recover the symbol timing phase of the input signal:

1 Define and set up your MSK timing synchronizer object. See “Construction” on page
3-1119.

2 Call step to recover the symbol timing phase of the input signal according to the
properties of comm.MSKTimingSynchronizer. The behavior of step is specific to
each object in the toolbox.

Construction

H = comm.MSKTimingSynchronizer creates a timing phase synchronizer System
object, H. This object recovers the symbol timing phase of the input signal using a fourth-
order nonlinearity method.

H = comm.MSKTimingSynchronizer(Name,Value) creates an MSK
timing synchronizer object, H, with each specified property set to the specified
value. You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties

SamplesPerSymbol

3 Alphabetical List

3-1120

Number of samples representing each symbol

Specify the number of samples that represent each symbol in the input signal as an
integer-valued scalar greater than 1. The default is 4.

ErrorUpdateGain

Error update step size

Specify the step size for updating successive timing phase estimates as a positive,
real scalar value. The default is 0.05. Typically, this number is less than
1/“SamplesPerSymbol”, which corresponds to a slowly varying timing phase. This
property is tunable.

ResetInputPort

Enable synchronization reset input

Set this property to true to enable resetting the timing phase recovery process based on
an input argument value. The default is false.

When you set this property to true, you must specify a reset input value to the step
method.

When the reset input is a nonzero value, the object restarts the timing phase recovery
process. When you set this property to false, the object does not restart.

ResetCondition

Condition for timing phase recovery reset

Specify the conditions to reset the timing phase recovery process as one of Never |
Every frame. The default is Never.

When you set this property to Never, the phase recovery process never restarts. The
object operates continuously, retaining information from one symbol to the next.

When you set this property to Every frame, the timing phase recovery restarts at
the start of each frame of data. Thus, each time the object calls the step method. This
property applies when you set the “ResetInputPort” property to false.

 comm.MSKTimingSynchronizer System object

3-1121

Methods

clone
Create MSK timing phase synchronizer
object with same property values

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

reset
Reset states of MSK timing phase
synchronizer object

step
Recover symbol timing phase using fourth-
order nonlinearity method

Examples

Recover timing phase of an MSK signal.

 % Create System objects

 hMod = comm.MSKModulator('BitInput', true,...

 'SamplesPerSymbol', 14);

 timingOffset = 0.2; % Actual timing offset

 hDelay = dsp.VariableFractionalDelay;

 hSync = comm.MSKTimingSynchronizer('SamplesPerSymbol', 14, ...

 'ErrorUpdateGain', 0.05);

 phEst = zeros(1, 10);

 for i = 1:51

 data = randi([0 1], 100, 1); % generate data

 modData = step(hMod, data); % modulate data

3 Alphabetical List

3-1122

 % data impaired by timing offset error

 impairedData = step(hDelay, modData, timingOffset*14);

 % perform timing phase recovery

 [y, phase] = step(hSync, impairedData);

 phEst(i) = phase(1)/14;

 end

 figure, plot(0.2*ones(1, 50));

 hold on; ylim([0 0.4])

 plot(phEst, 'r'); legend('original', 'estimated')

 title('Original and Estimated timing phases');

Algorithms

This object implements the algorithm, inputs, and outputs described on the MSK-Type
Signal Timing Recovery block reference page. The object properties correspond to the
block parameters, except:

• The object corresponds to the MSK-Type Signal Timing Recovery block with the
Modulation type parameter set to MSK.

• The Reset parameter corresponds to the “ResetInputPort” and “ResetCondition”
properties.

See Also
comm.EarlyLateGateTimingSynchronizer |
comm.MuellerMullerTimingSynchronizer

 clone

3-1123

clone
System object: comm.MSKTimingSynchronizer
Package: comm

Create MSK timing phase synchronizer object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a MSKTimingSynchronizer object C, with the same property
values as H. The clone method creates a new unlocked object with uninitialized states.

3 Alphabetical List

3-1124

getNumInputs
System object: comm.MSKTimingSynchronizer
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) method returns a positive integer, N, representing the number
of expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H).

 getNumOutputs

3-1125

getNumOutputs
System object: comm.MSKTimingSynchronizer
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

3 Alphabetical List

3-1126

isLocked
System object: comm.MSKTimingSynchronizer
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the MSKTimingSynchronizer
System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

 release

3-1127

release
System object: comm.MSKTimingSynchronizer
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H)Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

3 Alphabetical List

3-1128

reset
System object: comm.MSKTimingSynchronizer
Package: comm

Reset states of MSK timing phase synchronizer object

Syntax

reset(H)

Description

reset(H) resets the states of MSKTimingSynchronizer object, H.

 step

3-1129

step
System object: comm.MSKTimingSynchronizer
Package: comm

Recover symbol timing phase using fourth-order nonlinearity method

Syntax

[Y,PHASE] = step(H,X)

[Y,PHASE] = step(H,X,R)

Description

[Y,PHASE] = step(H,X) recovers the timing phase and returns the time-synchronized
signal, Y, and the estimated timing phase, PHASE, for input signal X. X must be a double
or single precision complex column vector.

[Y,PHASE] = step(H,X,R) restarts the timing phase recovery process when you
input a reset signal, R, that is non-zero. R must be a logical or double scalar. This syntax
applies when you set the ResetInputPort property to true.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

3 Alphabetical List

3-1130

comm.MuellerMullerTimingSynchronizer System
object
Package: comm

Recover symbol timing phase using Mueller-Muller method

Description
The MuellerMullerTimingSynchronizer object recovers the symbol timing phase of
the input signal using the Mueller-Muller method. This object implements a decision-
directed, data-aided feedback method that requires prior recovery of the carrier phase.

To recover the symbol timing phase of the input signal:

1 Define and set up your Mueller-Muller timing synchronizer object. See
“Construction” on page 3-1130.

2 Call step to recover the symbol timing phase of the input signal according to the
properties of comm.MuellerMullerTimingSynchronizer. The behavior of step is
specific to each object in the toolbox.

Construction
H = comm.MuellerMullerTimingSynchronizer creates a timing synchronizer
System object, H. This object recovers the symbol timing phase of the input signal using
the Mueller-Muller method.

H = comm.MuellerMullerTimingSynchronizer(Name,Value) creates a
Mueller-Muller timing recovery object, H, with each specified property set to the
specified value. You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties

SamplesPerSymbol

Number of samples representing each symbol

 comm.MuellerMullerTimingSynchronizer System object

3-1131

Specify the number of samples that represent each symbol in the input signal as an
integer-valued scalar greater than 1. The default is 4.

ErrorUpdateGain

Error update step size

Specify the step size for updating successive timing phase estimates as a positive
real scalar value. The default is 0.05. Typically, this number is less than
1/“SamplesPerSymbol”, which corresponds to a slowly varying timing phase. This
property is tunable.

ResetInputPort

Enable synchronization reset input

Set this property to true to enable resetting the timing phase recovery process based on
an input argument value. The default is false. When you set this property to true, you
must specify a reset input value to the step method. When the reset input is a nonzero
value, the object restarts the timing phase recovery process. When you set this property
to false, the object does not restart.

ResetCondition

Condition for timing phase recovery reset

Specify the conditions to reset the timing phase recovery process as Never | Every
frame. The default is Never. When you set this property to Never, the phase recovery
process never restarts. The object operates continuously, retaining information from
one symbol to the next. When you set this property to Every frame, the timing phase
recovery restarts at the start of each frame of data. Thus, restart occurs each time the
object calls the step method. This property applies when you set the “ResetInputPort”
property to false.

Methods

clone
Create Mueller-Muller timing phase
synchronizer object with same property
values

3 Alphabetical List

3-1132

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

reset
Reset states of Mueller-Muller timing
phase synchronizer

step
Recover symbol timing phase using
Mueller-Muller method

Examples

Recover timing phase using the Mueller-Muller method.

% Initialize some data

 L = 16; M = 2; numSymb = 100; snrdB = 30;

 R = 25; rollOff = 0.75; filtDelay = 3; g = 0.07; delay = 6.6498;

% Create System objects

 hMod = comm.DPSKModulator(M, 'PhaseRotation', 0);

 hTxFilter = comm.RaisedCosineTransmitFilter(...

 'RolloffFactor', rollOff, ...

 'FilterSpanInSymbols', 2*filtDelay, ...

 'OutputSamplesPerSymbol', L);

 hDelay = dsp.VariableFractionalDelay('MaximumDelay', L);

 hChan = comm.AWGNChannel(...

 'NoiseMethod', 'Signal to noise ratio (SNR)', ...

 'SNR', snrdB, 'SignalPower', 1/L);

 hRxFilter = comm.RaisedCosineReceiveFilter(...

 'RolloffFactor', rollOff, ...

 'FilterSpanInSymbols', 2*filtDelay, ...

 'InputSamplesPerSymbol', L, ...

 comm.MuellerMullerTimingSynchronizer System object

3-1133

 'DecimationFactor', 1);

 hSync = comm.MuellerMullerTimingSynchronizer('SamplesPerSymbol', L, ...

 'ErrorUpdateGain', g);

% Generate random data

 data = randi([0 M-1], numSymb, 1);

% Modulate and filter transmitter data

 modData = step(hMod, data);

 filterData = step(hTxFilter, modData);

% Introduce a random delay

 delayedData = step(hDelay, filterData, delay);

% Add noise

 chData = step(hChan, delayedData);

% Filter the receiver data

 rxData = step(hRxFilter, chData);

% Estimate the delay from the received signal

 [~, phase] = step(hSync, rxData);

 fprintf(1, 'Actual Timing Delay: %f\n', delay);

 fprintf(1, 'Estimated Timing Delay: %f\n', phase(end));

Algorithms

This object implements the algorithm, inputs, and outputs described on the Mueller-
Muller Timing Recovery block reference page. The object properties correspond to the
block parameters, except:
The Reset parameter corresponds to the “ResetInputPort” and “ResetCondition”
properties.

See Also
comm.EarlyLateGateTimingSynchronizer | comm.GMSKTimingSynchronizer

3 Alphabetical List

3-1134

clone
System object: comm.MuellerMullerTimingSynchronizer
Package: comm

Create Mueller-Muller timing phase synchronizer object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a MuellerMullerTimingSynchronizer object C, with the
same property values as H. The clone method creates a new unlocked object with
uninitialized states.

 getNumInputs

3-1135

getNumInputs
System object: comm.MuellerMullerTimingSynchronizer
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) method returns a positive integer, N, representing the number
of expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H).

3 Alphabetical List

3-1136

getNumOutputs
System object: comm.MuellerMullerTimingSynchronizer
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

 isLocked

3-1137

isLocked
System object: comm.MuellerMullerTimingSynchronizer
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the
MuellerMullerTimingSynchronizer System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

3 Alphabetical List

3-1138

release
System object: comm.MuellerMullerTimingSynchronizer
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H)Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 reset

3-1139

reset
System object: comm.MuellerMullerTimingSynchronizer
Package: comm

Reset states of Mueller-Muller timing phase synchronizer

Syntax

reset(H)

Description

reset(H) resets the states of the MuellerMullerTimingSynchronizer object, H.

3 Alphabetical List

3-1140

step
System object: comm.MuellerMullerTimingSynchronizer
Package: comm

Recover symbol timing phase using Mueller-Muller method

Syntax

[Y,PHASE] = step(H,X)

[Y,PHASE] = step(H,X,R)

Description

[Y,PHASE] = step(H,X) performs timing phase recovery and returns the time-
synchronized signal, Y, and the estimated timing phase, PHASE, for input signal X. The
input X must be a double or single precision complex column vector. The length of X is
N*K, where N is the value you specify in the property SamplesPerSymbol and K is the
number of symbols. The output, Y, is the signal value for each symbol, which you use to
make symbol decisions. Y is a column vector of length K with the same data type as X.

[Y,PHASE] = step(H,X,R) restarts the timing phase recovery process when you
input a reset signal, R, that is non-zero. R must be a logical or double scalar. This syntax
applies when you set the ResetInputPort property to true.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

 comm.MultiplexedDeinterleaver System object

3-1141

comm.MultiplexedDeinterleaver System object
Package: comm

Deinterleave input symbols using set of shift registers with specified delays

Description
The MultiplexedDeinterleaver object restores the original ordering of a sequence
that was interleaved using the General Multiplexed Interleaver object.

To deinterleave the input symbols:

1 Define and set up your multiplexed deinterleaver object. See “Construction” on page
3-1141.

2 Call step to restore the original ordering of the input sequence according to the
properties of comm.MultiplexedDeinterleaver. The behavior of step is specific
to each object in the toolbox.

Construction
H = comm.MultiplexedDeinterleaver creates a multiplexed deinterleaver System
object, H. This object restores the original ordering of a sequence that was interleaved
using the multiplexed interleaver System object.

H = comm.MultiplexedDeinterleaver(Name,Value) creates a multiplexed
deinterleaver object, H, with each specified property set to the specified
value. You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties

Delay

Interleaver delay

Specify the lengths of the shift registers as an integer column vector. The default is
[2;0;1;3;10].

3 Alphabetical List

3-1142

InitialConditions

Initial conditions of shift registers

Specify the initial values in each shift register as a numeric scalar value or a column
vector. The default is 0. When you set this property to a column vector, the vector length
must equal the value of the “Delay” property. This vector contains initial conditions,
where the i-th initial condition is stored in the ith shift register.

Methods

clone
Create multiplexed deinterleaver object
with same property values

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

reset
Reset states of the multiplexed
deinterleaver object

step
Deinterleave input symbols using a set of
shift registers with specified delays

Examples

Interleave a sequence, and then restore it.

 hInt = comm.MultiplexedInterleaver('Delay', [1 0 2]');

 comm.MultiplexedDeinterleaver System object

3-1143

 hDeInt = comm.MultiplexedDeinterleaver('Delay', [1 0 2]');

 data = (1:20)';

 intData = step(hInt, data);

 deIntData = step(hDeInt, intData);

 % compare the original sequence, interleaved sequence and restored sequence.

 display([data intData deIntData]);

Algorithms

This object implements the algorithm, inputs, and outputs described on the General
Multiplexed Deinterleaver block reference page. The object properties correspond to the
block parameters.

See Also
comm.MultiplexedInterleaver | comm.ConvolutionalDeinterleaver

3 Alphabetical List

3-1144

clone
System object: comm.MultiplexedDeinterleaver
Package: comm

Create multiplexed deinterleaver object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a MultiplexedDeinterleaver object C, with the same
property values as H. The clone method creates a new unlocked object with uninitialized
states.

 getNumInputs

3-1145

getNumInputs
System object: comm.MultiplexedDeinterleaver
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of
expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H)

3 Alphabetical List

3-1146

getNumOutputs
System object: comm.MultiplexedDeinterleaver
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

 isLocked

3-1147

isLocked
System object: comm.MultiplexedDeinterleaver
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the MultiplexedDeinterleaver
System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

3 Alphabetical List

3-1148

release
System object: comm.MultiplexedDeinterleaver
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H)Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 reset

3-1149

reset
System object: comm.MultiplexedDeinterleaver
Package: comm

Reset states of the multiplexed deinterleaver object

Syntax

reset(H)

Description

reset(H) resets the states of the MultiplexedDeinterleaver object, H.

3 Alphabetical List

3-1150

step
System object: comm.MultiplexedDeinterleaver
Package: comm

Deinterleave input symbols using a set of shift registers with specified delays

Syntax

Y = step(H,X)

Description

Y = step(H,X) restores the original ordering of the sequence, X, that was interleaved
using a multiplexed interleaver and returns Y. The input X must be a column vector.
The data type for X can be numeric, logical, or fixed-point (fi objects). Y has the same
data type as X. The multiplexed deinterleaver object uses N shift registers, where N
is the number of elements in the vector specified by the Delay property. When a new
input symbol enters the deinterleaver, a commutator switches to a new register. The
new symbol shifts in while the oldest symbol in that register is shifted out. When the
commutator reaches the Nth register, upon the next new input, it returns to the first
register. The multiplexed deinterleaver associated with a multiplexed interleaver has
the same number of registers as the interleaver. The delay in a particular deinterleaver
register depends on the largest interleaver delay minus the interleaver delay for the
given register.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

 comm.MultiplexedInterleaver System object

3-1151

comm.MultiplexedInterleaver System object
Package: comm

Permute input symbols using set of shift registers with specified delays

Description
The MultiplexedInterleaver object permutes the symbols in the input signal.
Internally, the object uses a set of shift registers, each with its own delay value.

To permute the symbols in the input signal:

1 Define and set up your multiplexed interleaver object. See “Construction” on page
3-1151.

2 Call step to interleave the input signal according to the properties of
comm.MultiplexedInterleaver. The behavior of step is specific to each object in
the toolbox.

Construction
H = comm.MultiplexedInterleaver creates a multiplexed interleaver System object,
H. This object permutes the symbols in the input signal using a set of shift registers with
specified delays.

H = comm.MultiplexedInterleaver(Name,Value) creates a multiplexed
interleaver object, H, with each specified property set to the specified value.
You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties

Delay

Interleaver delay

Specify the lengths of the shift registers as an integer column vector. The default is
[2;0;1;3;10].

3 Alphabetical List

3-1152

InitialConditions

Initial conditions of shift registers

Specify the initial values in each shift register as a numeric scalar value or a column
vector. The default is 0. When you set this property to a column vector, the length must
equal the value of the “Delay” property. This vector contains initial conditions, where the
i-th initial condition is stored in the i-th shift register.

Methods

clone
Create multiplexed interleaver object with
same property values

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

reset
Reset states of the multiplexed interleaver
object

step
Permute input symbols using a set of shift
registers with specified delays

Examples

Interleave a sequence, and then restore it.

 hInt = comm.MultiplexedInterleaver('Delay', [1 0 2]');

 comm.MultiplexedInterleaver System object

3-1153

 hDeInt = comm.MultiplexedDeinterleaver('Delay', [1 0 2]');

 data = (1:20)';

 intData = step(hInt, data);

 deIntData = step(hDeInt, intData);

 % compare the original sequence, interleaved sequence, and restored

 % sequence

 [data, intData, deIntData]

Algorithms

This object implements the algorithm, inputs, and outputs described on the General
Multiplexed Interleaver block reference page. The object properties correspond to the
block parameters.

See Also
comm.MultiplexedDeinterleaver | comm.ConvolutionalInterleaver

3 Alphabetical List

3-1154

clone
System object: comm.MultiplexedInterleaver
Package: comm

Create multiplexed interleaver object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a MultiplexedInterleaver object C, with the same property
values as H. The clone method creates a new unlocked object with uninitialized states.

 getNumInputs

3-1155

getNumInputs
System object: comm.MultiplexedInterleaver
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of
expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H)

3 Alphabetical List

3-1156

getNumOutputs
System object: comm.MultiplexedInterleaver
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

 isLocked

3-1157

isLocked
System object: comm.MultiplexedInterleaver
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the MultiplexedInterleaver
System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

3 Alphabetical List

3-1158

release
System object: comm.MultiplexedInterleaver
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H)Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 reset

3-1159

reset
System object: comm.MultiplexedInterleaver
Package: comm

Reset states of the multiplexed interleaver object

Syntax

reset(H)

Description

reset(H) resets the states of the MultiplexedInterleaver object, H.

3 Alphabetical List

3-1160

step
System object: comm.MultiplexedInterleaver
Package: comm

Permute input symbols using a set of shift registers with specified delays

Syntax

Y = step(H,X)

Description

Y = step(H,X) permutes input sequence, X, and returns interleaved sequence, Y. The
input X must be a column vector and the data type can be numeric, logical, or fixed-point
(fi objects). Y has the same data type as X. The multiplexed interleaver object consists
of N registers, each with a specified delay. With each new input symbol, a commutator
switches to a new register and the new symbol is shifted in while the oldest symbol in
that register is shifted out. When the commutator reaches the Nth register, upon the
next new input, it returns to the first register.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

 comm.OQPSKDemodulator System object

3-1161

comm.OQPSKDemodulator System object
Package: comm

Demodulate using OQPSK method

Description

The OQPSKDemodulator object demodulates a signal that was modulated using the
offset quadrature phase shift keying method. The input is a baseband representation of
the modulated signal.

To demodulate a signal that was modulated using offset quadrature phase shift keying:

1 Define and set up your OQPSK demodulator object. See “Construction” on page
3-1161.

2 Call step to demodulate the signal according to the properties of
comm.OQPSKDemodulator. The behavior of step is specific to each object in the
toolbox.

Construction

H = comm.OQPSKDemodulator creates a demodulator System object, H. This object
demodulates the input signal using the offset quadrature phase shift keying (OQPSK)
method.

H = comm.OQPSKDemodulator(Name,Value) creates an OQPSK demodulator object,
H, with each specified property set to the specified value. You can specify additional
name-value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

H = comm.OQPSKDemodulator(PHASE,Name,Value) creates an OQPSK demodulator
object, H. This object has the PhaseOffset property set to PHASE and the other specified
properties set to the specified values.

Properties

PhaseOffset

3 Alphabetical List

3-1162

Phase of zeroth point of constellation from p

4

Specify the phase offset of the zeroth point of the constellation shifted from p

4
, in

radians, as a finite, real-valued scalar. The default is 0.

BitOutput

Output data as bits

Specify whether the output consists of groups of bits or integer values. The default is
false. When you set this property to true the step method outputs a column vector of
bit values. The vector length must equal to twice the number of demodulated symbols.
When you set this property to false, the step method outputs a column vector. The
length of this vector equals to the number of demodulated symbols that contain integer
values between 0 and 3. The object produces one output demodulated symbol for each
pair of input samples.

OutputDataType

Data type of output

Specify output data type as Full precision | Smallest unsigned integer |
double | single | int8 | uint8 | int16 | uint16 | int32 | uint32. The default
is Full precision. When you set this property to Full precision, the step method
output inherits the data type from the input. When the input is of single or double
data, the step method outputs the same data type as the input. When the input data
is of a fixed-point type, then the step method outputs the same data type as if you set
the OutputDataType property to Smallest unsigned integer. When you set the
“BitOutput” property to true, the logical data type becomes a valid option.

When the input signal is an integer data type, you must have a Fixed-Point Designer
user license to use this property in Smallest unsigned integer or Full precision
mode.

Fixed-Point Properties

DerotateFactorDataType

Data type of derotate factor

 comm.OQPSKDemodulator System object

3-1163

Specify derotate factor data type as one of Same word length as input | Custom.
The default is Same word length as input. The object uses the derotate factor
in the computations only when the step method input is of a fixed-point type and the

“PhaseOffset” property has a value that is not a multiple of p

2
.

CustomDerotateFactorDataType

Fixed-point data type of derotate factor

Specify the derotate factor fixed-point type as an unscaled numerictype object with a
signedness of Auto. The default is numerictype([],16). This property applies when
you set the “DerotateFactorDataType” property to Custom.

AccumulatorDataType

Data type of accumulator

Specify AccumulatorMode as one of Full precision | Same as input | Custom. The
default is Full precision.

CustomAccumulatorDataType

Fixed-point data type of accumulator

Specify the accumulator output fixed-point type as a scaled numerictype object with
a signedness of Auto. The default is numerictype([],32,15). This property applies
when you set the “AccumulatorDataType” property to Custom.

AccumulatorRoundingMethod

Rounding of fixed-point numeric value of accumulator

Specify the accumulator rounding method as Ceiling | Convergent | Floor |
Nearest | Round | Simplest | Zero. The default is Floor.

AccumulatorOverflowAction

Action when fixed-point numeric value of accumulator overflows

Specify the accumulator overflow action as Wrap | Saturate. The default is Wrap.

3 Alphabetical List

3-1164

MappingDataType

Data type of mapping

Specify the mapping data type as Same as accumulator | Custom. The default is
Same as accumulator.

CustomMappingDataType

Fixed-point data type of mapping

Specify the mapping fixed-point type as a scaled numerictype object with a signedness
of Auto. The default is numerictype([],32,15). This property applies when you set
the “MappingDataType” property to Custom.

Methods

clone
Create OQPSK demodulator object with
same property values

constellation
Calculate or plot ideal signal constellation

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

reset
Reset demodulator state

step
Demodulate using OQPSK method

 comm.OQPSKDemodulator System object

3-1165

Examples

Modulate and demodulate a signal using OQPSK modulation with a constellation with
pi/8 radians of phase offset.

 hMod = comm.OQPSKModulator(pi/8);

 hAWGN = comm.AWGNChannel('NoiseMethod', ...

 'Signal to noise ratio (SNR)','SNR',6);

 hDemod = comm.OQPSKDemodulator(pi/8);

 % Create an error rate calculator, account for the one symbol delay

 hError = comm.ErrorRate('ReceiveDelay',1);

 for counter = 1:100

 % Transmit a 50-symbol frame

 data = randi([0 3],50,1);

 modSignal = step(hMod, data);

 noisySignal = step(hAWGN, modSignal);

 receivedData = step(hDemod, noisySignal);

 errorStats = step(hError, data, receivedData);

 end

 fprintf('Error rate = %f\nNumber of errors = %d\n', ...

 errorStats(1), errorStats(2))

Algorithms

This object implements the algorithm, inputs, and outputs described on the OQPSK
Demodulator Baseband block reference page. The object properties correspond to the
block parameters.

See Also
comm.QPSKDemodulator | comm.OQPSKModulator

3 Alphabetical List

3-1166

clone
System object: comm.OQPSKDemodulator
Package: comm

Create OQPSK demodulator object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a OQPSKDemodulator object C, with the same property values as
H. The clone method creates a new unlocked object with uninitialized states.

 constellation

3-1167

constellation
System object: comm.OQPSKDemodulator
Package: comm

Calculate or plot ideal signal constellation

Syntax
y = constellation(h)

constellation(h)

Description
y = constellation(h) returns the numerical values of the constellation.

constellation(h) generates a constellation plot for the object.

Examples

Calculate OQPSK Demodulator Reference Constellation Values

Create an OQPSK Demodulator System object™ and calculate its reference constellation
values.

Create a comm.OQPSKDemodulator System object.

h = comm.OQPSKDemodulator;

Calculate and display the reference constellation values by calling the constellation
function.

refC = constellation(h)

refC =

 0.7071 + 0.7071i

 -0.7071 + 0.7071i

3 Alphabetical List

3-1168

 -0.7071 - 0.7071i

 0.7071 - 0.7071i

Plot OQPSK Demodulator Reference Constellation

Create an OQPSK Demodulator System object™ and plot its reference constellation.

Create a comm.OQPSKDemodulator System object.

h = comm.OQPSKDemodulator;

Plot the reference constellation by calling the constellation function.

constellation(h)

 getNumInputs

3-1169

getNumInputs
System object: comm.OQPSKDemodulator
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of
expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H)

3 Alphabetical List

3-1170

getNumOutputs
System object: comm.OQPSKDemodulator
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

 isLocked

3-1171

isLocked
System object: comm.OQPSKDemodulator
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the OQPSKDemodulator System
object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

3 Alphabetical List

3-1172

release
System object: comm.OQPSKDemodulator
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H)Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 reset

3-1173

reset
System object: comm.OQPSKDemodulator
Package: comm

Reset demodulator state

Syntax

reset(H)

Description

reset(H) resets the states of the OQPSKDemodulator object, H.

3 Alphabetical List

3-1174

step
System object: comm.OQPSKDemodulator
Package: comm

Demodulate using OQPSK method

Syntax

Y = step(H,X)

Description

Y = step(H,X) demodulates data, X, with the OQPSK demodulator object, H, and
returns Y. Input X must be a double, single, or signed fixed-point data type scalar or
column vector. The object produces one output symbol for each pair of input samples.
When used with the OQPSK modulator object, the step method output has a one symbol
delay as compared to the input of the modulator. Depending on the BitOutput property
value, output Y can be integer or bit valued.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

 comm.OQPSKModulator System object

3-1175

comm.OQPSKModulator System object
Package: comm

Modulate using OQPSK method

Description

The OQPSKModulator object modulates using the offset quadrature phase shift keying
method. The output is a baseband representation of the modulated signal.

To modulate a signal using offset quadrature phase shift keying:

1 Define and set up your OQPSK modulator object. See “Construction” on page
3-1175.

2 Call step to modulate the signal according to the properties of
comm.OQPSKModulator. The behavior of step is specific to each object in the
toolbox.

Construction

H = comm.OQPSKModulator creates a modulator System object, H. This object
modulates the input signal using the offset quadrature phase shift keying (OQPSK)
method.

H = comm.OQPSKModulator(Name,Value) creates an OQPSK modulator object, H,
with each specified property set to the specified value. You can specify additional name-
value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

H = comm.OQPSKModulator(PHASE,Name,Value) creates an OQPSK modulator
object, H. This object has the PhaseOffset property set to PHASE and the other specified
properties set to the specified values.

Properties

PhaseOffset

3 Alphabetical List

3-1176

Phase of zeroth point of constellation from p

4

Specify the phase offset of the zeroth point of the constellation shifted from p

4
, in

radians, as a finite, real-valued scalar. The default is 0.

BitInput

Assume input is bits

Specify whether the input is bits or integers. The default is false. When you set this
property to true, the inputs are bit representations of integers between 0 and 3. The
input requires a column vector of bit values with length that is an integer multiple of
two. When you set this property to false, the input requires a column vector of integer
values between 0 and 3.

OutputDataType

Data type of output

Specify the output data type as double | single | Custom. The default is double.

Fixed-Point Properties

CustomOutputDataType

Fixed-point data type of output

Specify the output fixed-point type as a numerictype object with a signedness of
Auto. The default is numerictype([],16). This property applies when you set the
“OutputDataType” property to Custom.

Methods

clone
Create OQPSK modulator object with same
property values

constellation
Calculate or plot ideal signal constellation

 comm.OQPSKModulator System object

3-1177

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

reset
Reset modulator state

step
Modulate using OQPSK method

Examples

Modulate data using OQPSK, and visualize the modulated data in a scatter plot.

% Create binary data for 1000, 2-bit symbols

 data = randi([0 1],2000,1);

% Create an OQPSK modulator System object and accept bits as inputs and set a phase offset of pi/16

 hModulator = comm.OQPSKModulator(pi/16,'BitInput',true);

% Modulate and plot the data, ignore the first output symbol

 modData = step(hModulator, data);

 scatterplot(modData(2:end))

Algorithms

This object implements the algorithm, inputs, and outputs described on the OQPSK
Modulator Baseband block reference page. The object properties correspond to the block
parameters.

See Also
comm.QPSKModulator | comm.OQPSKDemodulator

3 Alphabetical List

3-1178

clone
System object: comm.OQPSKModulator
Package: comm

Create OQPSK modulator object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a OQPSKModulator object C, with the same property values as H.
The clone method creates a new unlocked object with uninitialized states.

 constellation

3-1179

constellation
System object: comm.OQPSKModulator
Package: comm

Calculate or plot ideal signal constellation

Syntax
y = constellation(h)

constellation(h)

Description
y = constellation(h) returns the numerical values of the constellation.

constellation(h) generates a constellation plot for the object.

Examples

Calculate OQPSK Modulator Reference Constellation Values

Create an OQPSK Modulator System object and calculate its reference constellation
values.

Create a comm.OQPSKModulator System object.

h = comm.OQPSKModulator;

Calculate and display the reference constellation values by using the constellation
function.

refC = constellation(h)

refC =

 0.7071 + 0.7071i

 -0.7071 + 0.7071i

3 Alphabetical List

3-1180

 -0.7071 - 0.7071i

 0.7071 - 0.7071i

Plot OQPSK Modulator Reference Constellation Values

Create an OQPSK Modulator System object and plot its reference constellation.

Create a comm.OQPSKModulator System object.

h = comm.OQPSKModulator;

Plot the reference constellation by using the constellation function.

constellation(h)

 getNumInputs

3-1181

getNumInputs
System object: comm.OQPSKModulator
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of
expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H)

3 Alphabetical List

3-1182

getNumOutputs
System object: comm.OQPSKModulator
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

 isLocked

3-1183

isLocked
System object: comm.OQPSKModulator
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the OQPSKModulator System
object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

3 Alphabetical List

3-1184

release
System object: comm.OQPSKModulator
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H)Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 reset

3-1185

reset
System object: comm.OQPSKModulator
Package: comm

Reset modulator state

Syntax

reset(H)

Description

reset(H) resets the states of the OQPSKModulator object, H.

3 Alphabetical List

3-1186

step
System object: comm.OQPSKModulator
Package: comm

Modulate using OQPSK method

Syntax

Y = step(H,X)

Description

Y = step(H,X) modulates input data, X, with the OQPSK modulator object, H, and
returns baseband modulated output, Y. Depending on the value of the BitInput
property, input X can be an integer or bit valued column vector with numeric, logical, or
fixed-point data types.

The OQPSK modulator object upsamples by a factor of two. The step method outputs
the length, Y, as 2 ¥ N, where N is the length of the input, X. The step method outputs an
initial condition of zero, which is unrelated to the input values.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

 comm.OSTBCCombiner System object

3-1187

comm.OSTBCCombiner System object
Package: comm

Combine inputs using orthogonal space-time block code

Description

The OSTBCCombiner object combines the input signal (from all of the receive antennas)
and the channel estimate signal to extract the soft information of the symbols encoded
by an OSTBC. The input channel estimate does not need to be constant and can vary at
each call to the step method. The combining algorithm uses only the estimate for the first
symbol period per codeword block. A symbol demodulator or decoder would follow the
Combiner object in a MIMO communications system.

To combine input signals and extract the soft information of the symbols encoded by an
OSTBC:

1 Define and set up your OSTBC combiner object. See “Construction” on page 3-1187.
2 Call step to Combine inputs using an orthogonal space-time block code according

to the properties of comm.OSTBCCombiner. The behavior of step is specific to each
object in the toolbox.

Construction

H = comm.OSTBCCombiner creates an orthogonal space-time block code (OSTBC)
combiner System object, H. This object combines the input signal (from all of the receive
antennas) with the channel estimate signal to extract the soft information of the symbols
encoded by an OSTBC.

H = comm.OSTBCCombiner(Name,Value) creates an OSTBC Combiner object, H, with
each specified property set to the specified value. You can specify additional name-value
pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

H = comm.OSTBCCombiner(N,M,Name,Value) creates an OSTBC Combiner
object, H. This object has the NumTransmitAntennas property set to N, the
NumReceiveAntennas property set to N, and the other specified properties set to the
specified values.

3 Alphabetical List

3-1188

Properties

NumTransmitAntennas

Number of transmit antennas

Specify the number of antennas at the transmitter as 2 | 3 | 4. The default is 2.

SymbolRate

Symbol rate of code

Specify the symbol rate of the code as 3/4 | 1/2. The default is 3/4. This property
applies when the “NumTransmitAntennas” property is greater than 2. For 2 transmit
antennas, the symbol rate defaults to 1.

NumReceiveAntennas

Number of receive antennas

Specify the number of antennas at the receiver as a double-precision, real, scalar integer
value from 1 to 8. The default is 1.

Fixed-Point Properties

RoundingMethod

Rounding of fixed-point numeric values

Specify the rounding method as Ceiling | Convergent | Floor | Nearest | Round |
Simplest | Zero. The default is Floor.

OverflowAction

Action when fixed-point numeric values overflow

Specify the overflow action as one of Wrap | Saturate. The default is Wrap. This
property specifies the action to be taken in case of overflow. Such overflow occurs if the
magnitude of a fixed-point calculation result does not fit into the range of the data type
and scaling that stores the result.

ProductDataType

 comm.OSTBCCombiner System object

3-1189

Data type of product

Specify the product data type as one of Full precision | Custom. The default is Full
precision.

CustomProductDataType

Fixed-point data type of product

Specify the product fixed-point type as a scaled numerictype object with a signedness of
Auto. The default is numerictype([],32,16). This property applies when you set the
“ProductDataType” property to Custom.

AccumulatorDataType

Data type of accumulator

Specify the accumulator data type as Full precision | Same as product | Custom.
The default is Full precision.

CustomAccumulatorDataType

Fixed-point data type of accumulator

Specify the accumulator fixed-point type as a scaled numerictype object with a
signedness of Auto. The default is numerictype([],32,16). This property applies
when you set the “AccumulatorDataType” property to Custom.

EnergyProductDataType

Data type of energy product

Specify the complex energy product data type as one of Full precision | Same as
product | Custom. The default is Full precision. This property sets the data type
of the complex product in the denominator to calculate the total energy in the MIMO
channel.

CustomEnergyProductDataType

Fixed-point data type of energy product

Specify the energy product fixed-point type as a scaled numerictype object with a
signedness of Auto. The default is numerictype([],32,16). This property applies
when you set the “EnergyProductDataType” property to Custom.

3 Alphabetical List

3-1190

EnergyAccumulatorDataType

Data type of energy accumulator

Specify the energy accumulator data type as one of Full precision | Same
as energy product | Same as accumulator | Custom. The default is Full
precision. This property sets the data type of the summation in the denominator to
calculate the total energy in the MIMO channel.

CustomEnergyAccumulatorDataType

Fixed-point data type of energy accumulator

Specify the energy accumulator fixed-point type as a scaled numerictype object with
a signedness of Auto. The default is numerictype([],32,16). This property applies
when you set the “EnergyAccumulatorDataType” property to Custom.

DivisionDataType

Data type of division

Specify the division data type as one of Same as accumulator | Custom. The default
is Same as accumulator. This property sets the data type at the output of the division
operation. The setting normalizes diversity combining by the total energy in the MIMO
channel.

CustomDivisionDataType

Fixed-point data type of division

Specify the division fixed-point type as a scaled numerictype object with a signedness of
Auto. The default is numerictype([],32,16). This property applies when you set the
“DivisionDataType” property to Custom.

Methods

clone
Create OSTBC combiner object with same
property values

getNumInputs
Number of expected inputs to step method

 comm.OSTBCCombiner System object

3-1191

getNumOutputs
Number of outputs from step method

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

step
Combine inputs using orthogonal space-
time block code

Examples

Encode with OSTBC and Calculate Errors

Determine the bit error rate for a QSPK signal employing OSTBC encoding when
transmitted through a 4x2 MIMO channel. Perfect channel estimation is assumed to be
used by the OSTBC combiner.

Define the system parameters.

numTx = 4; % Number of transmit antennas

numRx = 2; % Number of receive antennas

Rs = 1e6; % Sampling rate (Hz)

tau = [0 2e-6]; % Path delays (sec)

pdb = [0 -10]; % Average path gains (dB)

maxDopp = 30; % Maximum Doppler shift (Hz)

numBits = 12000; % Number of bits

SNR = 6; % Signal-to-noise ratio (dB)

Set the random number generator to its default state to ensure repeatable results.

rng default

Create a QPSK modulator System object™. Set the BitInput property to true and the
SymbolMapping property to Gray.

hMod = comm.QPSKModulator(...

 'BitInput',true,...

 'SymbolMapping','Gray');

3 Alphabetical List

3-1192

Create a corresponding QPSK demodulator System object. Set the SymbolMapping
property to Gray and the BitOutput property to true.

hDemod = comm.QPSKDemodulator(...

 'SymbolMapping','Gray',...

 'BitOutput',true);

Create an OSTBC encoder and combiner pair, where the number of antennas is specifed
in the system parameters.

hOSTBCEnc = comm.OSTBCEncoder(...

 'NumTransmitAntennas',numTx);

hOSTBCComb = comm.OSTBCCombiner(...

 'NumTransmitAntennas',numTx,...

 'NumReceiveAntennas',numRx);

Create a flat 4x2 MIMO Channel System object, where the channel characteristics are
set using name-value pairs. The path gains are made available to serve as a perfect
channel estimate for the OSTBC combiner.

hChan = comm.MIMOChannel(...

 'SampleRate',Rs,...

 'PathDelays',tau,...

 'AveragePathGains',pdb,...

 'MaximumDopplerShift',maxDopp,...

 'SpatialCorrelation',false,...

 'NumTransmitAntennas',numTx,...

 'NumReceiveAntennas',numRx,...

 'PathGainsOutputPort',true);

Create an AWGN channel System object in which the noise method is specified as a
signal-to-noise ratio.

hAWGN = comm.AWGNChannel(...

 'NoiseMethod','Signal to noise ratio (SNR)',...

 'SNR',SNR,...

 'SignalPower',1);

Generate a random sequence of bits.

data = randi([0 1],numBits,1);

Apply QPSK modulation.

 comm.OSTBCCombiner System object

3-1193

modData = step(hMod,data);

Encode the modulated data using the OSTBC encoder object.

encData = step(hOSTBCEnc,modData);

Transmit the encoded data through the MIMO channel and add white noise by using the
step functions of the MIMO and AWGN channel objects, respectively.

[chanOut,pathGains] = step(hChan,encData);

rxSignal = step(hAWGN,chanOut);

Sum the pathGains array along the number of paths (2nd dimension) to form the
channel estimate. Apply the squeeze function to make its dimensions conform with
those of rxSignal.

chEst = squeeze(sum(pathGains,2));

Combine the received MIMO signal and its channel estimate using the step function of
the OSTBC combiner object. Demodulate the combined signal.

combinedData = step(hOSTBCComb,rxSignal,chEst);

receivedData = step(hDemod,combinedData);

Compute the number of bit errors and the bit error rate.

[numErrors,ber] = biterr(data,receivedData)

numErrors =

 11

ber =

 9.1667e-04

Algorithms

This object implements the algorithm, inputs, and outputs described on the OSTBC
Combiner block reference page. The object properties correspond to the block parameters.

3 Alphabetical List

3-1194

See Also
comm.OSTBCEncoder

 clone

3-1195

clone
System object: comm.OSTBCCombiner
Package: comm

Create OSTBC combiner object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a OSTBCCombiner object C, with the same property values as H.
The clone method creates a new unlocked object with uninitialized states.

3 Alphabetical List

3-1196

getNumInputs
System object: comm.OSTBCCombiner
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of
expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H)

 getNumOutputs

3-1197

getNumOutputs
System object: comm.OSTBCCombiner
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

3 Alphabetical List

3-1198

isLocked
System object: comm.OSTBCCombiner
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the OSTBCCombiner System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

 release

3-1199

release
System object: comm.OSTBCCombiner
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H)Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

3 Alphabetical List

3-1200

step
System object: comm.OSTBCCombiner
Package: comm

Combine inputs using orthogonal space-time block code

Syntax

Y = step(H,X,CEST)

Description

Y = step(H,X,CEST) combines the received data, X, and the channel estimate, CEST,
to extract the symbols encoded by an OSTBC. Both X and CEST are complex-valued and
of the same data type, which can be double, single, or signed fixed point with power-of-
two slope and zero bias. When the step method input X has double or single precision, the
output, Y, has the same data type as the input. The input channel estimate can remain
constant or can vary during each codeword block transmission. The combining algorithm
uses the estimate only for the first symbol period per codeword block.

The time domain length, T/“SymbolRate”, must be a multiple of the codeword block
length. T is the output symbol sequence length in the time domain. Specifically,
when you set the “NumTransmitAntennas” property to 2, T/SymbolRate must be
a multiple of two. When you set the NumTransmitAntennas property greater than
2, T/SymbolRate must be a multiple of four. For an input of T/SymbolRate rows by
“NumReceiveAntennas” columns, the input channel estimate, CEST, must be a matrix
of size T/SymbolRateby NumTransmitAntennas by NumReceiveAntennas. In this case,
the extracted symbol data, Y, is a column vector with T elements. Input matrix size can
be F by T/SymbolRate by NumReceiveAntennas, where F is an optional dimension
(typically frequency domain) over which the combining calculation is independent. In this
case, the input channel estimate, CEST, must be a matrix of size F by T/SymbolRate by
NumTransmitAntennas by NumReceiveAntennas. The extracted symbol data, Y, is an
F rows by T columns matrix.

Note: H specifies the System object on which to run this step method.

 step

3-1201

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

3 Alphabetical List

3-1202

comm.OSTBCEncoder System object
Package: comm

Encode input using orthogonal space-time block code

Description
The OSTBCEncoder object encodes an input symbol sequence using orthogonal space-
time block code (OSTBC). The block maps the input symbols block-wise and concatenates
the output codeword matrices in the time domain.

To encode an input symbol sequence using an orthogonal space-time block code:

1 Define and set up your OSTBC encoder object. See “Construction” on page 3-1202.
2 Call step to encode an input symbol sequence according to the properties of

comm.OSTBCEncoder. The behavior of step is specific to each object in the toolbox.

Construction
H = comm.OSTBCEncoder creates an orthogonal space-time block code (OSTBC)
encoder System object, H. This object maps the input symbols block-wise and
concatenates the output codeword matrices in the time domain.

H = comm.OSTBCEncoder(Name,Value) creates an OSTBC encoder object, H, with
each specified property set to the specified value. You can specify additional name-value
pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

H = comm.OSTBCEncoder(N,Name,Value) creates an OSTBC encoder object, H.
This object has the NumTransmitAntennas property set to N, and the other specified
properties set to the specified values.

Properties
NumTransmitAntennas

Number of transmit antennas

Specify the number of antennas at the transmitter as 2 | 3 | 4. The default is 2.

 comm.OSTBCEncoder System object

3-1203

SymbolRate

Symbol rate of code

Specify the symbol rate of the code as one of 3/4 | 1/2. The default is 3/4. This
property applies when you set the “NumTransmitAntennas” property to greater than 2.
For 2 transmit antennas, the symbol rate defaults to 1.

Fixed-Point Properties

OverflowAction

Action when fixed-point numeric values overflow

Specify the overflow action as one of Wrap | Saturate. The default is Wrap. This
property specifies the action to be taken in the case of an overflow. Such overflow occurs
when the magnitude of a fixed-point calculation result does not fit into the range of the
data type and scaling that stores the result.

Methods

clone
Create OSTBC encoder object with same
property values

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

step
Encode input using orthogonal space-time
block code

3 Alphabetical List

3-1204

Examples

Encode BPSK Modulated Data with OSTBC

Generate random binary data, modulate using the BPSK modulation scheme, and encode
the modulated data using OSTBC.

Generate an 8-by-1 vector of random binary data.

data = randi([0 1],8,1);

Create BPSK Modulator System object and modulated the data using the step function.

hMod = comm.BPSKModulator;

modData = step(hMod,data);

Create an OSTBC Encoder and encode the modulated signal. As the default number of
transmit antennas is 2, you can see that encData is an 8-by-2 vector.

hOSTBCEnc = comm.OSTBCEncoder;

encData = step(hOSTBCEnc, modData)

encData =

 -1.0000 + 0.0000i -1.0000 + 0.0000i

 1.0000 + 0.0000i -1.0000 - 0.0000i

 1.0000 + 0.0000i -1.0000 + 0.0000i

 1.0000 + 0.0000i 1.0000 + 0.0000i

 -1.0000 + 0.0000i 1.0000 + 0.0000i

 -1.0000 + 0.0000i -1.0000 - 0.0000i

 1.0000 + 0.0000i -1.0000 + 0.0000i

 1.0000 + 0.0000i 1.0000 + 0.0000i

Algorithms

This object implements the algorithm, inputs, and outputs described on the OSTBC
Encoder block reference page. The object properties correspond to the block parameters.

When this object processes variable-size signals:

 comm.OSTBCEncoder System object

3-1205

• If the input signal is a column vector, the first dimension can change, but the second
dimension must remain fixed at 1.

• If the input signal is a matrix, both dimensions can change.

See Also
comm.OSTBCCombiner

3 Alphabetical List

3-1206

clone
System object: comm.OSTBCEncoder
Package: comm

Create OSTBC encoder object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a OSTBCEncoder object C, with the same property values as H.
The clone method creates a new unlocked object with uninitialized states.

 getNumInputs

3-1207

getNumInputs
System object: comm.OSTBCEncoder
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of
expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H)

3 Alphabetical List

3-1208

getNumOutputs
System object: comm.OSTBCEncoder
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

 isLocked

3-1209

isLocked
System object: comm.OSTBCEncoder
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the OSTBCEncoder System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

3 Alphabetical List

3-1210

release
System object: comm.OSTBCEncoder
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H)Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 step

3-1211

step
System object: comm.OSTBCEncoder
Package: comm

Encode input using orthogonal space-time block code

Syntax

Y = step(H,X)

Description

Y = step(H,X) encodes the input data, X, using OSTBC encoder object, H. The input
is a complex-valued column vector or matrix of data type double, single, or signed
fixed-point with power-of-two slope and zero bias. The step method output, Y, is the
same data type as the input data. The time domain length, T, of X must be a multiple
of the number of symbols in each codeword matrix. Specifically, when you set the
“NumTransmitAntennas” property is 2 or the “SymbolRate” property is 1/2, T must
be a multiple of two and when the SymbolRate property to 3/4, T must be a multiple of
three. For a time or spatial domain input of T rows by one column, the encoded output
data, Y, is a (T/SymbolRate)-by-NumTransmitAntennas matrix. The input matrix size
can be F rows by T columns, where F is the additional dimension (typically the frequency
domain) over which the encoding calculation is independent. In this case, the output is an
F-by-(T/SymbolRate)-by-NumTransmitAntennas matrix.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

3 Alphabetical List

3-1212

comm.OVSFCode System object
Package: comm

Generate OVSF code

Description

The OVSFCode object generates an orthogonal variable spreading factor (OVSF) code
from a set of orthogonal codes. OVSF codes were first introduced for 3G communication
systems. They are primarily used to preserve orthogonality between different channels in
a communication system.

To generate an OVSF code:

1 Define and set up your OVSF code object. See “Construction” on page 3-1212.
2 Call step to generate an OVSF code according to the properties of comm.OVSFCode.

The behavior of step is specific to each object in the toolbox.

Construction

H = comm.OVSFCode creates an orthogonal variable spreading factor (OVSF) code
generator System object, H. This object generates an OVSF code.

H = comm.OVSFCode(Name,Value) creates an OVSF code generator object, H, with
each specified property set to the specified value. You can specify additional name-value
pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties

SpreadingFactor

Length of generated code

Specify the length of the generated code as an integer scalar value with a power of two.
The default is 64.

 comm.OVSFCode System object

3-1213

Index

Index of code of interest

Specify the index of the desired code from the available set of codes that have the
spreading factor specified in the “SpreadingFactor” property. This property must be an
integer scalar in the range 0 to SpreadingFactor–1. The default is 60.

OVSF codes are defined as the rows of an n-by-n matrix, Cn, where n is the value
specified in the SpreadingFactor property.

You can define the matrix Cn recursively as follows:
First, define C1 = [1].
Next, assume that Cn is defined and let Cn(k) denote the k-th row of Cn.
Then, C2n = [Cn(0) Cn(0); Cn(0) -Cn(0); ... ; Cn(n-1) Cn(n–1); Cn(n–1)–Cn(n–1)].
Cn is only defined for values of n that are a power of 2. Set the this property to a value of
k to choose the k-th row of the C matrix as the code of interest.

SamplesPerFrame

Number of output samples per frame

Specify the number of OVSF code samples that the step method outputs as a numeric,
positive, integer scalar value. The default is 1. If you set this property to a value of M,
then the step method outputs M samples of an OVSF code of length N. N is the length of
the OVSF code that you specify in the “SpreadingFactor” property.

OutputDataType

Data type of output

Specify output data type as one of double | int8. The default is double.

Methods

clone
Create OVSF code generator object with
same property values

getNumInputs
Number of expected inputs to step method

3 Alphabetical List

3-1214

getNumOutputs
Number of outputs from step method

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

reset
Reset states of OVSF code generator object

step
Generate OVSF code

Examples

Generate 10 samples of an OVSF code with a spreading factor of 64.

 hOVSF = comm.OVSFCode('SamplesPerFrame', 10,'SpreadingFactor',64);

 seq = step(hOVSF)

Algorithms

This object implements the algorithm, inputs, and outputs described on the OVSF
Code Generator block reference page. The object properties correspond to the block
parameters, except:

• The object does not have a property to select frame based outputs.
• The object does not have a property that corresponds to the Sample time parameter.

See Also
comm.WalshCode | comm.HadamardCode

 clone

3-1215

clone
System object: comm.OVSFCode
Package: comm

Create OVSF code generator object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a OVSFCode object C, with the same property values as H. The
clone method creates a new unlocked object with uninitialized states.

3 Alphabetical List

3-1216

getNumInputs
System object: comm.OVSFCode
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of
expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H)

 getNumOutputs

3-1217

getNumOutputs
System object: comm.OVSFCode
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

3 Alphabetical List

3-1218

isLocked
System object: comm.OVSFCode
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the OVSFCode System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

 release

3-1219

release
System object: comm.OVSFCode
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H)Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

3 Alphabetical List

3-1220

reset
System object: comm.OVSFCode
Package: comm

Reset states of OVSF code generator object

Syntax

reset(H)

Description

reset(H) resets the states of the OVSFCode object, H.

 step

3-1221

step
System object: comm.OVSFCode
Package: comm

Generate OVSF code

Syntax

Y = step(H)

Description

Y = step(H) outputs a frame of the OVSF code in column vector Y. Specify the frame
length with the SamplesPerFrame property.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

3 Alphabetical List

3-1222

comm.PAMDemodulator System object
Package: comm

Demodulate using M-ary PAM method

Description

The PAMDemodulator object demodulates a signal that was modulated using M-ary
pulse amplitude modulation. The input is a baseband representation of the modulated
signal.

To demodulate a signal that was modulated using M-ary pulse amplitude modulation:

1 Define and set up your PAM demodulator object. See “Construction” on page
3-1222.

2 Call step to demodulate the signal according to the properties of
comm.PAMDemodulator. The behavior of step is specific to each object in the
toolbox.

Construction

H = comm.PAMDemodulator creates a demodulator System object, H. This object
demodulates the input signal using the M-ary pulse amplitude modulation (M-PAM)
method.

H = comm.PAMDemodulator(Name,Value) creates an M-PAM demodulator object, H,
with each specified property set to the specified value. You can specify additional name-
value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

H = comm.PAMDemodulator(M,Name,Value) creates an M-PAM demodulator object,
H. This object has the ModulationOrder property set to M, and the other specified
properties set to the specified values.

Properties

ModulationOrder

 comm.PAMDemodulator System object

3-1223

Number of points in signal constellation

Specify the number of points in the signal constellation as a positive, integer scalar
value. The default is 4. When you set the “BitOutput” property to false, this value
must be even. When you set the BitOutput property to true, this value requires an
integer power of two.

BitOutput

Output data as bits

Specify whether the output consists of groups of bits or integer symbol values. The
default is false.

When you set this property to true the step method outputs a column vector of bit
values with length equal to log2(“ModulationOrder”) times the number of demodulated
symbols.

When you set this property to false, the step method outputs a column vector, with
length equal to the input data vector. This value contains integer symbol values between
0 and ModulationOrder–1.

SymbolMapping

Constellation encoding

Specify how the object maps an integer or group of log2(“ModulationOrder”) bits to the
corresponding symbol as one of Binary | Gray. The default is Gray.

When you set this property to Gray, the object uses a Gray-encoded signal constellation.

When you set this property to Binary, the integer m, between
0 £ £m (ModulationOrder–1) maps to the complex value 2m-ModulationOrder+1.

NormalizationMethod

Constellation normalization method

Specify the method used to normalize the signal constellation as one of Minimum
distance between symbols | Average power | Peak power. The default is
Minimum distance between symbols.

3 Alphabetical List

3-1224

MinimumDistance

Minimum distance between symbols

Specify the distance between two nearest constellation points as a positive, real,
numeric scalar value. The default is 2. This property applies when you set the
“NormalizationMethod” property to Minimum distance between symbols.

AveragePower

Average power of constellation

Specify the average power of the symbols in the constellation as a positive, real,
numeric scalar value. The default is 1. This property applies when you set the
“NormalizationMethod” property to Average power.

PeakPower

Peak power of constellation

Specify the maximum power of the symbols in the constellation as a positive, real,
numeric scalar value. The default is 1. This property applies when you set the
“NormalizationMethod” property to Peak power.

OutputDataType

Data type of output

Specify the output data type as one of Full precision | Smallest unsigned
integer | double | single | int8 | uint8 | int16 | uint16 | int32 | uint32.
The default is Full precision.

When you set this property to Full precision, and the input data type is single or
double precision, the output data has the same data type that of the input.

When the input signal is an integer data type, you must have a Fixed-Point Designer
user license to use this property in Smallest unsigned integer or Full precision
mode.

When the input data is of a fixed-point type, the output data type behaves as if you had
set the “OutputDataType” property to Smallest unsigned integer.

 comm.PAMDemodulator System object

3-1225

When you set the “BitOutput” property to true, then logical data type becomes a
valid option.

Fixed-Point Properties

FullPrecisionOverride

Full precision override for fixed-point arithmetic

Specify whether to use full precision rules. If you set FullPrecisionOverride to
true, which is the default, the object computes all internal arithmetic and output
data types using full precision rules. These rules provide the most accurate fixed-point
numerics. It also turns off the display of other fixed-point properties because they do
not apply individually. These rules guarantee that no quantization occurs within the
object. Bits are added, as needed, to ensure that no roundoff or overflow occurs. If you
set FullPrecisionOverride to false, fixed-point data types are controlled through
individual fixed-point property settings. For more information, see “Full Precision for
Fixed-Point System Objects”.

DenormalizationFactorDataType

Data type of denormalization factor

Specify the denormalization factor data type as one of Same word length as input |
Custom. The default is Same word length as input.

CustomDenormalizationFactorDataType

Fixed-point data type of denormalization factor

Specify the denormalization factor fixed-point type as an unscaled numerictype object
with a signedness of Auto. The default is numerictype([],16). This property applies
when you set the “DenormalizationFactorDataType” property to Custom.

ProductDataType

Data type of product

Specify the product data type as one of Full precision | Custom. The default is Full
precision. When you set this property to Full precision the object calculates the

3 Alphabetical List

3-1226

full-precision product word and fraction lengths. This property applies when you set the
“FullPrecisionOverride” property to false.

CustomProductDataType

Fixed-point data type of product

Specify the product fixed-point type as an unscaled numerictype object with a
signedness of Auto. The default is numerictype([],32). This property applies when
you set the “FullPrecisionOverride” property to false and the “ProductDataType”
property to Custom.

ProductRoundingMethod

Rounding of fixed-point numeric value of product

Specify the product rounding method as one of Ceiling | Convergent | Floor |
Nearest | Round | Simplest | Zero. The default is Floor. This property applies when
the object is not in a full precision configuration

ProductOverflowAction

Action when fixed-point numeric value of product overflows

Specify the product overflow action as one of Wrap | Saturate. The default is Wrap. This
property applies when the object is not in a full precision configuration.

SumDataType

Data type of sum

Specify the sum data type as one of Full precision | Same as product | Custom.
The default is Full precision. When you set this property to Full precision, the
object calculates the full-precision sum word and fraction lengths. This property applies
when you set the “FullPrecisionOverride” property to false

CustomSumDataType

Fixed-point data type of sum

Specify the sum fixed-point type as an unscaled numerictype object with a signedness
of Auto. The default is numerictype([],32). This property applies when you set the

 comm.PAMDemodulator System object

3-1227

the “FullPrecisionOverride” property to false and the “SumDataType” property to
Custom.

Methods

clone
Create M-PAM demodulator object with
same property values

constellation
Calculate or plot ideal signal constellation

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

step
Demodulate using M-ary PAM method

Examples

Modulate and demodulate a signal using 16-PAM modulation.

 hMod = comm.PAMModulator(16);

 hAWGN = comm.AWGNChannel('NoiseMethod', ...

 'Signal to noise ratio (SNR)', ...

 'SNR',20, 'SignalPower', 85);

 hDemod = comm.PAMDemodulator(16);

 %Create an error rate calculator

 hError = comm.ErrorRate;

 for counter = 1:100

 % Transmit a 50-symbol frame

3 Alphabetical List

3-1228

 data = randi([0 hMod.ModulationOrder-1],50,1);

 modSignal = step(hMod, data);

 noisySignal = step(hAWGN, modSignal);

 receivedData = step(hDemod, noisySignal);

 errorStats = step(hError, data, receivedData);

 end

 fprintf('Error rate = %f\nNumber of errors = %d\n', ...

 errorStats(1), errorStats(2))

Algorithms

This object implements the algorithm, inputs, and outputs described on the M-PAM
Demodulator Baseband block reference page. The object properties correspond to the
block parameters.

See Also
comm.PAMModulator

 clone

3-1229

clone
System object: comm.PAMDemodulator
Package: comm

Create M-PAM demodulator object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a PAMDemodulator object C, with the same property values as H.
The clone method creates a new unlocked object with uninitialized states.

3 Alphabetical List

3-1230

constellation

System object: comm.PAMDemodulator
Package: comm

Calculate or plot ideal signal constellation

Syntax

y = constellation(h)

constellation(h)

Description

y = constellation(h) returns the numerical values of the constellation.

constellation(h) generates a constellation plot for the object.

Examples

Calculate Ideal Signal Constellation for comm.PAMDemodulator

Create a comm.PAMDemodulator System object, and then calculate its ideal signal
constellation.

Create a comm.PAMDemodulator System object by entering the following at the
MATLAB command line:

h = comm.PAMDemodulator

Calculate and display the ideal signal constellation by calling the constellation
method.

 constellation

3-1231

a = constellation(h)

Plot Ideal Signal Constellation for comm.PAMDemodulator

Create a comm.PAMDemodulator System object, and then plot the ideal signal
constellation.

Create a comm.PAMDemodulator System object by entering the following at the
MATLAB command line:

h = comm.PAMDemodulator

Plot the ideal signal constellation by calling the constellation method.

constellation(h)

3 Alphabetical List

3-1232

getNumInputs
System object: comm.PAMDemodulator
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of
expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H)

 getNumOutputs

3-1233

getNumOutputs
System object: comm.PAMDemodulator
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

3 Alphabetical List

3-1234

isLocked
System object: comm.PAMDemodulator
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the PAMDemodulator System
object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

 release

3-1235

release
System object: comm.PAMDemodulator
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H)Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

3 Alphabetical List

3-1236

step
System object: comm.PAMDemodulator
Package: comm

Demodulate using M-ary PAM method

Syntax

Y = step(H,X)

Description

Y = step(H,X) demodulates data, X, with the M-PAM demodulator System object, H,
and returns Y. Input X must be a scalar or column vector. The data type of the input can
be double or single precision, signed integer, or signed fixed point (fi objects). Depending
on the BitOutput property value, output Y can be integer or bit valued.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

 comm.PAMModulator System object

3-1237

comm.PAMModulator System object
Package: comm

Modulate using M-ary PAM method

Description

The PAMModulator object modulates using M-ary pulse amplitude modulation. The
output is a baseband representation of the modulated signal. The M-ary number
parameter, M, represents the number of points in the signal constellation and requires
an even integer.

To modulate a signal using M-ary pulse amplitude modulation:

1 Define and set up your PAM modulator object. See “Construction” on page 3-1237.
2 Call step to modulate the signal according to the properties of

comm.PAMModulator. The behavior of step is specific to each object in the toolbox.

Construction

H = comm.PAMModulator creates a modulator System object, H. This object modulates
the input signal using the M-ary pulse amplitude modulation (M-PAM) method.

H = comm.PAMModulator(Name,Value) creates an M-PAM modulator object, H, with
each specified property set to the specified value. You can specify additional name-value
pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

H = comm.PAMModulator(M,Name,Value) creates an M-PAM modulator object,
H. This object has the ModulationOrder property set to M and the other specified
properties set to the specified values.

Properties

ModulationOrder

Number of points in signal constellation

3 Alphabetical List

3-1238

Specify the number of points in the signal constellation as a positive, integer
scalar value. The default is 4. When you set the “BitInput” property to false,
ModulationOrder must be even. When you set the BitInput property to true,
ModulationOrder must be an integer power of two.

BitInput

Assume bit inputs

Specify whether the input is in bits or integers. The default is false.

When you set this property to true, the step method input requires a column vector of
bit values whose length is an integer multiple of log2(“ModulationOrder”). This vector
contains bit representations of integers between 0 and ModulationOrder–1.

When you set this property to false, the step method input must be a column vector of
integer symbol values between 0 and ModulationOrder–1.

SymbolMapping

Constellation encoding

Specify how the object maps an integer or group of log2(“ModulationOrder”) input bits
to the corresponding symbol as one of Binary | Gray. The default is Gray.

When you set this property to Gray, the object uses a Gray-encoded signal constellation.

When you set this property to Binary, the input integer m, between
0 £ £m ModulationOrder-1) maps to the complex value 2m– ModulationOrder + 1.

NormalizationMethod

Constellation normalization method

Specify the method used to normalize the signal constellation as one of Minimum
distance between symbols | Average power | Peak power. The default is
Minimum distance between symbols.

MinimumDistance

Minimum distance between symbols

Specify the distance between two nearest constellation points as a positive, real,
numeric scalar value. The default is 2. This property applies when you set the
“NormalizationMethod” property to Minimum distance between symbols.

 comm.PAMModulator System object

3-1239

AveragePower

Average power of constellation

Specify the average power of the symbols in the constellation as a positive, real,
numeric scalar value. The default is 1. This property applies when you set the
“NormalizationMethod” property to Average power.

PeakPower

Peak power of constellation

Specify the maximum power of the symbols in the constellation as a positive, real,
numeric scalar value. The default is 1. This property applies when you set the
“NormalizationMethod” property to Peak power.

OutputDataType

Data type of output

Specify the output data type as one of double | single | Custom. The default is
double.

Fixed-Point Properties

CustomOutputDataType

Fixed-point data type of output

Specify the output fixed-point type as a numerictype object with a signedness of
Auto. The default is numerictype([],16). This property applies when you set the
“OutputDataType” property to Custom.

Methods

clone
Create PAM modulator object with same
property values

3 Alphabetical List

3-1240

constellation
Calculate or plot ideal signal constellation

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

step
Modulate using M-ary PAM method

Examples

Modulate data using 16-PAM modulation, and visualize the data in a scatter plot.

 % Create binary data for 100, 4-bit symbols

 data = randi([0 1],400,1);

 % Create a 16-PAM modulator System object with bits as inputs and

 % Gray-coded signal constellation

 hModulator = comm.PAMModulator(16,'BitInput',true);

 % Modulate and plot the data

 modData = step(hModulator, data);

 constellation(hModulator)

Algorithms

This object implements the algorithm, inputs, and outputs described on the M-PAM
Modulator Baseband block reference page. The object properties correspond to the block
parameters.

See Also
comm.PAMDemodulator

 clone

3-1241

clone
System object: comm.PAMModulator
Package: comm

Create PAM modulator object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a PAMModulator object C, with the same property values as H.
The clone method creates a new unlocked object with uninitialized states.

3 Alphabetical List

3-1242

constellation

System object: comm.PAMModulator
Package: comm

Calculate or plot ideal signal constellation

Syntax

y = constellation(h)

constellation(h)

Description

y = constellation(h) returns the numerical values of the constellation.

constellation(h) generates a constellation plot for the object.

Examples

Calculate Ideal Signal Constellation for comm.PAMModulator

Create a comm.PAMModulator System object, and then calculate its ideal signal
constellation.

Create a comm.PAMModulator System object by entering the following at the MATLAB
command line:

h = comm.PAMModulator

Calculate and display the ideal signal constellation by calling the constellation
method.

 constellation

3-1243

a = constellation(h)

Plot Ideal Signal Constellation for comm.PAMModulator

Create a comm.PAMModulator System object, and then plot the ideal signal
constellation.

Create a comm.PAMModulator System object by entering the following at the MATLAB
command line:

h = comm.PAMModulator

Plot the ideal signal constellation by calling the constellation method.

constellation(h)

3 Alphabetical List

3-1244

getNumInputs
System object: comm.PAMModulator
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of
expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H)

 getNumOutputs

3-1245

getNumOutputs
System object: comm.PAMModulator
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

3 Alphabetical List

3-1246

isLocked
System object: comm.PAMModulator
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the PAMModulator System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

 release

3-1247

release
System object: comm.PAMModulator
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H)Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

3 Alphabetical List

3-1248

step
System object: comm.PAMModulator
Package: comm

Modulate using M-ary PAM method

Syntax

Y = step(H,X)

Description

Y = step(H,X) modulates input data, X, with the M-PAM modulator System object, H.
It returns the baseband modulated output, Y. Depending on the value of the BitInput
property, input X can be an integer or bit valued column vector with numeric, logical, or
fixed-point data types.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

 comm.PhaseFrequencyOffset System object

3-1249

comm.PhaseFrequencyOffset System object
Package: comm

Apply phase and frequency offsets to input signal

Description
The PhaseFrequencyOffset object applies phase and frequency offsets to an incoming
signal.

To apply phase and frequency offsets to the input signal:

1 Define and set up your phase frequency offset object. See “Construction” on page
3-1249.

2 Call step to apply phase and frequency offsets to the input signal according to the
properties of comm.PhaseFrequencyOffset. The behavior of step is specific to
each object in the toolbox.

Construction
H = comm.PhaseFrequencyOffset creates a phase and frequency offset System object,
H. This object applies phase and frequency offsets to an input signal.

H = comm.PhaseFrequencyOffset(Name,Value) creates a phase and
frequency offset object, H, with each specified property set to the specified
value. You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties

PhaseOffset

Phase offset

Specify the phase offset in degrees. The default is 0. If the step method input is an M-
by-N matrix, the “PhaseOffset” property can be set to a numeric scalar, an M-by-1, or
1-by-N numeric vector, or an M-by-N numeric matrix.

3 Alphabetical List

3-1250

When you set the PhaseOffset property to a scalar value, the object applies the
constant specified phase offset to each column of the input matrix.

When you set this property to an M-by-1 vector, the object applies time varying phase
offsets, specified in the vector of this property, to each column of the input to the step
method.

When you set this property to a 1-by-N vector, the object applies the i-th constant phase
offset of this property to the i-th column of the input to the step method.

When you set this property to an M-by-N matrix, the object applies the i-th time varying
phase offsets, specified in the i-th column of this property, to the i-th column of the input
to the step method. This property is tunable.

FrequencyOffsetSource

Source of frequency offset

Specify the source of the frequency offset as one of Property | Input port. The default
is Property. If you set this property to Property, you can specify the frequency offset
using the “FrequencyOffset” property. If you set this property to Input port, you
specify the frequency offset as a step method input.

FrequencyOffset

Frequency offset

Specify the frequency offset in Hertz. The default is 0. If the step method input is an M-
by-N matrix, then the “FrequencyOffset” property is a numeric scalar, an M-by-1, or 1-
by-N numeric vector, or an M-by-N numeric matrix.

This property applies when you set the “FrequencyOffsetSource” property to
Property.

When you set this property to a scalar value, the object applies the constant specified
frequency offset to each column of the input to the step method.

When you set this property to an M-by-1 vector, the object applies time-varying
frequency offsets. These offsets are specified in the property, to each column of the input
to the step method.

When you set this property to a 1-by-N vector, the object applies the i-th constant
frequency offset in this property to the i-th column of the input to the step method.

 comm.PhaseFrequencyOffset System object

3-1251

When you set this property to an M-by-N matrix, the object applies the i-th time varying
frequency offset. This offset is specified in the i-th column of this property and to the i-th
column of input to the step method. This property is tunable.

SampleRate

Sample rate

Specify the sample rate of the input samples in seconds as a double-precision, real,
positive scalar value. The default is 1.

SampleRate = Input Vector Size / Simulink Sample Time

Methods

clone
Create phase and frequency offset object
with same property values

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

step
Apply phase and frequency offsets to input
signal

Examples

Introduce phase offset to a rectangular 16-QAM signal.

 data = (0:15)';

3 Alphabetical List

3-1252

 M = 16; % Modulation order

 hMod = comm.RectangularQAMModulator(M);

 hPFO = comm.PhaseFrequencyOffset('PhaseOffset', 20,'SampleRate',1e-6);

% Modulate data

 modData = step(hMod, data);

 scatterplot(modData);

 title(' Original Constellation');xlim([-5 5]);ylim([-5 5])

% Introduce phase offset

 impairedData = step(hPFO,modData);

 scatterplot(impairedData);

 title('Constellation after phase offset');xlim([-5 5]);ylim([-5 5])

Algorithms

This object implements the algorithm, inputs, and outputs described on the Phase/
Frequency Offset block reference page. The object properties correspond to the block
parameters, except:
The object provides a “SampleRate” property, which you must specify. The block senses
the sample time of the signal and therefore does not have a corresponding parameter.

See Also
comm.PhaseNoise | comm.ThermalNoise | comm.MemorylessNonlinearity

 clone

3-1253

clone
System object: comm.PhaseFrequencyOffset
Package: comm

Create phase and frequency offset object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a PhaseFrequencyOffset object C, with the same property
values as H. The clone method creates a new unlocked object with uninitialized states.

3 Alphabetical List

3-1254

getNumInputs
System object: comm.PhaseFrequencyOffset
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of
expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H)

 getNumOutputs

3-1255

getNumOutputs
System object: comm.PhaseFrequencyOffset
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

3 Alphabetical List

3-1256

isLocked
System object: comm.PhaseFrequencyOffset
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the PhaseFrequencyOffset
System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

 release

3-1257

release
System object: comm.PhaseFrequencyOffset
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H)Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

3 Alphabetical List

3-1258

step
System object: comm.PhaseFrequencyOffset
Package: comm

Apply phase and frequency offsets to input signal

Syntax

Y = step(H,X)

Y = step(H,X,FRQ)

Description

Y = step(H,X) applies phase and frequency offsets to input X, and returns Y. The input
X is a double or single precision matrix X, of dimensions MxN. M is the number of time
samples in the input signals and N is number of channels. Both M and N can be equal to
1. The object adds phase and frequency offsets independently to each column of X. The
data type and dimensions of X and Y are the same.

Y = step(H,X,FRQ) uses FRQ as the frequency offset that the object applies to input X
when you set the FrequencyOffsetSource property to 'Input port'. When the X input
is an MxN matrix, the value for FRQ can be a numeric scalar, an Mx1 or 1xN numeric
vector, or an MxN numeric matrix. When the FRQ input is a scalar, the object applies
a constant frequency offset, FRQ, to each column of X. When the FRQ input is an Mx1
vector, the object applies time varying frequency offsets, which are specified in the FRQ
vector, to each column of X. When the FRQ input is a 1xN vector, the object applies the
ith constant frequency offset in FRQ to the ith column of X. When the FRQ input is an
MxN matrix, the object applies the ith time varying frequency offsets, specified in the ith
column of FRQ, to the ith column of X.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an

 step

3-1259

input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

3 Alphabetical List

3-1260

comm.PhaseNoise System object
Package: comm

Apply phase noise to complex, baseband signal

Description

The PhaseNoise object applies phase noise to a complex, baseband signal. This phase
noise has a 1/f spectral characteristic over its entire frequency range.

To apply phase noise to a complex, baseband signal:

1 Define and set up your phase noise object. See “Construction” on page 3-1260.
2 Call step to apply phase noise to a complex, baseband signal according to the

properties of comm.PhaseNoise. The behavior of step is specific to each object in
the toolbox.

Construction

H = comm.PhaseNoise creates a phase noise System object, H. This object applies phase
noise with the specified level at the specified frequency offset to a complex, baseband
input signal.

H = comm.PhaseNoise(Name,Value) creates a phase noise object, H, with each
specified property set to the specified value. You can specify additional name-value pair
arguments in any order as (Name1,Value1,...,NameN,ValueN).

H = comm.PhaseNoise(LEVEL,OFFSET,Name,Value) creates a phase noise object, H.
This object has the Level property set to LEVEL, the “FrequencyOffset” property set
to OFFSET and the other specified properties set to the specified values.

Properties

Level

Phase noise level

 comm.PhaseNoise System object

3-1261

Specify the phase noise level in decibels relative to carrier per Hertz (dBc/Hz) at a
frequency offset specified by the “FrequencyOffset” property. The default is [-60
-80]. This property requires a negative, real scalar or vector of data type double.

FrequencyOffset

Frequency offset

Specify the frequency offset in Hertz as a nonnegative, real scalar or increasing vector of
data type double. The default is [20 200].

SampleRate

Sample rate

Specify the sample rate in Hertz as a positive, real scalar or vector of data type double.
The default is 1024. The System object does not use this property when you specify
“Level” and “FrequencyOffset” as scalars.

Methods

clone
Create phase noise object with same
property values

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

step
Apply phase noise to a complex, baseband
signal

3 Alphabetical List

3-1262

Examples

Add a phase noise vector and frequency offset vector to a 16-QAM signal. Then, plot the
signal.

% Create 16-QAM modulator

 hMod = comm.RectangularQAMModulator(16, ...

 'NormalizationMethod','Average power', 'AveragePower',10);

% Create phase noise System object

 hPhNoise = comm.PhaseNoise('Level',[-60 -80], ...

 'FrequencyOffset',[20 200], ...

 'SampleRate',1024);

% Generate modulated symbols

 modData = step(hMod, randi([0 15], 1000, 1));

% Apply phase noise and plot the result

 y = step(hPhNoise, modData);

 scatterplot(y)

Algorithms

This object implements the algorithm, inputs, and outputs described on the Phase Noise
block reference page. The object properties correspond to the block parameters, except:

• The object respects the data types and does perform any casting other than casting
the output to the input data type. The result of exp(1i ¥ phase_noise) is cast to the
input data type first, before multiplying with the input signal. This order prevents the
output (phase distorted) signal from being downcast to single precision if any of the
properties are of data type single while the input data type is double precision.

• This object uses the MATLAB default random stream to generate random numbers.
The block uses a random number generator based on the V5 RANDN (Ziggurat)
algorithm. In addition, the block uses an initial seed, set with the Initial seed
parameter to initialize the random number generator. Every time the system that
contains the block runs, the block generates the same sequence of random numbers.
To generate reproducible numbers using this object, reset the MATLAB default
random stream using the following code.

reset(RandStream.getGlobalStream)

For more information, see help for RandStream.

 comm.PhaseNoise System object

3-1263

See Also
comm.PhaseFrequencyOffset | comm.MemorylessNonlinearity

3 Alphabetical List

3-1264

clone
System object: comm.PhaseNoise
Package: comm

Create phase noise object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a PhaseNoise object C, with the same property values as H. The
clone method creates a new unlocked object with uninitialized states.

 getNumInputs

3-1265

getNumInputs
System object: comm.PhaseNoise
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of
expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H)

3 Alphabetical List

3-1266

getNumOutputs
System object: comm.PhaseNoise
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

 isLocked

3-1267

isLocked
System object: comm.PhaseNoise
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the PhaseNoise System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

3 Alphabetical List

3-1268

release
System object: comm.PhaseNoise
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H)Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 step

3-1269

step
System object: comm.PhaseNoise
Package: comm

Apply phase noise to a complex, baseband signal

Syntax

Y = step(H,X)

Description

Y = step(H,X) adds phase noise with the specified level, at the specified frequency
offset, to the input X and returns the result in Y. X must be a complex scalar or column
vector of data type double or single. The step method outputs, Y, with the same data
type and dimensions as the input.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

3 Alphabetical List

3-1270

comm.PNSequence System object

Package: comm

Generate a pseudo-noise (PN) sequence

Description

The PNSequence object generates a sequence of pseudorandom binary numbers using
a linear-feedback shift register (LFSR). This block implements LFSR using a simple
shift register generator (SSRG, or Fibonacci) configuration. You can use a pseudonoise
sequence in a pseudorandom scrambler and descrambler. You can also use one in a
direct-sequence spread-spectrum system.

To generate a PN sequence:

1 Define and set up your PN sequence object. See “Construction” on page 3-1270.
2 Call step to generate a PN sequence according to the properties of

comm.PNSequence. The behavior of step is specific to each object in the toolbox.

Construction

H = comm.PNSequence creates a pseudo-noise (PN) sequence generator System object,
H. This object generates a sequence of pseudorandom binary numbers using a linear-
feedback shift register (LFSR).

H = comm.PNSequence(Name,Value) creates a PN sequence generator object, H, with
each specified property set to the specified value. You can specify additional name-value
pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties

Polynomial

Generator polynomial

 comm.PNSequence System object

3-1271

Specify the polynomial that determines the shift register's feedback connections. The
default is [1 0 0 0 0 1 1]. You can specify the generator polynomial as a numeric,
binary vector that lists the coefficients of the polynomial in descending order of powers.
The first and last elements must equal 1, and the length of this vector must be n+1. The
value n indicates the degree of the generator polynomial. Alternatively, you can specify
the generator polynomial as a numeric vector containing the exponents of z for the
nonzero terms of the polynomial in descending order of powers. The last entry must be
0. For example, [1 0 0 0 0 0 1 0 1] and [8 2 0] represent the same polynomial,
g z z z() = + +

8 2
1 . The PN sequence has a period of N

n
= -2 1 (applies only to maximal

length sequences).

InitialConditionsSource

Source of initial conditions

Specify the source of the initial conditions that determines the start of the PN sequence
as one of Property | Input port. The default is Property. When you set this
property to Property, the initial conditions can be specified as a scalar or binary vector
using the “InitialConditions” property. When you set this property to Input port,
you specify the initial conditions as an input to the step method. The object accepts a
binary scalar or a binary vector input. The length of the input must equal the degree of
the generator polynomial that the “Polynomial” property specifies.

InitialConditions

Initial conditions of shift register

Specify the initial values of the shift register as a binary, numeric scalar or a binary,
numeric vector. The default is [0 0 0 0 0 1]. Set the vector length equal to the degree
of the generator polynomial. If you set this property to a vector, each element of the
vector corresponds to the initial value of the corresponding cell in the shift register. If you
set this property to a scalar, the initial conditions of all the cells of the shift register are
the specified scalar value. The scalar, or at least one element of the specified vector, must
be nonzero for the object to generate a nonzero sequence.

MaskSource

Source of mask to shift PN sequence

Specify the source of the mask that determines the shift of the PN sequence as one
of Property | Input port. The default is Property. When you set this property

3 Alphabetical List

3-1272

to Property, the mask can be specified as a scalar or binary vector using the “Mask”
property. When you set this property to Input port, the mask, which is an input to the
step method, can only be specified as a binary vector. This vector must have a length
equal to the degree of the generator polynomial specified in the “Polynomial” property.

Mask

Mask to shift PN sequence

Specify the mask that determines how the PN sequence is shifted from its starting point
as a numeric, integer scalar or as a binary vector. The default is 0.

When you set this property to an integer scalar, the value is the length of the shift.
A scalar shift can be positive or negative. When the PN sequence has a period of
N

n
= -2 1 , where n is the degree of the generator polynomial that you specify in the

“Polynomial” property, the object wraps shift values that are negative or greater than
N.

When you set this property to a binary vector, its length must equal the degree of the
generator polynomial specified in the Polynomial property. The mask vector that
represents m z z

D
() = modulo g(z), where g(z) is the generator polynomial, and the mask

vector corresponds to a shift of D. For example, for a generator polynomial of degree of 4,
the mask vector corresponding to D = 2 is [0 1 0 0], which represents the polynomial
m z z() =

2 .

You can calculate the mask vector using the shift2mask function. This property applies
when you set the “MaskSource” property to Property.

VariableSizeOutput

Enable variable-size outputs

Set this property to true to enable an additional input to the step method. The default
is false. When you set this property to true, the enabled input specifies the output size
of the PN sequence used for the step. The input value must be less than or equal to the
value of the MaximumOutputSize property.

When you set this property to false, the SamplesPerFrame property specifies the
number of output samples.

 comm.PNSequence System object

3-1273

MaximumOutputSize

Maximum output size

Specify the maximum output size of the PN sequence as a positive integer 2-element row
vector. The second element of the vector must be 1. The default is [10 1].

This property applies when you set the VariableSizeOutput property to true.

SamplesPerFrame

Number of outputs per frame

Specify the number of PN sequence samples that the step method outputs as a numeric,
positive, integer scalar value. The default is 1. If you set this property to a value of
M, then the step method outputs M samples of a PN sequence that has a period of
N

n
= -2 1 . The value n represents the degree of the generator polynomial that you

specify in the “Polynomial” property. If you set the “BitPackedOutput” property to
false, the samples are bits from the PN sequence. If you set the BitPackedOutput
property to true, then the output corresponds to SamplesPerFrame groups of bit-
packed samples.

ResetInputPort

Enable generator reset input

Set this property to true to enable an additional input to the step method. The default
is false. This input resets the states of the PN sequence generator to the initial
conditions specified in the “InitialConditions” property.

BitPackedOutput

Output integer representations of bit-packed words

Set this property to true to enable bit-packed outputs. The default is false. In this
case, the step method outputs a column vector of length M, which contains integer
representations of bit words of length P. M is the number of samples per frame specified
in the “SamplesPerFrame” property. P is the size of the bit-packed words specified in
the “NumPackedBits” property. The first bit from the left in the bit-packed word is
considered the most significant bit.

NumPackedBits

3 Alphabetical List

3-1274

Number of bits per bit-packed word

Specify the number of bits to pack into each output data word as a numeric, integer
scalar value between 1 and 32. The default is 8. This property applies when you set the
“BitPackedOutput” property to true.

SignedOutput

Output signed bit-packed words

Set this property to true to obtain signed, bit-packed, output words. The default is false.
In this case, a 1 in the most significant bit (sign bit) indicates a negative value. The
property indicates negative numbers in a two's complement format. This property applies
when you set the “BitPackedOutput” property to true.

OutputDataType

Data type of output

Specify the output data type as one of double | logical | Smallest unsigned
integer when the “BitPackedOutput” property is false. The default is double.
Specify the output data type as double | Smallest unsigned integer when the
BitPackedOutput property is set to true.

You must have a Fixed-Point Designer user license to use this property in Smallest
unsigned integer mode.

Methods

clone
Create PN sequence generator object with
same property values

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

isLocked
Locked status for input attributes and
nontunable properties

 comm.PNSequence System object

3-1275

release
Allow property value and input
characteristics changes

reset
Reset states of PN sequence generator
object

step
Generate a pseudo-noise (PN) sequence

Examples

Get 2 frames of 14 samples of a maximal length PN-sequence of period 23–1 (i.e., get two
periods of the sequence).

 hpn = comm.PNSequence('Polynomial',[3 2 0], ...

 'SamplesPerFrame', 14, 'InitialConditions',[0 0 1]);

 x1 = step(hpn);

 x2 = step(hpn);

 [x1 x2]

Algorithms

This object implements the algorithm, inputs, and outputs described on the PN
Sequence Generator block reference page. The object properties correspond to the block
parameters, except:

• The object does not have a property to select frame based outputs.
• The object does not have a property that corresponds to the Sample time parameter.

See Also
comm.GoldSequence | comm.KasamiSequence

3 Alphabetical List

3-1276

clone
System object: comm.PNSequence
Package: comm

Create PN sequence generator object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a PNSequence object C, with the same property values as H. The
clone method creates a new unlocked object with uninitialized states.

 getNumInputs

3-1277

getNumInputs
System object: comm.PNSequence
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of
expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H)

3 Alphabetical List

3-1278

getNumOutputs
System object: comm.PNSequence
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

 isLocked

3-1279

isLocked
System object: comm.PNSequence
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the PNSequence System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

3 Alphabetical List

3-1280

release
System object: comm.PNSequence
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H)Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 reset

3-1281

reset
System object: comm.PNSequence
Package: comm

Reset states of PN sequence generator object

Syntax

reset(H)

Description

reset(H) resets the states of the PNSequence object, H.

3 Alphabetical List

3-1282

step
System object: comm.PNSequence
Package: comm

Generate a pseudo-noise (PN) sequence

Syntax

Y = step(H)

Y = step(H,MASK)

Y = step(H,RESET)

Y = step(H,MASK,RESET)

Description

Y = step(H) outputs a frame of the PN sequence in column vector Y. Specify the
frame length with the SamplesPerFrame property. The PN sequence has a period of
N = 2^n-1, where n is the degree of the generator polynomial that you specify in the
Polynomial property.

Y = step(H,MASK) uses MASK as the shift value when you set the MaskSource
property to 'Input port'. MASK must be a numeric, binary vector with length equal to the
degree of the generator polynomial specified in the Polynomial property. Refer to the
Mask property help for details of the mask calculation.

Y = step(H,RESET) uses RESET as the reset signal when you set the ResetInputPort
property to true. The data type of the RESET input must be double precision or logical.
RESET can be a scalar value or a column vector with length equal to the number of
samples per frame specified in the SamplesPerFrame property. When the RESET input
is a non zero scalar, the object resets to the initial conditions that you specify in the
InitialConditions property and then generates a new output frame. A column vector
RESET input allows multiple resets within an output frame. A non-zero value at the ith
element of the vector will cause a reset at the ith output sample time. You can combine
optional input arguments when you set their enabling properties. Optional inputs must
be listed in the same order as the order of the enabling properties. For example,

Y = step(H,MASK,RESET)

 step

3-1283

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

3 Alphabetical List

3-1284

comm.PSKCarrierPhaseSynchronizer System object
Package: comm

Recover carrier phase of baseband PSK signal

Description

The PSKCarrierPhaseSynchronizer object recovers the carrier phase of the input
signal using the M-Power method. This feedforward method is not data aided but is
clock aided. You can use this method for systems that use baseband phase shift keying
(PSK) modulation. The method is also suitable for systems that use baseband quadrature
amplitude modulation (QAM). However, the results are less accurate than those for
comparable PSK systems. The alphabet size for the modulation requires an even integer.

To recover the carrier phase of the input signal using the M-Power method:

1 Define and set up your PSK carrier phase synchronizer object. See “Construction” on
page 3-1284.

2 Call step to recover the carrier phase of the input signal according to the properties
of comm.PSKCarrierPhaseSynchronizer. The behavior of step is specific to each
object in the toolbox.

Construction

H = comm.PSKCarrierPhaseSynchronizer creates a PSK carrier phase synchronizer
System object, H. This object recovers the carrier phase of a baseband phase shift keying
(PSK) modulated signal using the M-power method.

H = comm.PSKCarrierPhaseSynchronizer(Name,Value) creates a PSK
carrier phase synchronizer object, H, with each specified property set to the specified
value. You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

H = comm.PSKCarrierPhaseSynchronizer(M,Name,Value) creates a PSK carrier
phase synchronizer object, H. This object has the ModulationOrder property set to M,
and the other specified properties set to the specified values.

 comm.PSKCarrierPhaseSynchronizer System object

3-1285

Properties

ModulationOrder

Number of points in signal constellation

Specify the modulation order of the input signal as an even, positive, real scalar value.
Choose a data type of single or double. The default is 2. This property is tunable.

ObservationInterval

Number of symbols where carrier phase assumed constant

Specify the observation interval as a real positive scalar integer value. Choose a data
type of single or double. The default is 100.

Methods

clone
Create PSK carrier phase synchronizer
object with same property values

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

reset
Reset states of the PSK carrier phase
synchronizer object

step
Recover baseband PSK signal's carrier
phase

3 Alphabetical List

3-1286

Examples

Recover carrier phase of a 16-PSK signal using M-power method.

M = 16;

phOffset = 10 *pi/180; % in radians

numSamples = 100;

% Create PSK modulator System object

 hMod = comm.PSKModulator(M, phOffset, 'BitInput',false);

% Create PSK carrier phase synchronizer System object

 hSync = comm.PSKCarrierPhaseSynchronizer(M,...

 'ObservationInterval',numSamples);

% Generate random data

 data = randi([0 M-1],numSamples,1);

% Modulate random data and add carrier phase

 modData = step(hMod, data);

% Recover the carrier phase

 [recSig phEst] = step(hSync, modData);

fprintf('The carrier phase is estimated to be %g degrees.\n', phEst);

Algorithms

This object implements the algorithm, inputs, and outputs described on the M-PSK
Phase Recovery block reference page. The object properties correspond to the block
parameters.

See Also
comm.PSKModulator | comm.CPMCarrierPhaseSynchronizer

 clone

3-1287

clone
System object: comm.PSKCarrierPhaseSynchronizer
Package: comm

Create PSK carrier phase synchronizer object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a PSKCarrierPhaseSynchronizer object C, with the same
property values as H. The clone method creates a new unlocked object with uninitialized
states.

3 Alphabetical List

3-1288

getNumInputs
System object: comm.PSKCarrierPhaseSynchronizer
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of
expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H)

 getNumOutputs

3-1289

getNumOutputs
System object: comm.PSKCarrierPhaseSynchronizer
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

3 Alphabetical List

3-1290

isLocked
System object: comm.PSKCarrierPhaseSynchronizer
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the
PSKCarrierPhaseSynchronizer System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

 release

3-1291

release
System object: comm.PSKCarrierPhaseSynchronizer
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H)Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

3 Alphabetical List

3-1292

reset
System object: comm.PSKCarrierPhaseSynchronizer
Package: comm

Reset states of the PSK carrier phase synchronizer object

Syntax

reset(H)

Description

reset(H) resets the states of the PSKCarrierPhaseSynchronizer object, H.

 step

3-1293

step
System object: comm.PSKCarrierPhaseSynchronizer
Package: comm

Recover baseband PSK signal's carrier phase

Syntax

[Y,PH] = step(H,X)

Description

[Y,PH] = step(H,X) recovers the carrier phase of the input signal, X, and returns the
phase corrected signal, Y, and the carrier phase estimate (in degrees), PH. X must be a
complex scalar or column vector input signal of data type single or double.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

3 Alphabetical List

3-1294

comm.PSKCoarseFrequencyEstimator System object
Package: comm

Estimate frequency offset for PSK signal

Description
The PSKCoarseFrequencyEstimator System object estimates frequency offset for a
PSK signal.

To estimate frequency offset for a PSK signal:

1 Define and set up your PSK coarse frequency estimator object. See “Construction” on
page 3-1294.

2 Call step to estimate frequency offset for a PSK signal according to the properties
of comm.PSKCoarseFrequencyEstimator. The behavior of step is specific to each
object in the toolbox.

Construction
H = comm.PSKCoarseFrequencyEstimator creates a PSK coarse frequency offset
estimator object, H. This object uses an open-loop technique to estimate the carrier
frequency offset in a received PSK signal.

H = comm.PSKCoarseFrequencyEstimator(Name,Value) creates a PSK coarse
frequency offset estimator object, H, with the specified property Name set to the
specified Value. You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties

ModulationOrder

Modulation order the object uses

Specify the modulation order of the PSK signal as a positive, real scalar of data type
double. This value must be a positive power of 2. The default is 4.

 comm.PSKCoarseFrequencyEstimator System object

3-1295

Algorithm

Estimation algorithm to object uses

Specify the estimation algorithm as one of FFT-based or Correlation-based. The
default is FFT-based.

FrequencyResolution

Desired frequency resolution (Hz)

Specify the desired frequency resolution for offset frequency estimation as a positive,
real scalar of data type double. This property establishes the FFT length used to perform
spectral analysis, and must be less than or equal to half the “SampleRate” property.
This property applies only if the Algorithm property is FFT-based. The default is
0.001.

MaximumOffset

Maximum measurable frequency offset (Hz)

Specify the maximum measurable frequency offset as a positive, real scalar of data type
double. The default is 0.05.

The value of this property must be less than “SampleRate”/ “ModulationOrder”.
It is recommended that “MaximumOffset” be less than or equal to “SampleRate”/
(4*“ModulationOrder”). This property is active only if the Algorithm property is
Correlation-based.

SampleRate

Sample rate (Hz)

Specify the sample rate in samples per second as a positive, real scalar of data type
double. The default is 1.

Methods

clone
Create PSKCoarseFrequencyEstimator
object with same property values

3 Alphabetical List

3-1296

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

reset
Reset states of the
PSKCoarseFrequencyEstimator object

step
Estimate frequency offset for PSK signal

Examples

Correct For a Frequency Offset in a QPSK Signal

Estimate and correct for a -250 Hz frequency offset in a QPSK signal using the PSK
Coarse Frequency Estimator System object™.

Create a QPSK modulator System object.

hMod = comm.QPSKModulator;

Create a square root raised cosine transmit filter System object.

hTxFilter = comm.RaisedCosineTransmitFilter;

Create a phase frequency offset object, where the FrequencyOffset property is set to
-250 Hz and SampleRate is set to 4000 Hz using name-value pairs.

hPFOError = comm.PhaseFrequencyOffset(...

 'FrequencyOffset',-250, ...

 'SampleRate',4000);

Create an AWGN channel object with a 25 dB signal-to-noise ratio.

hAWGN = comm.AWGNChannel(...

 'NoiseMethod','Signal to noise ratio (SNR)', ...

 'SNR',25);

 comm.PSKCoarseFrequencyEstimator System object

3-1297

Create a PSK coarse frequency estimator System object with a sample rate of 4 kHz and
a frequency resolution of 1 Hz.

hFreqEst = comm.PSKCoarseFrequencyEstimator(...

 'SampleRate',4000, ...

 'FrequencyResolution',1);

Create a second phase frequency offset object to correct the offset. Set the
FrequencyOffsetSource property to Input port so that the frequency correction
estimate is an input argument to the step function.

hPFOCorrect = comm.PhaseFrequencyOffset(...

 'FrequencyOffsetSource','Input port', ...

 'SampleRate',4000);

Create a spectrum analzyer object to view the frequency response of the signals.

hSA = dsp.SpectrumAnalyzer('SampleRate',4000);

Generate a QPSK signal, filter the signal, apply the frequency offset, and pass the signal
through the AWGN channel.

modData = step(hMod,randi([0 3],4096,1)); % Generate QPSK signal

txFiltData = step(hTxFilter,modData); % Apply Tx filter

offsetData = step(hPFOError,txFiltData); % Apply frequency offset

noisyData = step(hAWGN,offsetData); % Pass through AWGN channel

Plot the frequency response of the noisy, frequency-offset signal using the spectrum
analyzer. The signal is shifted 250 Hz to the left.

hSA.Title = 'Received Signal';

step(hSA,noisyData);

3 Alphabetical List

3-1298

Estimate the frequency offset using the step function associated with hFreqEst.
Observe that the estimate is close to the -250 Hz target.

estFreqOffset = step(hFreqEst,noisyData)

estFreqOffset =

 -249.7559

Correct for the frequency offset using hPFOCorrect and the inverse of the estimated
frequency offset.

compensatedData = step(hPFOCorrect,noisyData,-estFreqOffset);

Plot the frequency response of the compensated signal using the spectrum analyzer. The
signal is now properly centered.

 comm.PSKCoarseFrequencyEstimator System object

3-1299

hSA.Title = 'Frequency-Compensated Signal';

step(hSA,compensatedData);

Selected Bibliography

[1] Marco, L. and R. Regiannini. “Carrier recovery in all-digital modems for burst-mode
transmissions”, IEEE® Transactions on Communications, Vol. 43, No. 2, 3, 4, Feb/
Mar/April, 1995, pp. 1169–1178.

See Also
comm.PhaseFrequencyOffset | comm.QAMCoarseFrequencyEstimator | dsp.FFT

3 Alphabetical List

3-1300

clone
System object: comm.PSKCoarseFrequencyEstimator
Package: comm

Create PSKCoarseFrequencyEstimator object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a PSKCoarseFrequencyEstimator object C, with the same
property values as H. The clone method creates a new unlocked object with uninitialized
states.

The clone method creates an instance of an object. The property values, but not internal
states, are copied into the new instance of the object.

 isLocked

3-1301

isLocked
System object: comm.PSKCoarseFrequencyEstimator
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the
PSKCoarseFrequencyEstimator System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

3 Alphabetical List

3-1302

release
System object: comm.PSKCoarseFrequencyEstimator
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 reset

3-1303

reset
System object: comm.PSKCoarseFrequencyEstimator
Package: comm

Reset states of the PSKCoarseFrequencyEstimator object

Syntax

reset(H)

Description

reset(H) resets the internal states of the PSKCoarseFrequencyEstimator object, H.

3 Alphabetical List

3-1304

step
System object: comm.PSKCoarseFrequencyEstimator
Package: comm

Estimate frequency offset for PSK signal

Syntax

Y = step(H,X)

Description

Y = step(H,X) estimates the carrier frequency offset of the input X and returns the
result in Y. X must be a complex column vector of data type double. The step method
outputs the estimate Y as a scalar of type double.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

 comm.PSKDemodulator System object

3-1305

comm.PSKDemodulator System object
Package: comm

Demodulate using M-ary PSK method

Description

The PSKDemodulator object demodulates an input signal using the M-ary phase shift
keying (M-PSK) method.

To demodulate a signal that was modulated using phase shift keying:

1 Define and set up your PSK demodulator object. See “Construction” on page 3-1305.
2 Call step to demodulate the signal according to the properties of

comm.PSKDemodulator. The behavior of step is specific to each object in the
toolbox.

Construction

H = comm.PSKDemodulator creates a demodulator System object, H. This object
demodulates the input signal using the M-ary phase shift keying (M-PSK) method.

H = comm.PSKDemodulator(Name,Value) creates an M-PSK demodulator object, H,
with each specified property set to the specified value. You can specify additional name-
value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

H = comm.PSKDemodulator(M,PHASE,Name,Value) creates an M-PSK demodulator
object, H. This object has the ModulationOrder property set to M, the PhaseOffset
property set to PHASE, and the other specified properties set to the specified values. M
and PHASE are value-only arguments. To specify a value-only argument, you must also
specify all preceding value-only arguments. You can specify name-value pair arguments
in any order.

Properties

ModulationOrder

3 Alphabetical List

3-1306

Number of points in signal constellation

Specify the number of points in the signal constellation as a positive, integer scalar
value. The default is 8.

PhaseOffset

Phase of zeroth point of constellation

Specify the phase offset of the zeroth point of the constellation, in radians, as a real
scalar value. The default is pi/8.

BitOutput

Output data as bits

Specify whether the output consists of groups of bits or integer symbol values. The
default is false. When you set this property to true, the step method outputs a column
vector of bit values. The length of this vector equals log2(“ModulationOrder”) times the
number of demodulated symbols. When you set this property to false, the step method
outputs a column vector with a length equal to the input data vector. This vector contains
integer symbol values between 0 and ModulationOrder-1.

SymbolMapping

Constellation encoding

Specify how the object maps an integer or group of log2(“ModulationOrder”) bits
to the corresponding symbol. Choose from Binary | Gray | Custom. The default
is Gray. When you set this property to Gray, the object uses a Gray-encoded signal
constellation. When you set this property to Binary, the integer m, between 0
£ £m ModulationOrder–1) maps to the complex value exp(j ¥ “PhaseOffset” +
j ¥ 2¥ p ¥ m/ModulationOrder). When you set this property to Custom, the object uses
the signal constellation defined in the “CustomSymbolMapping” property.

CustomSymbolMapping

Custom constellation encoding

Specify a custom constellation symbol mapping vector. The default is 0:7. This
property requires a row or column vector with a size of “ModulationOrder”. This
vector must have unique integer values in the range [0, ModulationOrder–1]. The

 comm.PSKDemodulator System object

3-1307

values must be of data type double. The first element of this vector corresponds to the
constellation point at an angle of 0 + “PhaseOffset”, with subsequent elements running
counterclockwise. The last element corresponds to the constellation point at an angle
of – p /ModulationOrder + PhaseOffset. This property applies when you set the
“SymbolMapping” property to Custom.

DecisionMethod

Demodulation decision method

Specify the decision method the object uses as Hard decision | Log-likelihood
ratio | Approximate log-likelihood ratio. The default is Hard decision.
When you set the “BitOutput” property to false, the object always performs hard
decision demodulation. This property applies when you set the BitOutput property to
true.

VarianceSource

Source of noise variance

Specify the source of the noise variance as one of Property | Input port. The default
is Property. This property applies when you set the “BitOutput” property to true and
the “DecisionMethod” property to Log-likelihood ratio or Approximate log-
likelihood ratio.

Variance

Noise variance

Specify the variance of the noise as a positive, real scalar value. The default is 1. If this
value is very small (i.e., SNR is very high), log-likelihood ratio (LLR) computations may
yield Inf or –Inf. This result occurs because the LLR algorithm computes the exponential
of very large or very small numbers using finite-precision arithmetic. In such cases,
use approximate LLR instead because the algorithm for that option does not compute
exponentials. This property applies when you set the “BitOutput” property to true,
the “DecisionMethod” property to Log-likelihood ratio, or Approximate log-
likelihood ratio, and the “VarianceSource” property to Property. This property
is tunable.

OutputDataType

Data type of output

3 Alphabetical List

3-1308

Specify the output data type as Full precision | Smallest unsigned integer
| double | single | int8 | uint8 | int16 | uint16 | int32 | uint32. The
default is Full precision. This property applies when you set the “BitOutput”
property to false. It also applies when you set the BitOutput property to true and
the “DecisionMethod” property to Hard decision. In this second case, when the
“OutputDataType” property is set to Full precision, the input data type is single-
or double-precision, the output data has the same data type as the input. . When the
input data is of a fixed-point type, the output data type behaves as if you had set the
OutputDataType property to Smallest unsigned integer.

When you set BitOutput to true and the DecisionMethod property to Hard
Decision, then logical data type becomes a valid option. If you set the BitOutput
property to true and the DecisionMethod property to Log-likelihood ratio or
Approximate log-likelihood ratio, the output data has the same data type as the
input. In this case, the data type must be single- or double-precision.

Fixed-Point Properties

DerotateFactorDataType

Data type of derotate factor

Specify the derotate factor data type as Same word length as input | Custom.
The default is Same word length as input. This property applies when you set the
“BitOutput” property to false. It also applies when you set the BitOutput
property to true and the “DecisionMethod” property to Hard decision. The object
uses the derotate factor in the computations only when the “ModulationOrder”
property is 2, 4, or 8. The step method input must also have a fixed-point type, and the
“PhaseOffset” property must have a nontrivial value. For ModulationOrder = 2, the
phase offset is trivial if that value is a multiple of p /2. For ModulationOrder = 4, the
phase offset is trivial if that value is an even multiple of p /4. For ModulationOrder =
8, there are no trivial phase offsets.

CustomDerotateFactorDataType

Fixed-point data type of derotate factor

Specify the derotate factor fixed-point type as an unscaled numerictype object with a
signedness of Auto. The default is numerictype([],16). This property applies when

 comm.PSKDemodulator System object

3-1309

you set the “DerotateFactorDataType” property to Custom. The word length must be
a value between 2 and 128.

Methods

clone
Create PSK demodulator object with same
property values

constellation
Calculate or plot ideal signal constellation

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

step
Demodulate using M-ary PSK method

Examples

Modulate and demodulate a signal using 16-PSK modulation.

 hMod = comm.PSKModulator(16, 'PhaseOffset',pi/16);

 hAWGN = comm.AWGNChannel('NoiseMethod', ...

 'Signal to noise ratio (SNR)','SNR',15);

 hDemod = comm.PSKDemodulator(16, 'PhaseOffset',pi/16);

 %Create an error rate calculator

 hError = comm.ErrorRate;

 for counter = 1:100

 % Transmit a 50-symbol frame

 data = randi([0 hMod.ModulationOrder-1],50,1);

3 Alphabetical List

3-1310

 modSignal = step(hMod, data);

 noisySignal = step(hAWGN, modSignal);

 receivedData = step(hDemod, noisySignal);

 errorStats = step(hError, data, receivedData);

 end

 fprintf('Error rate = %f\nNumber of errors = %d\n', ...

 errorStats(1), errorStats(2))

Algorithms

This object implements the algorithm, inputs, and outputs described on the M-PSK
Demodulator Baseband block reference page. The object properties correspond to the
block parameters.

See Also
comm.DPSKDemodulator | comm.PSKModulator

 clone

3-1311

clone
System object: comm.PSKDemodulator
Package: comm

Create PSK demodulator object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a PSKDemodulator object C, with the same property values as H.
The clone method creates a new unlocked object with uninitialized states.

3 Alphabetical List

3-1312

constellation

System object: comm.PSKDemodulator
Package: comm

Calculate or plot ideal signal constellation

Syntax

y = constellation(h)

constellation(h)

Description

y = constellation(h) returns the numerical values of the constellation.

constellation(h) generates a constellation plot for the object.

Examples

Calculate Ideal Signal Constellation for comm.PSKDemodulator

Create a comm.PSKDemodulator System object, and then calculate its ideal signal
constellation.

Create a comm.PSKDemodulator System object by entering the following at the
MATLAB command line:

h = comm.PSKDemodulator

Calculate and display the ideal signal constellation by calling the constellation
method.

 constellation

3-1313

a = constellation(h)

Plot Ideal Signal Constellation for comm.PSKDemodulator

Create a comm.PSKDemodulator System object, and then plot the ideal signal
constellation.

Create a comm.PSKDemodulator System object by entering the following at the
MATLAB command line:

h = comm.PSKDemodulator

Plot the ideal signal constellation by calling the constellation method.

constellation(h)

3 Alphabetical List

3-1314

getNumInputs
System object: comm.PSKDemodulator
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of
expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H)

 getNumOutputs

3-1315

getNumOutputs
System object: comm.PSKDemodulator
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

3 Alphabetical List

3-1316

isLocked
System object: comm.PSKDemodulator
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the PSKDemodulator System
object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

 release

3-1317

release
System object: comm.PSKDemodulator
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H)Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

3 Alphabetical List

3-1318

step
System object: comm.PSKDemodulator
Package: comm

Demodulate using M-ary PSK method

Syntax

Y = step(H,X)

Y = step(H,X,VAR)

Description

Y = step(H,X) demodulates data, X, with the PSK demodulator System object, H, and
returns Y. Input X must be a scalar or a column vector with double or single precision
data type. If the value of the ModulationOrder property is less than or equal to 8 and
you set BitOutput to false, or when you set the DecisionMethod property to Hard
Decision and BitOutput to true, the object accepts an input with a signed integer
data type or signed fixed point (fi objects). Depending on the BitOutput property value,
output Y, can be integer or bit valued.

Y = step(H,X,VAR) uses soft decision demodulation and noise variance VAR. This
syntax applies when you set the BitOutput property to true, the DecisionMethod
property to Approximate log-likelihood ratio or Log-likelihood ratio, and
the VarianceSource property to Input port. The data type of input VAR must be
double or single precision.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

 comm.PSKModulator System object

3-1319

comm.PSKModulator System object
Package: comm

Modulate using M-ary PSK method

Description

The PSKModulator object modulates using the M-ary phase shift keying method.
The output is a baseband representation of the modulated signal. The M-ary number
parameter, M, is the number of points in the signal constellation.

To modulate a signal using phase shift keying:

1 Define and set up your PSK modulator object. See “Construction” on page 3-1319.
2 Call step to modulate the signal according to the properties of

comm.PSKModulator. The behavior of step is specific to each object in the toolbox.

Construction

H = comm.PSKModulator creates a modulator System object, H. This object modulates
the input signal using the M-ary phase shift keying (M-PSK) method.

H = comm.PSKModulator(Name,Value) creates an M-PSK modulator object, H, with
each specified property set to the specified value. You can specify additional name-value
pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

H = comm.PSKModulator(M,PHASE,Name,Value) creates an M-PSK modulator
object, H. This object has the ModulationOrder property set to M, the PhaseOffset
property set to PHASE, and the other specified properties set to the specified values.

Properties

ModulationOrder

Number of points in signal constellation

3 Alphabetical List

3-1320

Specify the number of points in the signal constellation as a positive, integer scalar
value. The default is 8.

PhaseOffset

Phase of zeroth point of constellation

Specify the phase offset of the zeroth point of the constellation, in radians, as a real
scalar value. The default is pi/8.

BitInput

Assume bit inputs

Specify whether the input is bits or integers. When you set this property to true, the
step method input must be a column vector of bit values. This vector must have a
length that is an integer multiple of log2(“ModulationOrder”). This vector contains
bit representations of integers between 0 and ModulationOrder-1. When you set
the “BitInput” property to false, the step method input must be a column vector
of numeric data type integer symbol values. These values must be between 0 and
ModulationOrder-1. The default is false.

SymbolMapping

Constellation encoding

Specify how the object maps an integer or group of log2(“ModulationOrder”) input
bits to the corresponding symbol as one of Binary | Gray | Custom. The default
is Gray. When you set this property to Gray, the object uses a Gray-encoded signal
constellation. When you set this property to Binary, the integer m, between 0
£ £m ModulationOrder–1) maps to the complex value exp(j ¥ “PhaseOffset” +
j ¥ 2¥ p ¥ m/ModulationOrder). When you set this property to Custom, the object uses
the signal constellation defined in the “CustomSymbolMapping” property.

CustomSymbolMapping

Custom constellation encoding

Specify a custom constellation symbol mapping vector. This property requires a row
or column vector of size “ModulationOrder” and must have unique integer values
in the range [0, ModulationOrder–1]. The values must be of data type double.

 comm.PSKModulator System object

3-1321

The first element of this vector corresponds to the constellation point at an angle of
0 + “PhaseOffset”, with subsequent elements running counterclockwise. The last
element corresponds to the constellation point at an angle of – p /ModulationOrder +
PhaseOffset. This property applies when you set the “SymbolMapping” property to
Custom. The default is 0:7.

OutputDataType

Data type of output

Specify the output data type as double | single | Custom. The default is double.

Fixed-Point Properties

CustomOutputDataType

Fixed-point data type of output

Specify the output fixed-point type as a numerictype object with a signedness of
Auto. The default is numerictype([],16). This property applies when you set the
“OutputDataType” property to Custom.

Methods

clone
Create PSK modulator object with same
property values

constellation
Calculate or plot ideal signal constellation

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

isLocked
Locked status for input attributes and
nontunable properties

3 Alphabetical List

3-1322

release
Allow property value and input
characteristics changes

step
Modulate using M-ary PSK method

Examples

Modulate data using 16-PSK modulation, and visualize the data in a scatter plot.

 % Create binary data for 24, 4-bit symbols

 data = randi([0 1],96,1);

 % Create a 16-PSK modulator System object with bits as inputs and Gray-coded signal constellation

 hModulator = comm.PSKModulator(16,'BitInput',true);

 % Change the phase offset to pi/16

 hModulator.PhaseOffset = pi/16;

 % Modulate and plot the data

 modData = step(hModulator, data);

 constellation(hModulator)

Algorithms

This object implements the algorithm, inputs, and outputs described on the M-PSK
Modulator Baseband block reference page. The object properties correspond to the block
parameters.

See Also
comm.QPSKModulator | comm.PSKDemodulator

 clone

3-1323

clone
System object: comm.PSKModulator
Package: comm

Create PSK modulator object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a PSKModulator object C, with the same property values as H.
The clone method creates a new unlocked object with uninitialized states.

3 Alphabetical List

3-1324

constellation

System object: comm.PSKModulator
Package: comm

Calculate or plot ideal signal constellation

Syntax

y = constellation(h)

constellation(h)

Description

y = constellation(h) returns the numerical values of the constellation.

constellation(h) generates a constellation plot for the object.

Examples

Calculate Ideal Signal Constellation for comm.PSKModulator

Create a comm.PSKModulator System object, and then calculate its ideal signal
constellation.

Create a comm.PSKModulator System object by entering the following at the MATLAB
command line:

h = comm.PSKModulator

Calculate and display the ideal signal constellation by calling the constellation
method.

 constellation

3-1325

a = constellation(h)

Plot Ideal Signal Constellation for comm.PSKModulator

Create a comm.PSKModulator System object, and then plot the ideal signal
constellation.

Create a comm.PSKModulator System object by entering the following at the MATLAB
command line:

h = comm.PSKModulator

Plot the ideal signal constellation by calling the constellation method.

constellation(h)

3 Alphabetical List

3-1326

getNumInputs
System object: comm.PSKModulator
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of
expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H)

 getNumOutputs

3-1327

getNumOutputs
System object: comm.PSKModulator
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

3 Alphabetical List

3-1328

isLocked
System object: comm.PSKModulator
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the PSKModulator System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

 release

3-1329

release
System object: comm.PSKModulator
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H)Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

3 Alphabetical List

3-1330

step
System object: comm.PSKModulator
Package: comm

Modulate using M-ary PSK method

Syntax

Y = step(H,X)

Description

Y = step(H,X) modulates input data, X, with the PSK modulator System object, H.
It returns the baseband modulated output, Y. Depending on the value of the BitInput
property, input X can be an integer or bit valued column vector with numeric, logical, or
fixed-point data types.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

 comm.PSKTCMDemodulator System object

3-1331

comm.PSKTCMDemodulator System object
Package: comm

Demodulate convolutionally encoded data mapped to M-ary PSK signal constellation

Description
The PSKTCMDemodulator object uses the Viterbi algorithm to decode a trellis-
coded modulation (TCM) signal that was previously modulated using a PSK signal
constellation.

To demodulate a signal that was modulated using trellis-coded modulation:

1 Define and set up your PSK TCM demodulator object. See “Construction” on page
3-1331.

2 Call step to demodulate the signal according to the properties of
comm.PSKTCMDemodulator. The behavior of step is specific to each object in the
toolbox.

Construction
H = comm.PSKTCMDemodulator creates a trellis-coded, M-ary phase shift, keying (PSK
TCM) demodulator System object, H. This object demodulates convolutionally encoded
data that has been mapped to an M-PSK constellation.

H = comm.PSKTCMDemodulator(Name,Value) creates a PSK TCM
demodulator object, H, with each specified property set to the specified value.
You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

H = comm.PSKTCMDemodulator(TRELLIS,Name,Value) creates a PSK TCM
demodulator System object, H. This object has the TrellisStructure property set to
TRELLIS and the other specified properties set to the specified values.

Properties
TrellisStructure

3 Alphabetical List

3-1332

Trellis structure of convolutional code

Specify trellis as a MATLAB structure that contains the trellis description of the
convolutional code. Use the istrellis function to check whether the trellis structure is
valid. The default is the result of poly2trellis([1 3], [1 0 0; 0 5 2]).

TerminationMethod

Termination method of encoded frame

Specify the termination method as one of Continuous | Truncated | Terminated. The
default is Continuous.

When you set this property to Continuous, the object saves the internal state metric
at the end of each frame. The next frame uses the same state metric. The object treats
each traceback path independently. If the input signal contains only one symbol, use
Continuous mode.

When you set this property to Truncated, the object treats each input vector
independently. The traceback path starts at the state with the best metric and always
ends in the all-zeros state.

When you set property to Terminated, the object treats each input vector independently,
and the traceback path always starts and ends in the all-zeros state.

TracebackDepth

Traceback depth for Viterbi decoder

Specify the scalar, integer number of trellis branches to construct each traceback path.
The default is 21. The traceback depth influences the decoding accuracy and delay. The
decoding delay is the number of zero symbols that precede the first decoded symbol in the
output.

When you set the “TerminationMethod” property to Continuous, the decoding delay
consists of TracebackDepth zero symbols or TracebackDepth ¥ K zero bits for a rate K/N
convolutional code.

When you set the TerminationMethod property to Truncated or Terminated, no
output delay occurs and the traceback depth must be less than or equal to the number of
symbols in each input vector.

ResetInputPort

 comm.PSKTCMDemodulator System object

3-1333

Enable demodulator reset input

Set this property to true to enable an additional input to the step method. The
default is false. When this additional reset input is a nonzero value, the internal
states of the encoder reset to initial conditions. This property applies when you set the
“TerminationMethod” property to Continuous.

ModulationOrder

Number of points in signal constellation

Specify the number of points in the signal constellation used to map the convolutionally
encoded data as a positive, integer scalar value. The number of points must be 4, 8, or
16. The default is 8. The “ModulationOrder” property value must equal the number of
possible input symbols to the convolutional decoder of the PSK TCM demodulator object.
The ModulationOrder property must equal 2N for a rate K/N convolutional code.

OutputDataType

Data type of output

Specify output data type as logical | double. The default is double.

Methods

clone
Create PSK TCM demodulator object with
same property values

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

3 Alphabetical List

3-1334

reset
Reset states of the PSK TCM demodulator
object

step
Demodulate convolutionally encoded data
mapped to M-ary PSK constellation

Examples

Demodulate Noisy PSK QAM Data

Modulate and demodulate data using 8-PSK TCM modulation in an AWGN channel.
Estimate the resulting error rate.

Define a trellis structure with four input symbols and eight output symbols.

t = poly2trellis([5 4],[23 35 0; 0 5 13]);

Create modulator and demodulator System objects™ using trellis, t, having modulation
order 8.

hMod = comm.PSKTCMModulator(t,'ModulationOrder',8);

hDemod = comm.PSKTCMDemodulator(t,'ModulationOrder',8, ...

 'TracebackDepth',16);

Create an AWGN channel object.

hAWGN = comm.AWGNChannel('NoiseMethod','Signal to noise ratio (SNR)', ...

 'SNR',7);

Create an error rate calculator with delay in bits equal to TracebackDepth times the
number of bits per symbol.

hError = comm.ErrorRate('ReceiveDelay',...

 hDemod.TracebackDepth*log2(t.numInputSymbols));

Generate random binary data and modulate with 8-PSK TCM. Pass the modulated signal
through the AWGN channel and demodulate. Calculate the error statistics.

for counter = 1:10

 % Transmit frames of 250 2-bit symbols

 data = randi([0 1],500,1);

 comm.PSKTCMDemodulator System object

3-1335

 % Modulate

 modSignal = step(hMod,data);

 % Pass through AWGN channel

 noisySignal = step(hAWGN,modSignal);

 % Demodulate

 receivedData = step(hDemod,noisySignal);

 % Calculate error statistics

 errorStats = step(hError,data,receivedData);

end

Display the BER and the number of bit errors.

fprintf('Error rate = %5.2e\nNumber of errors = %d\n', ...

 errorStats(1),errorStats(2))

Error rate = 2.17e-02

Number of errors = 108

Algorithms

This object implements the algorithm, inputs, and outputs described on the M-PSK TCM
Decoder block reference page. The object properties correspond to the block parameters.

See Also
comm.ViterbiDecoder | comm.PSKTCMModulator |
comm.GeneralQAMTCMDemodulator | comm.RectangularQAMTCMDemodulator

3 Alphabetical List

3-1336

clone
System object: comm.PSKTCMDemodulator
Package: comm

Create PSK TCM demodulator object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a PSKTCMDemodulator object C, with the same property values
as H. The clone method creates a new unlocked object with uninitialized states.

 getNumInputs

3-1337

getNumInputs
System object: comm.PSKTCMDemodulator
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of
expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H)

3 Alphabetical List

3-1338

getNumOutputs
System object: comm.PSKTCMDemodulator
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

 isLocked

3-1339

isLocked
System object: comm.PSKTCMDemodulator
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the PSKTCMDemodulator System
object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

3 Alphabetical List

3-1340

release
System object: comm.PSKTCMDemodulator
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H)Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 reset

3-1341

reset
System object: comm.PSKTCMDemodulator
Package: comm

Reset states of the PSK TCM demodulator object

Syntax

reset(H)

Description

reset(H) resets the states of the PSKTCMDemodulator object, H.

3 Alphabetical List

3-1342

step
System object: comm.PSKTCMDemodulator
Package: comm

Demodulate convolutionally encoded data mapped to M-ary PSK constellation

Syntax

Y = step(H,X)

Y = step(H,X,R)

Description

Y = step(H,X) demodulates the PSK modulated input data, X, and uses the Viterbi
algorithm to decode the resulting demodulated, convolutionally encoded bits. X must
be a complex, double or single precision column vector. The step method outputs a
demodulated, binary data column vector, Y. When the convolutional encoder represents a
rate K/N code, the length of the output vector is K ¥ L, where L is the length of the input
vector, X.

Y = step(H,X,R) resets the decoder to the all-zeros state when you input a reset
signal, R that is non-zero. R must be a double precision or logical, scalar integer. This
syntax applies when you set the ResetInputPort property to true.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

 comm.PSKTCMModulator System object

3-1343

comm.PSKTCMModulator System object
Package: comm

Convolutionally encode binary data and map using M-ary PSK signal constellation

Description

The PSKTCMModulator object implements trellis-coded modulation (TCM) by
convolutionally encoding the binary input signal and then mapping the result to a PSK
signal constellation.

To modulate a signal using trellis-coded modulation:

1 Define and set up your PSK TCM modulator object. See “Construction” on page
3-1343.

2 Call step to modulate the signal according to the properties of
comm.PSKTCMModulator. The behavior of step is specific to each object in the
toolbox.

Construction

H = comm.PSKTCMModulator creates a trellis-coded M-ary phase shift keying (PSK
TCM) modulator System object, H. This object convolutionally encodes a binary input
signal and maps the result to an M-PSK constellation.

H = comm.PSKTCMModulator(Name,Value) creates a PSK TCM encoder object, H,
with each specified property set to the specified value. You can specify additional name-
value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

H = comm.PSKTCMModulator(TRELLIS,Name,Value) creates a PSK TCM encoder
object, H. This object has the TrellisStructure property set to TRELLIS and the other
specified properties set to the specified values.

Properties

TrellisStructure

3 Alphabetical List

3-1344

Trellis structure of convolutional code

Specify trellis as a MATLAB structure that contains the trellis description of the
convolutional code. Use the istrellis function to check whether a trellis structure is
valid. The default is the result of poly2trellis([1 3], [1 0 0; 0 5 2]).

TerminationMethod

Termination method of encoded frame

Specify the termination method as one of Continuous | Truncated | Terminated. The
default is Continuous.

When you set this property to Continuous, the object retains the encoder states at the
end of each input vector for use with the next input vector.

When you set this property to Truncated, the object treats each input vector
independently. The encoder is reset to the all-zeros state at the start of each input vector.

When you set this property to Terminated, the object treats each input vector
independently. However, for each input vector, the object uses extra bits to set
the encoder to the all-zeros state at the end of the vector. For a rate K/N code,

the step method outputs the vector with a length given by y N L S
K

= ¥
+() ,

where S = constraintLength–1 (or, in the case of multiple constraint lengths, S =
sum(constraintLength(i)–1)). L indicates the length of the input to the step method.

ResetInputPort

Enable modulator reset input

Set this property to true to enable an additional input to the step method. The
default is false. When this additional reset input is a nonzero value, the internal
states of the encoder reset to initial conditions. This property applies when you set the
“TerminationMethod” property to Continuous.

ModulationOrder

Number of points in signal constellation

Specify the number of points in the signal constellation used to map the convolutionally
encoded data as a positive integer scalar value equal to 4, 8, or 16. The default is 8. The
value of the “ModulationOrder” property must equal the number of possible output

 comm.PSKTCMModulator System object

3-1345

symbols from the convolutional encoder of the PSK TCM modulator. Thus, the value for
the ModulationOrder property must equal 2N for a rate K/N convolutional code.

OutputDataType

Data type of output

Specify the output data type as one of double | single. The default is double.

Methods
clone

Create PSK TCM modulator object with
same property values

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

reset
Reset states of the PSK TCM modulator
object

step
Convolutionally encode binary data and
map using M-ary PSK constellation

Examples

Modulate Data Using 8-PSK TCM Modulation

Modulate random data using 8-PSK TCM modulation and display the constellation
diagram.

3 Alphabetical List

3-1346

Create binary data.

data = randi([0 1],1000,1);

Define a trellis structure with four input symbols and eight output symbols.

t = poly2trellis([5 4],[23 35 0; 0 5 13]);

Create an 8-PSK TCM modulator object using the trellis structure variable, t.

hMod = comm.PSKTCMModulator(t,'ModulationOrder',8);

Modulate and plot the data.

modData = step(hMod,data);

scatterplot(modData);

 comm.PSKTCMModulator System object

3-1347

Algorithms
This object implements the algorithm, inputs, and outputs described on the M-PSK TCM
Decoder block reference page. The object properties correspond to the block parameters.

3 Alphabetical List

3-1348

See Also
comm.PSKTCMDemodulator | comm.GeneralQAMTCMModulator |
comm.RectangularQAMTCMModulator | comm.ConvolutionalEncoder

 clone

3-1349

clone
System object: comm.PSKTCMModulator
Package: comm

Create PSK TCM modulator object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a PSKTCMModulator object C, with the same property values as
H. The clone method creates a new unlocked object with uninitialized states.

3 Alphabetical List

3-1350

getNumInputs
System object: comm.PSKTCMModulator
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of
expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H)

 getNumOutputs

3-1351

getNumOutputs
System object: comm.PSKTCMModulator
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

3 Alphabetical List

3-1352

isLocked
System object: comm.PSKTCMModulator
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the PSKTCMModulator System
object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

 release

3-1353

release
System object: comm.PSKTCMModulator
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H)Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

3 Alphabetical List

3-1354

reset
System object: comm.PSKTCMModulator
Package: comm

Reset states of the PSK TCM modulator object

Syntax

reset(H)

Description

reset(H) resets the states of the PSKTCMModulator object, H.

 step

3-1355

step
System object: comm.PSKTCMModulator
Package: comm

Convolutionally encode binary data and map using M-ary PSK constellation

Syntax

Y = step(H,X)

Y = step(H,X,R)

Description

Y = step(H,X) convolutionally encodes and modulates the input binary data
column vector, X, and returns the encoded and modulated data, Y. X must be of data
type numeric, logical, or unsigned fixed point of word length 1 (fi object). When the
convolutional encoder represents a rate K/N code, the length of the input vector, X, must
be K ¥ L, for some positive integer L. The step method outputs a complex column vector,
Y, of length L.

Y = step(H,X,R) resets the encoder of the PSK TCM modulator object to the all-zeros
state when you input a reset signal, R, that is non-zero. R must be a double precision or
logical scalar integer. This syntax applies when you set the ResetInputPort property to
true.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

3 Alphabetical List

3-1356

comm.QAMCoarseFrequencyEstimator System object
Package: comm

Estimate frequency offset for QAM signal

Description
The QAMCoarseFrequencyEstimator System object estimates frequency offset for a
QAM signal.

To estimate frequency offset for a QAM signal:

1 Define and set up your QAM Coarse Frequency Estimator object. See “Construction”
on page 3-1356.

2 Call step to estimate frequency offset for a QAM signal according to the properties
of comm.QAMCoarseFrequencyEstimator. The behavior of step is specific to each
object in the toolbox.

Construction
H = comm.QAMCoarseFrequencyEstimator creates a rectangular QAM coarse
frequency offset estimator object, H. This object uses an open-loop, FFT-based technique
to estimate the carrier frequency offset in a received rectangular QAM signal.

H = comm.QAMCoarseFrequencyEstimator(Name,Value) creates a rectangular
QAM coarse frequency offset estimator object, H, with the specified property Name set to
the specified Value. You can specify additional name-value pair arguments in any order
as (Name1,Value1,...,NameN,ValueN).

Properties

FrequencyResolution

Desired frequency resolution (Hz)

Specify the desired frequency resolution for offset frequency estimation as a positive, real
scalar of data type double. This property establishes the FFT length that the object uses

 comm.QAMCoarseFrequencyEstimator System object

3-1357

to perform spectral analysis. The value for this property must be less than or equal to
half the “SampleRate” property. The default is 0.001.

SampleRate

Sample rate (Hz)

Specify the sample rate in samples per second as a positive, real scalar of data type
double. The default is 1.

Methods

clone
Create QAMCoarseFrequencyEstimator
object with same property values

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

reset
Reset states of the
QAMCoarseFrequencyEstimator object

step
Estimate frequency offset for QAM signal

Examples

Correct For a Frequency Offset in a 16-QAM Signal

Estimate and correct for a -250 Hz frequency offset in a 16-QAM signal using the QAM
Coarse Frequency Estimator System object™.

Create a rectangular QAM modulator System object using name-value pairs to set the
modulation order to 16 and the constellation to have an average power of 1 W.

3 Alphabetical List

3-1358

hMod = comm.RectangularQAMModulator('ModulationOrder',16, ...

 'NormalizationMethod','Average power', ...

 'AveragePower',1);

Create a square root raised cosine transmit filter System object.

hTxFilter = comm.RaisedCosineTransmitFilter;

Create a phase frequency offset object, where the FrequencyOffset property is set to
-250 Hz and SampleRate is set to 4000 Hz using name-value pairs.

hPFOError = comm.PhaseFrequencyOffset(...

 'FrequencyOffset',-250, ...

 'SampleRate',4000);

Create an AWGN channel object with a 25 dB signal-to-noise ratio.

hAWGN = comm.AWGNChannel(...

 'NoiseMethod','Signal to noise ratio (SNR)', ...

 'SNR',25);

Create a QAM coarse frequency estimator System object with a sample rate of 4 kHz and
a frequency resolution of 1 Hz.

hFreqEst = comm.QAMCoarseFrequencyEstimator(...

 'SampleRate',4000, ...

 'FrequencyResolution',1);

Create a second phase frequency offset object to correct the offset. Set the
FrequencyOffsetSource property to Input port so that the frequency correction
estimate is an input argument to the step function.

hPFOCorrect = comm.PhaseFrequencyOffset(...

 'FrequencyOffsetSource','Input port', ...

 'SampleRate',4000);

Create a spectrum analzyer object to view the frequency response of the signals.

hSA = dsp.SpectrumAnalyzer('SampleRate',4000);

Generate a 16-QAM signal, filter the signal, apply the frequency offset, and pass the
signal through the AWGN channel.

modData = step(hMod,randi([0 15],4096,1)); % Generate QAM signal

txFiltData = step(hTxFilter,modData); % Apply Tx filter

offsetData = step(hPFOError,txFiltData); % Apply frequency offset

 comm.QAMCoarseFrequencyEstimator System object

3-1359

noisyData = step(hAWGN,offsetData); % Pass through AWGN channel

Plot the frequency response of the noisy, frequency-offset signal using the spectrum
analyzer. The signal is shifted 250 Hz to the left.

hSA.Title = 'Received Signal';

step(hSA,noisyData);

Estimate the frequency offset using the step function associated with hFreqEst.
Observe that the estimate is close to the -250 Hz target.

estFreqOffset = step(hFreqEst,noisyData)

estFreqOffset =

 -249.7559

3 Alphabetical List

3-1360

Correct for the frequency offset using hPFOCorrect and the inverse of the estimated
frequency offset.

compensatedData = step(hPFOCorrect,noisyData,-estFreqOffset);

Plot the frequency response of the compensated signal using the spectrum analyzer. The
signal is now properly centered.

hSA.Title = 'Frequency-Compensated Signal';

step(hSA,compensatedData);

Selected Bibliography

[1] Nakagawa, T., Matsui, M., Kobayashi, T., Ishihara, K., Kudo, R., Mizoguchi, M.,
and Y. Miyamoto. “Non-data-aided wide-range frequency offset estimator for

 comm.QAMCoarseFrequencyEstimator System object

3-1361

QAM optical coherent receivers”, Optical Fiber Communication Conference
and Exposition (OFC/NFOEC), 2011 and the National Fiber Optic Engineers
Conference , March, 2011, pp. 1–3.

[2] Wang, Y., Shi. K., and E. Serpedin. “Non-Data-Aided Feedforward Carrier Frequency
Offset Estimators for QAM Constellations: A Nonlinear Least-Squares
Approach”, EURASIP Journal on Advances in Signal Processing, Vol. 13, 2004,
pp. 1993–2001.

See Also
dsp.FFT | comm.PSKCoarseFrequencyEstimator | comm.PhaseFrequencyOffset

3 Alphabetical List

3-1362

clone
System object: comm.QAMCoarseFrequencyEstimator
Package: comm

Create QAMCoarseFrequencyEstimator object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a QAMCoarseFrequencyEstimator object C, with the same
property values as H. The clone method creates a new unlocked object with uninitialized
states.

The clone method creates an instance of an object. The property values, but not internal
states, are copied into the new instance of the object.

 isLocked

3-1363

isLocked
System object: comm.QAMCoarseFrequencyEstimator
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the
QAMCoarseFrequencyEstimator System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

3 Alphabetical List

3-1364

release
System object: comm.QAMCoarseFrequencyEstimator
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 reset

3-1365

reset
System object: comm.QAMCoarseFrequencyEstimator
Package: comm

Reset states of the QAMCoarseFrequencyEstimator object

Syntax

reset(H)

Description

reset(H) resets the internal states of the QAMCoarseFrequencyEstimator object, H.

3 Alphabetical List

3-1366

step
System object: comm.PSKCoarseFrequencyEstimator
Package: comm

Estimate frequency offset for QAM signal

Syntax

Y = step(H,X)

Description

Y = step(H,X) estimates the carrier frequency offset of the input X and returns the
result in Y. X must be a complex column vector of data type double. The step method
outputs the estimate Y as a scalar of type double.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

 comm.QPSKDemodulator System object

3-1367

comm.QPSKDemodulator System object
Package: comm

Demodulate using QPSK method

Description
The QPSKDemodulator object demodulates a signal that was modulated using the
quaternary phase shift keying method. The input is a baseband representation of the
modulated signal.

To demodulate a signal that was modulated using quaternary phase shift keying:

1 Define and set up your QPSK demodulator object. See “Construction” on page
3-1367.

2 Call step to demodulate the signal according to the properties of
comm.QPSKDemodulator. The behavior of step is specific to each object in the
toolbox.

Construction
H = comm.QPSKDemodulator creates a demodulator System object, H. This object
demodulates the input signal using the quadrature phase shift keying (QPSK) method.

H = comm.QPSKDemodulator(Name,Value) creates a QPSK demodulator object, H,
with each specified property set to the specified value. You can specify additional name-
value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

H = comm.QPSKDemodulator(PHASE,Name,Value) creates a QPSK demodulator
object, H. This object has the PhaseOffset property set to PHASE, and the other
specified properties set to the specified values.

Properties

PhaseOffset

Phase of zeroth point in constellation

3 Alphabetical List

3-1368

Specify the phase offset of the zeroth point in the constellation, in radians, as a real
scalar value. The default is pi/4.

BitOutput

Output data as bits

Specify whether the output consists of groups of bits or integer symbol values.

When you set this property to true, the step method outputs a column vector of bit
values with length equal to twice the number of demodulated symbols.

When you set this property to false, the step method outputs a column vector with
length equal to the input data vector. This vector contains integer symbol values between
0 and 3. The default is false.

SymbolMapping

Constellation encoding

Specify how the object maps an integer or group of 2 bits to the corresponding symbol as
one of Binary | Gray. The default is Gray.

When you set this property to Gray, the object uses a Gray-encoded signal constellation.

When you set this property to Binary, the integer m, between 0 3£ £m maps to the

complex value exp(j ¥ “PhaseOffset” + j ¥ 2
4

p ¥ m).

DecisionMethod

Demodulation decision method

Specify the decision method the object uses as Hard decision | Log-likelihood
ratio | Approximate log-likelihood ratio. The default is Hard decision.

When you set the “BitOutput” property to false, the object always performs hard
decision demodulation. This property applies when you set the BitOutput property to
true.

VarianceSource

Source of noise variance

 comm.QPSKDemodulator System object

3-1369

Specify the source of the noise variance as one of Property | Input port. The default
is Property. This property applies when you set the “BitOutput” property to true and
the “DecisionMethod” property to Log-likelihood ratio or Approximate log-
likelihood ratio.

Variance

Noise variance

Specify the variance of the noise as a positive, real scalar value. The default is 1. If
this value is very small (i.e., SNR is very high), log-likelihood ratio (LLR) computations
may yield Inf or -Inf. This result occurs because the LLR algorithm computes the
exponential of very large or very small numbers using finite-precision arithmetic. In
such cases, use approximate LLR is because that option's algorithm does not compute
exponentials.

This property applies when you set the “BitOutput” property to true, the
“DecisionMethod” property to Log-likelihood ratio or Approximate log-
likelihood ratio, and the “VarianceSource” property to Property.This property is
tunable.

OutputDataType

Data type of output

Specify the output data type as Full precision | Smallest unsigned integer |
double | single | int8 | uint8 | int16 | uint16 | int32 | uint32. The default is
Full precision.

This property applies when you set the “BitOutput” property to false. The property
also applies when you set the BitOutput property to true and the “DecisionMethod”
property to Hard decision. In this second case, when the “OutputDataType” property
is set to Full precision, and the input data type is single or double precision, the
output data has the same as that of the input.

When the input data is of a fixed-point type, the output data type behaves as if you had
set the OutputDataType property to Smallest unsigned integer.

When you set BitOutput to true and the DecisionMethod property to Hard
Decision, then logical data type becomes a valid option.

When you set the BitOutput property to true and the DecisionMethod property to
Log-likelihood ratio or Approximate log-likelihood ratio, the output data

3 Alphabetical List

3-1370

type is the same as that of the input. In this case, that data type can only be single or
double precision.

Fixed-Point Properties

DerotateFactorDataType

Data type of derotate factor

Specify derotate factor data type as one of Same word length as input | Custom.
The default is Same word length as input.

This property applies when you set the “BitOutput” property to false. The property
also applies when you set the BitOutput property to true and the “DecisionMethod”
property to Hard decision. The object uses the derotate factor in the computations
only when the step method input is a fixed-point type and the “PhaseOffset” property
has a value that is not an even multiple of pi/4.

CustomDerotateFactorDataType

Fixed-point data type of derotate factor

Specify the derotate factor fixed-point type as an unscaled numerictype object with a
signedness of Auto. The default is numerictype([],16). This property applies when
you set the “DerotateFactorDataType” property to Custom.

Methods

clone
Create QPSK demodulator object with
same property values

constellation
Calculate or plot ideal signal constellation

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

 comm.QPSKDemodulator System object

3-1371

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

step
Demodulate using QPSK method

Examples

Modulate and demodulate a signal using QPSK modulation.

 hMod = comm.QPSKModulator('PhaseOffset',pi/4);

 hAWGN = comm.AWGNChannel('NoiseMethod',...

 'Signal to noise ratio (SNR)','SNR',15);

 hDemod = comm.QPSKDemodulator('PhaseOffset',pi/4);

 %Create an error rate calculator

 hError = comm.ErrorRate;

 for counter = 1:100

 % Transmit a 50-symbol frame

 data = randi([0 3],50,1);

 modSignal = step(hMod, data);

 noisySignal = step(hAWGN, modSignal);

 receivedData = step(hDemod, noisySignal);

 errorStats = step(hError, data, receivedData);

 end

 fprintf('Error rate = %f\nNumber of errors = %d\n', ...

 errorStats(1), errorStats(2))

Algorithms

This object implements the algorithm, inputs, and outputs described on the QPSK
Demodulator Baseband block reference page. The object properties correspond to the
block parameters.

See Also
comm.PSKDemodulator | comm.QPSKModulator

3 Alphabetical List

3-1372

clone
System object: comm.QPSKDemodulator
Package: comm

Create QPSK demodulator object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a QPSKDemodulator object C, with the same property values as
H. The clone method creates a new unlocked object with uninitialized states.

 constellation

3-1373

constellation

System object: comm.QPSKDemodulator
Package: comm

Calculate or plot ideal signal constellation

Syntax

y = constellation(h)

constellation(h)

Description

y = constellation(h) returns the numerical values of the constellation.

constellation(h) generates a constellation plot for the object.

Examples

Calculate Ideal Signal Constellation for comm.QPSKDemodulator

Create a comm.QPSKDemodulator System object, and then calculate its ideal signal
constellation.

Create a comm.QPSKDemodulator System object by entering the following at the
MATLAB command line:

h = comm.QPSKDemodulator

Calculate and display the ideal signal constellation by calling the constellation
method.

3 Alphabetical List

3-1374

a = constellation(h)

Plot Ideal Signal Constellation for comm.QPSKDemodulator

Create a comm.QPSKDemodulator System object, and then plot the ideal signal
constellation.

Create a comm.QPSKDemodulator System object by entering the following at the
MATLAB command line:

h = comm.QPSKDemodulator

Plot the ideal signal constellation by calling the constellation method.

constellation(h)

 getNumInputs

3-1375

getNumInputs
System object: comm.QPSKDemodulator
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of
expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H)

3 Alphabetical List

3-1376

getNumOutputs
System object: comm.QPSKDemodulator
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

 isLocked

3-1377

isLocked
System object: comm.QPSKDemodulator
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the QPSKDemodulator System
object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

3 Alphabetical List

3-1378

release
System object: comm.QPSKDemodulator
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H)Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 step

3-1379

step
System object: comm.QPSKDemodulator
Package: comm

Demodulate using QPSK method

Syntax

Y = step(H,X)

Y = step(H,X,VAR)

Description

Y = step(H,X) demodulates input data, X, with the QPSK demodulator System object,
H, and returns Y. Input X must be a scalar or a column vector with double or single
precision data type. When you set the BitOutput property to false, or when you set the
DecisionMethod property to Hard decision and the BitOutput property to true,
the data type of the input can also be signed integer, or signed fixed point (fi objects).
Depending on the BitOutput property value, output Y can be integer or bit valued.

Y = step(H,X,VAR) uses soft decision demodulation and noise variance VAR. This
syntax applies when you set the BitOutput property to true, the DecisionMethod
property to Approximate log-likelihood ratioor Log-likelihood ratio, and
the VarianceSource property to Input port. The data type of input VAR must be
double or single precision.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

3 Alphabetical List

3-1380

comm.QPSKModulator System object

Package: comm

Modulate using QPSK method

Description

The QPSKModulator object modulates using the quaternary phase shift keying method.
The output is a baseband representation of the modulated signal.

To modulate a signal using quaternary phase shift keying:

1 Define and set up your QPSK modulator object. See “Construction” on page 3-1380.
2 Call step to modulate the signal according to the properties of

comm.QPSKModulator. The behavior of step is specific to each object in the toolbox.

Construction

H = comm.QPSKModulator creates a modulator System object, H. This object modulates
the input signal using the quadrature phase shift keying (QPSK) method.

H = comm.QPSKModulator(Name,Value) creates a QPSK modulator object, H, with
each specified property set to the specified value. You can specify additional name-value
pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

H = comm.QPSKModulator(PHASE,Name,Value) creates a QPSK modulator object,
H. This object has the PhaseOffset property set to PHASE and the other specified
properties set to the specified values.

Properties

PhaseOffset

Phase of zeroth point in constellation

 comm.QPSKModulator System object

3-1381

Specify the phase offset of the zeroth point in the constellation, in radians, as a real
scalar value. The default is pi/4.

BitInput

Assume bit inputs

Specify whether the input is bits or integers. The default is false. When you set this
property to true, the step method input must be a column vector of bit values. This
vector must have a length that is an integer multiple of 2. This vector contains bit
representations of integers between 0 and 3. When you set this property to false, the
step method input must be a column vector of integer symbol values between 0 and 3.

SymbolMapping

Constellation encoding

Specify how the object maps an integer or a group of two input bits to the corresponding
symbol as one of Binary | Gray. The default is Gray. When you set this property
to Gray, the object uses a Gray-encoded signal constellation. When you set this
property to Binary, the input integer m, between 0 3£ £m , maps to the complex value

exp(j ¥ “PhaseOffset” + j ¥ 2 ¥ p ¥ m

4
).

OutputDataType

Data type of output

Specify the output data type as one of double | single | Custom. The default is
double.

Fixed-Point Properties

CustomOutputDataType

Fixed-point data type of output

Specify the output fixed-point type as a numerictype object with a signedness of
Auto. The default is numerictype([],16). This property applies when you set the
“OutputDataType” property to Custom.

3 Alphabetical List

3-1382

Methods

clone
Create QPSK modulator object with same
property values

constellation
Calculate or plot ideal signal constellation

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

step
Modulate using QPSK method

Examples

Modulate data using QPSK, and visualize the data in a scatter plot.

 % Create binary data for 48, 2-bit symbols

 data = randi([0 1],96,1);

 % Create a QPSK modulator System object with bits as inputs and Gray-coded signal constellation

 hModulator = comm.QPSKModulator('BitInput',true);

 % Change the phase offset to pi/16

 hModulator.PhaseOffset = pi/16;

 % Modulate and plot the data

 modData = step(hModulator, data);

 scatterplot(modData)

 comm.QPSKModulator System object

3-1383

Algorithms

This object implements the algorithm, inputs, and outputs described on the QPSK
Modulator Baseband block reference page. The object properties correspond to the block
parameters.

See Also
comm.PSKModulator | comm.QPSKDemodulator

3 Alphabetical List

3-1384

clone
System object: comm.QPSKModulator
Package: comm

Create QPSK modulator object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a QPSKModulator object C, with the same property values as H.
The clone method creates a new unlocked object with uninitialized states.

 constellation

3-1385

constellation

System object: comm.QPSKModulator
Package: comm

Calculate or plot ideal signal constellation

Syntax

y = constellation(h)

constellation(h)

Description

y = constellation(h) returns the numerical values of the constellation.

constellation(h) generates a constellation plot for the object.

Examples

Calculate Ideal Signal Constellation for comm.QPSKModulator

Create a comm.QPSKModulator System object, and then calculate its ideal signal
constellation.

Create a comm.QPSKModulator System object by entering the following at the MATLAB
command line:

h = comm.QPSKModulator

Calculate and display the ideal signal constellation by calling the constellation
method.

3 Alphabetical List

3-1386

a = constellation(h)

Plot Ideal Signal Constellation for comm.QPSKModulator

Create a comm.QPSKModulator System object, and then plot the ideal signal
constellation.

Create a comm.QPSKModulator System object by entering the following at the MATLAB
command line:

h = comm.PSKModulator

Plot the ideal signal constellation by calling the constellation method.

constellation(h)

 getNumInputs

3-1387

getNumInputs
System object: comm.QPSKModulator
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of
expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H)

3 Alphabetical List

3-1388

getNumOutputs
System object: comm.QPSKModulator
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

 isLocked

3-1389

isLocked
System object: comm.QPSKModulator
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the QPSKModulator System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

3 Alphabetical List

3-1390

release
System object: comm.QPSKModulator
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H)Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 step

3-1391

step
System object: comm.QPSKModulator
Package: comm

Modulate using QPSK method

Syntax

Y = step(H,X)

Description

Y = step(H,X) modulates input data, X, with the QPSK modulator System object, H.
It returns the baseband modulated output, Y. Depending on the value of the BitInput
property, input X can be an integer or bit valued column vector with numeric, logical, or
fixed-point data types.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

3 Alphabetical List

3-1392

comm.RaisedCosineReceiveFilter System object
Package: comm

Apply pulse shaping by decimating signal using raised cosine filter

Description

The Raised Cosine Receive Filter System object applies pulse-shaping by
decimating an input signal using a raised cosine FIR filter.

To decimate the input signal:

1 Define and set up your raised cosine receive filter object. See “Construction” on page
3-1392.

2 Call step to decimate the input signal according to the properties of
comm.RaisedCosineReceiveFilter. The behavior of step is specific to each
object in the toolbox.

Construction

H = comm.RaisedCosineReceiveFilter returns a raised cosine receive filter System
object, H, which decimates the input signal. The filter uses an efficient polyphase FIR
decimation structure and has unit energy.

H = comm.RaisedCosineReceiveFilter(PropertyName,PropertyValue, ...)

returns a raised cosine receive filter object, H, with each specified property set to the
specified value.

Properties

Shape

Filter shape

Specify the filter shape as one of Normal or Square root. The default is Square root.

RolloffFactor

 comm.RaisedCosineReceiveFilter System object

3-1393

Rolloff factor

Specify the rolloff factor as a scalar between 0 and 1. The default is 0.2.

FilterSpanInSymbols

Filter span in symbols

Specify the number of symbols the filter spans as an integer-valued positive scalar. The
default is 10. Because the ideal raised cosine filter has an infinite impulse response, the
object truncates the impulse response to the value you specify for this property.

InputSamplesPerSymbol

Input samples per symbol

Specify the number of input samples that represent a symbol. The default is 8. This
property accepts an integer-valued, positive double or single scalar value. The raised
cosine filter has (“FilterSpanInSymbols” x “InputSamplesPerSymbol” + 1) taps.

DecimationFactor

Decimation factor

Specify the factor by which the object reduces the sampling rate of the input
signal. The default value is 8. This property accepts a positive integer scalar value
between 1 and InputSamplesPerSymbol. The value must evenly divide into
“InputSamplesPerSymbol”. The number of input rows must be a multiple of the
decimation factor. If you set “DecimationFactor” to 1, then the object only applies
filtering without downsampling.

DecimationOffset

Specify the number of filtered samples the System object discards before downsampling.
The default is 0. This property accepts an integer valued scalar between 0 and
DecimationFactor − 1.

Gain

Linear filter gain

Specify the linear gain of the filter as a positive numeric scalar. The default is 1. The
object designs a raised cosine filter that has unit energy, and then applies the linear gain
to obtain final tap values.

3 Alphabetical List

3-1394

Methods
clone

Create RaisedCosineReceiveFilter
object with same property values

coeffs
Returns coefficients for filters

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

reset
Reset internal states of System object

step
Output decimated values of input signal

Examples
Filter Signal Using Square Root Raised Cosine Receive Filter

Filter the output of a square root raised cosine transmit filter using a matched square
root raised cosine receive filter. The input signal has eight samples per symbol.

Create a raised cosine transmit filter and set the OutputSamplesPerSymbol property
to 8.

 hTxFilt = comm.RaisedCosineTransmitFilter('OutputSamplesPerSymbol',8);

Create a raised cosine receive filter and set the InputSamplesPerSymbol property to 8
and the DecimationFactor property to 8.

hRxFilt = comm.RaisedCosineReceiveFilter('InputSamplesPerSymbol',8, ...

 'DecimationFactor',8);

Use the coeffs method to determine the filter coefficients for both filters.

txCoef = coeffs(hTxFilt);

rxCoef = coeffs(hRxFilt);

 comm.RaisedCosineReceiveFilter System object

3-1395

Launch the filter visualization tool and display the magnitude responses of the two
filters. Observe that they have identical responses.

 hfv = fvtool(txCoef.Numerator,1,rxCoef.Numerator,1);

 legend(hfv,'Tx Filter','Rx Filter')

Generate a random bipolar signal and then interpolate.

 x = 2*randi([0 1],100,1) - 1;

 y = step(hTxFilt,x);

Call the step method to decimate the signal using the raised cosine receive filter System
object.

 z = step(hRxFilt,y);

The filter delay is equal to the FilterSpanInSymbols property. Adjust for the delay to
compare the pre-Tx filter signal, x, with the post-Rx filter signal, z.

delay = hTxFilt.FilterSpanInSymbols;

3 Alphabetical List

3-1396

plot(x(1:end-delay))

hold on

plot(z(delay+1:end))

legend('Pre-Tx Filter','Post-Rx Filter')

You can see that the two signals overlap one another since the receive filter is matched to
the transmit filter.

Specify Filter Span of Raised Cosine Receive Filter

Decimate a bipolar signal using a square root raised cosine filter whose impulse response
is truncated to six symbol durations.

Create a raised cosine transmit filter and set the FilterSpanInSymbols property to 6.
The object truncates the impulse response to six symbols.

 comm.RaisedCosineReceiveFilter System object

3-1397

hTxFilt = comm.RaisedCosineTransmitFilter('FilterSpanInSymbols',6);

Generate a random bipolar signal and filter it using hTxFilt.

x = 2*randi([0 1],25,1) - 1;

y = step(hTxFilt,x);

Create a matched raised cosine receive filter System object.

hRxFilt = comm.RaisedCosineReceiveFilter('FilterSpanInSymbols',6);

Launch the filter visualization tool to show the impulse response of the receive filter.

fvtool(hRxFilt,'Analysis','impulse')

Filter the output signal from the transmit filter using the matched receive filter object,
hRxFilt.

r = step(hRxFilt,y);

3 Alphabetical List

3-1398

Plot the interpolated signal. Because of the filter span, there is a delay of six symbols
before data passes through the filter.

stem(r)

Create a Raised Cosine Receive Filter with Unity Passband Gain

Create a raised cosine receive filter with unity passband gain.

Create a raised cosine receive filter System object™. Obtain the filter coefficients using
the coeffs method.

h = comm.RaisedCosineReceiveFilter;

b = coeffs(h);

 comm.RaisedCosineReceiveFilter System object

3-1399

A filter with unity passband gain has filter coefficients such that the sum of coefficients
is 1. Therefore, set the Gain property to the inverse of the sum of b.Numerator.

h.Gain = 1/sum(b.Numerator);

Verify that the sum of the coefficients from the resulting filter equal 1.

bNorm = coeffs(h);

sum(bNorm.Numerator)

ans =

 1.0000

Plot the frequency response of the fitler. Note that it shows a passband gain of 0 dB,
which is unity gain.

fvtool(h)

3 Alphabetical List

3-1400

See Also
comm.RaisedCosineTransmitFilter | rcosdesign

 clone

3-1401

clone
System object: comm.RaisedCosineReceiveFilter
Package: comm

Create RaisedCosineReceiveFilter object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a RaisedCosineReceiveFilter object C, with the same
property values as H. The clone method creates a new unlocked object with uninitialized
states.

The clone method creates an instance of an object. The property values, but not internal
states, are copied into the new instance of the object.

3 Alphabetical List

3-1402

coeffs
System object: comm.RaisedCosineReceiveFilter
Package: comm

Returns coefficients for filters

Syntax

S = coeffs(H)

S = coeffs(H,'Arithmetic',ARITH,...)

Description

S = coeffs(H) Returns the coefficients of filter System object, H, in the structure S.

S = coeffs(H,'Arithmetic',ARITH,...) analyzes the filter System object,
H, based on the arithmetic specified in the ARITH input. ARITH can be set to one of
double, single, or fixed. The analysis tool assumes a double precision filter when the
arithmetic input is not specified and the filter System object is in an unlocked state. The
coeffs method returns the quantized filter coefficients when you set ARITH to single or
fixed.

 isLocked

3-1403

isLocked
System object: comm.RaisedCosineReceiveFilter
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the
RaisedCosineReceiveFilter System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

3 Alphabetical List

3-1404

release
System object: comm.RaisedCosineReceiveFilter
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 reset

3-1405

reset
System object: comm.RaisedCosineReceiveFilter
Package: comm

Reset internal states of System object

Syntax

reset(OBJ)

Description

reset(OBJ) resets the internal states of System object OBJ to their initial values.

3 Alphabetical List

3-1406

step
System object: comm.RaisedCosineReceiveFilter
Package: comm

Output decimated values of input signal

Syntax

Y = step(H, X)

Description

Y = step(H, X) outputs the decimated values, Y, of the input signal X. The System
object treats the input matrix Ki-by-N as N independent channels. The System object
filters each channel over time and generates a Ko-by-N output matrix. Ko = Ki/M where M
represents the decimation factor. The System object supports real and complex floating-
point inputs.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

 comm.RaisedCosineTransmitFilter System object

3-1407

comm.RaisedCosineTransmitFilter System object

Package: comm

Apply pulse shaping by interpolating signal using raised cosine filter

Description

The Raised Cosine Transmit Filter System object applies pulse-shaping by
interpolating an input signal using a raised cosine FIR filter.

To interpolate the input signal:

1 Define and set up your raised cosine transmit filter object. See “Construction” on
page 3-1407.

2 Call step to interpolate the input signal according to the properties of
comm.RaisedCosineTransmitFilter. The behavior of step is specific to each
object in the toolbox.

Construction

H = comm.RaisedCosineTransmitFilter returns a raised cosine transmit filter
System object, H, which interpolates an input signal using a raised cosine FIR filter. The
filter uses an efficient polyphase FIR interpolation structure and has unit energy.

H = comm.RaisedCosineTransmitFilter(PropertyName,PropertyValue, ...)

returns a raised cosine transmit filter object, H, with each specified property set to the
specified value.

Properties

Shape

Filter shape

3 Alphabetical List

3-1408

Specify the filter shape as one of Normal or Square root. The default is Square root.

RolloffFactor

Rolloff factor

Specify the rolloff factor as a scalar between 0 and 1. The default is 0.2.

FilterSpanInSymbols

Filter span in symbols

Specify the number of symbols the filter spans as an integer-valued, positive scalar. The
default is 10. Because the ideal raised cosine filter has an infinite impulse response, the
object truncates the impulse response to the value you specify for this property.

OutputSamplesPerSymbol

Output samples per symbol

Specify the number of output samples for each input symbol. The default is 8. This
property accepts an integer-valued, positive scalar value. The raised cosine filter has
(“FilterSpanInSymbols” x “OutputSamplesPerSymbol” + 1) taps.

Gain

Linear filter gain

Specify the linear gain of the filter as a positive numeric scalar. The default is 1. The
object designs a raised cosine filter that has unit energy, and then applies the linear gain
to obtain final tap values.

Methods

clone
Create RaisedCosineTransmitFilter
object with same property values

coeffs
Returns coefficients for filters

 comm.RaisedCosineTransmitFilter System object

3-1409

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

reset
Reset internal states of System object

step
Output interpolated values of input signal

Examples

Interpolate Signal Using Square Root Raised Cosine Filter

This example shows how to interpolate a signal using the
comm.RaisedCosineTransmitFilter System object and to display its spectrum.

Create a square root raised square root cosine transmit filter object. You can see that
its default settings are such that the fitler has a square root shape and that there are 8
samples per symbol.

hFilt = comm.RaisedCosineTransmitFilter

hFilt =

 System: comm.RaisedCosineTransmitFilter

 Properties:

 Shape: 'Square root'

 RolloffFactor: 0.2

 FilterSpanInSymbols: 10

 OutputSamplesPerSymbol: 8

 Gain: 1

Generate random bipolar data.

data = 2*randi([0 1],10000,1) - 1;

3 Alphabetical List

3-1410

Filter the data by using the step function of the filter object, hFilt.

filteredData = step(hFilt,data);

To view the spectrum of the filtered signal, create a spectrum analyzer object with a
sample rate of 1000 Hz.

hSA = dsp.SpectrumAnalyzer('SampleRate',1000);

View the spectrum of the filtered signal using the spectrum analyzer.

step(hSA,filteredData)

Specify Filter Span of Raised Cosine Transmit Filter

This example shows to create an interpolated signal from a square root raised cosine
filter that is truncated to six symbol durations.

 comm.RaisedCosineTransmitFilter System object

3-1411

Create a raised cosine filter and set the FilterSpanInSymbols to 6. The object
truncates the impulse response to six symbols.

hTxFilt = comm.RaisedCosineTransmitFilter('FilterSpanInSymbols',6);

Launch the filter visualization tool to show the impulse response.

fvtool(hTxFilt)

Generate a random bipolar signal and then interpolate.

x = 2*randi([0 1],96,1) - 1;

y = step(hTxFilt,x);

Plot the interpolated signal.

plot(y)

grid on

3 Alphabetical List

3-1412

Create a Raised Cosine Transmit Filter with Unity Passband Gain

This example shows how to create a raised cosine transmit filter with unity passband
gain.

Generate a filter with unit energy. You can obtain the filter coefficients using the coeffs
method.

h = comm.RaisedCosineTransmitFilter;

b = coeffs(h);

Plot the filter response. You can see that its gain is greater than unity (more than 0 dB).

fvtool(h)

 comm.RaisedCosineTransmitFilter System object

3-1413

A filter with unity passband gain has filter coefficients that sum to 1. Set the Gain
property to the inverse of the sum of b.Numerator

h.Gain = 1/sum(b.Numerator);

Verify that the resulting filter coefficients sum to 1.

bNorm = coeffs(h);

sum(bNorm.Numerator)

ans =

 1.0000

Plot the filter frequency response. Note that it shows a passband gain of 0 dB.

fvtool(h)

3 Alphabetical List

3-1414

See Also
comm.RaisedCosineReceiveFilter | rcosdesign

 clone

3-1415

clone
System object: comm.RaisedCosineTransmitFilter
Package: comm

Create RaisedCosineTransmitFilter object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a RaisedCosineTransmitFilter object C, with the same
property values as H. The clone method creates a new unlocked object with uninitialized
states.

The clone method creates an instance of an object. The property values, but not internal
states, are copied into the new instance of the object.

3 Alphabetical List

3-1416

coeffs
System object: comm.RaisedCosineTransmitFilter
Package: comm

Returns coefficients for filters

Syntax

S = coeffs(H)

S = coeffs(H,'Arithmetic',ARITH,...)

Description

S = coeffs(H) Returns the coefficients of filter System object, H, in the structure S.

S = coeffs(H,'Arithmetic',ARITH,...) analyzes the filter System object,
H, based on the arithmetic specified in the ARITH input. ARITH can be set to one of
double, single, or fixed. The analysis tool assumes a double precision filter when the
arithmetic input is not specified and the filter System object is in an unlocked state. The
coeffs method returns the quantized filter coefficients when you set ARITH to single or
fixed.

 isLocked

3-1417

isLocked
System object: comm.RaisedCosineTransmitFilter
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the
RaisedCosineTransmitFilter System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

3 Alphabetical List

3-1418

release
System object: comm.RaisedCosineTransmitFilter
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 reset

3-1419

reset
System object: comm.RaisedCosineTransmitFilter
Package: comm

Reset internal states of System object

Syntax

reset(OBJ)

Description

reset(OBJ) resets the internal states of System object OBJ to their initial values.

3 Alphabetical List

3-1420

step
System object: comm.RaisedCosineTransmitFilter
Package: comm

Output interpolated values of input signal

Syntax

Y = step(H, X)

Description

Y = step(H, X) outputs the interpolated values, Y, of the input signal X. The
System object treats the input matrix Ki-by-N as N independent channels. The object
interpolates each channel over the first dimension and then generates a Ko-by-N output
matrix. In the output matrix, Ko = Ki*L, where L represents the output samples per
symbol. The object supports real and complex floating-point inputs.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

 comm.RayleighChannel System object

3-1421

comm.RayleighChannel System object
Package: comm

Filter input signal through a Rayleigh multipath fading channel

Description
The RayleighChannel System object filters an input signal through a Rayleigh fading
channel. The fading processing per link is per the “Methodology for Simulating Multipath
Fading Channels”

To filter an input signal using a Rayleigh multipath fading channel:

1 Define and set up your Rayleigh channel object. See “Construction” on page 3-1421.
2 Call step to filter the input signal through a Rayleigh multipath fading channel

according to the properties of comm.Rayleighhannel. The behavior of step is
specific to each object in the toolbox.

Construction
H = comm.RayleighChannel creates a frequency-selective or frequency-flat multipath
Rayleigh fading channel System object, H. This object filters a real or complex input
signal through the multipath channel to obtain the channel impaired signal.

H = comm.RayleighChannel(Name,Value) creates a multipath Rayleigh
fading channel object, H, with the specified property Name set to the specified
Value. You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties

SampleRate

Input signal sample rate (hertz)

Specify the sample rate of the input signal in hertz as a double-precision, real, positive
scalar. The default value of this property is 1 Hz.

3 Alphabetical List

3-1422

PathDelays

Discrete path delay vector (seconds)

Specify the delays of the discrete paths in seconds as a double-precision, real, scalar or
row vector. The default value of this property is 0.

When you set PathDelays to a scalar, the channel is frequency flat.

When you set PathDelays to a vector, the channel is frequency selective.

AveragePathGains

Average path gain vector (decibels)

Specify the average gains of the discrete paths in decibels as a double-precision, real,
scalar or row vector. The default value of this property is 0.

AveragePathGains must have the same size as “PathDelays”.

NormalizePathGains

Normalize average path gains to 0 dB

Set this property to true to normalize the fading processes such that the total power of
the path gains, averaged over time, is 0 dB. The default value of this property is true.

MaximumDopplerShift

Maximum Doppler shift (hertz)

Specify the maximum Doppler shift for all channel paths in hertz as a double-precision,
real, nonnegative scalar. The default value of this property is 0.001 Hz.

The Doppler shift applies to all the paths of the channel. When you set the
MaximumDopplerShift to 0, the channel remains static for the entire input. You can
use the reset method to generate a new channel realization.

The MaximumDopplerShift must be smaller than SampleRate/10/fc for each path,
where fc represents the cutoff frequency factor of the path. For most Doppler spectrum
types, the value of fc is 1. For Gaussian and BiGaussian Doppler spectrum types, fc is
dependent on the Doppler spectrum structure fields. Refer to the “Algorithms” section for
the “comm.MIMOChannel” System object for more details about how fc is defined.

 comm.RayleighChannel System object

3-1423

DopplerSpectrum

Doppler spectrum object(s)

Specify the Doppler spectrum shape for the path(s) of the channel. This property accepts
a single Doppler spectrum structure returned from the doppler function or a row cell
array of such structures. The maximum Doppler shift value necessary to specify the
Doppler spectrum/spectra is given by the “MaximumDopplerShift” property. This
property applies when the “MaximumDopplerShift” property value is greater than 0.
The default value of this property is doppler('Jakes').

If you assign a single Doppler spectrum structure to DopplerSpectrum, all paths have
the same specified Doppler spectrum. If the FadingTechnique property is Sum of
sinusoids, DopplerSpectrum must be doppler('Jakes'); otherwise, select from the
following:

• doppler('Jakes')
• doppler('Flat')
• doppler('Rounded', ...)
• doppler('Bell', ...)
• doppler('Asymmetric Jakes', ...)
• doppler('Restricted Jakes', ...)
• doppler('Gaussian', ...)
• doppler('BiGaussian', ...)

If you assign a row cell array of different Doppler spectrum structures (which can be
chosen from any of those on the previous list) to DopplerSpectrum, each path has the
Doppler spectrum specified by the corresponding structure in the cell array. In this case,
the length of DopplerSpectrum must be equal to the length of “PathDelays”.

To generate C code, specify this property to a single Doppler spectrum structure. The
default value of this property is doppler('Jakes').

FadingTechnique

Fading technique used to model the channel

Select between Filtered Gaussian noise and Sum of sinusoids to specify the
way in which the channel is modeled. The default value is Filtered Gaussian noise.

3 Alphabetical List

3-1424

NumSinusoids

Number of sinusoids used to model the fading process

The NumSinuoids property is a positive integer scalar that specified the number
of sinusoids used in modeling the channel and is available only when the
FadingTechnique property is set to Sum of sinusoids. The default value is 48.

InitialTimeSource

Source to control the start time of the fading process

Specify the initial time source as either Property or Input port. This property is
available when the FadingTechnique property is set to Sum of sinusoids. When
InitialTimeSource is set to Input port, the start time of the fading process is
specified using the INITIALTIME input to the step function. The input value can change
in consecutive calls to the step function. The default value is Property.

InitialTime

Start time of the fading process

Specify the time offset of the fading process. The InitialTime property is specified
in seconds and is a real nonnegative scalar. This property is available when the
FadingTechnique property is set to Sum of sinusoids and the InitialTimeSource
property is set to Property. The default value is 0.

RandomStream

Source of random number stream

Specify the source of random number stream as one of Global stream | mt19937ar
with seed. The default value of this property is Global stream.

If you set RandomStream to Global stream, the current global random number stream
is used for normally distributed random number generation. In this case, the reset
method only resets the filters.

If you set RandomStream to mt19937ar with seed, the mt19937ar algorithm is used
for normally distributed random number generation. In this case, the reset method not
only resets the filters but also reinitializes the random number stream to the value of the
“Seed” property.

 comm.RayleighChannel System object

3-1425

Seed

Initial seed of mt19937ar random number stream

Specify the initial seed of a mt19937ar random number generator algorithm as a double-
precision, real, nonnegative integer scalar. The default value of this property is 73. This
property applies when you set the “RandomStream” property to mt19937ar with seed.
The Seed reinitializes the mt19937ar random number stream in the reset method.

PathGainsOutputPort

Enable path gain output (logical)

Set this property to true to output the channel path gains of the underlying fading
process. The default value of this property is false.

Visualization

Enable channel visualization

Specify the type of channel visualization to display as one of Off | Impulse response
| Frequency response | Impulse and frequency responses | Doppler
spectrum. The default value of this property is Off.

SamplesToDisplay

Specify percentage of samples to display

You can specify the percentage of samples to display, since displaying fewer samples will
result in better performance at the expense of lower accuracy. Specify the property as
one of 10% | 25% | 50% | 100%. This applies when Visualization is set to Impulse
response, Frequency response, or Impulse and frequency responses. The
default value is 25%.

PathsForDopplerDisplay

Specify path for Doppler display

You can specify an integer scalar which selects the discrete path used in constructing
a Doppler spectrum plot. The specified path must be an element of {1, 2, ..., Np}, where
Np is the number of discrete paths per link specified in the object. This property applies
when Visualization is set to Doppler spectrum. The default value is 1.

3 Alphabetical List

3-1426

Methods

clone
Create RayleighChannel object with
same property values

isLocked
Locked status for input attributes and
nontunable properties

info
Display information about the
RayleighChannel object

release
Allow property value and input
characteristics changes

reset
Reset states of the RayleighChannel
object

step
Filter input signal through multipath
Rayleigh fading channel

Visualization

Impulse Response

The impulse response plot displays the path gains, the channel filter coefficients, and the
interpolated path gains. The path gains shown in magenta occur at time instances which
correspond to the specified PathDelays property and may not be aligned with the input
sampling time. The channel filter coefficients shown in yellow are used to model the
channel. They are interpolated from the actual path gains and are aligned with the input
sampling time. In cases in which the path gains are aligned with the sampling time, they
will overlap the filter coefficients. Sinc interpolation is used to connect the channel filter
coefficients and is shown in blue. These points are used solely for display purposes and
not used in subsequent channel filtering. For a flat fading channel (one path), the sinc

 comm.RayleighChannel System object

3-1427

interpolation curve is not displayed. For all impulse response plots, the frame and sample
numbers are shown in the display’s upper left corner.

The impulse response plot shares the same toolbar and menus as the System object it
was based on, dsp.ArrayPlot.

In the figure, the impulse response of a channel is shown for the case in which the path
gains are aligned with the sample time. The overlap between the path gains and filter
coefficients is evident.

The case in which the specified path gains are not aligned with the SampleRate property
is shown below. Observe that the path gains and the channel filter coefficients do not
overlap and that the filter coefficients are equally distributed.

3 Alphabetical List

3-1428

The impulse response for a frequency flat channel is shown below. You can see that the
interpolated path gains are not displayed.

 comm.RayleighChannel System object

3-1429

Note:

• The displayed and specified path gain locations can differ by as much as 5% of the
input sample time.

• The visualization display speed is controlled by the combination of the
SamplesToDisplay property and the Reduce Updates to Improve Performance
menu item. Reducing the percentage of samples to display and the enabling reduced
updates will speed up the rendering of the impulse response.

• After the impulse response plots are manually closed, the step call for the Rayleigh
channel object will be executed at its normal speed.

• Code generation is available only when the Visualization property is Off.

3 Alphabetical List

3-1430

Frequency Response

The frequency response plot displays the Rayleigh channel spectrum by taking a
discrete Fourier transform of the channel filter coefficients. The frequency response
plot shares the same toolbar and menus as the System object it was based on,
dsp.SpectrumAnalyzer. The default parameter settings are shown below. These
parameters can be changed from their default values by using the View > Spectrum
Settings menu.

Parameter Value

Window Rectangular

WindowLength Channel filter length
FFTLength 512
PowerUnits dBW

YLimits Based on NormalizePathGains and
AveragePathGains properties

The frequency response plot for a frequency selective channel is shown.

 comm.RayleighChannel System object

3-1431

Note:

• The visualization display speed is controlled by the combination of the
SamplesToDisplay property and the Reduce Plot Rate to Improve

Performance menu item. Reducing the percentage of samples to display and the
enabling reduced updates will speed up the rendering of the frequency response.

• After the frequency response plots are manually closed, the step call for the Rayleigh
channel object will be executed at its normal speed.

• Code generation is available only when the Visualization property is Off.

3 Alphabetical List

3-1432

Doppler Spectrum

The Doppler spectrum plot displays both the theoretical Doppler spectrum and the
empirically determined data points. The theoretical data is displayed as a yellow line
for the case of non-static channels and as a yellow point for static channels, while the
empirical data is shown in blue. There is an internal buffer which must be completely
filled with filtered Gaussian samples before the empirical plot is updated. The empirical
plot is the running mean of the spectrum calculated from each full buffer. For non-static
channels, the number of input samples needed before the next update is displayed in
the upper left hand corner. The samples needed is a function of the sample rate and the
maximum Doppler shift. For static channels, the text Reset fading channel for
next update is displayed.

 comm.RayleighChannel System object

3-1433

Note:

• After the Doppler spectrum plots are manually closed, the step call for the Rayleigh
channel object will be executed at its normal speed.

• Code generation is available only when the Visualization property is Off.

Examples

Produce the Same Outputs Using Two Different Random Number Generation Methods

The Rayleigh Channel System object™ has two methods for random number generation.
You can use the current global stream or the mt19937ar algorithm with a specified seed.
By interacting with the global stream, the object can produce the same outputs from the
two methods.

Create a PSK Modulator System object to modulate randomly generated data.

3 Alphabetical List

3-1434

hMod = comm.PSKModulator;

channelInput = step(hMod,randi([0 hMod.ModulationOrder-1],1024,1));

Create a Rayleigh channel System object.

hRayleighChan = comm.RayleighChannel(...

 'SampleRate',10e3, ...

 'PathDelays',[0 1.5e-4], ...

 'AveragePathGains',[2 3], ...

 'NormalizePathGains',true, ...

 'MaximumDopplerShift',30, ...

 'DopplerSpectrum',{doppler('Gaussian',0.6),doppler('Flat')}, ...

 'RandomStream','mt19937ar with seed', ...

 'Seed',22, ...

 'PathGainsOutputPort',true);

Filter the modulated data using the Rayleigh channel System object, hRayleighChan.

[chanOut1,pathGains1] = step(hRayleighChan, channelInput);

Use global stream for random number generation.

release(hRayleighChan);

hRayleighChan.RandomStream = 'Global stream';

Set the global stream to have the same seed that was specified above.

rng(22)

Filter the modulated data using hRayleighChan for the second time.

[chanOut2,pathGains2] = step(hRayleighChan,channelInput);

Verify that the channel and path gain outputs are the same for two step calls.

display(isequal(chanOut1,chanOut2));

display(isequal(pathGains1,pathGains2));

ans =

 1

 comm.RayleighChannel System object

3-1435

ans =

 1

Display Impulse and Frequency Responses of a Rayleigh Channel

This example shows how to create a frequency selective Rayleigh channel and display its
impulse and frequency responses.

Set the sample rate to 3.84 MHz and specify path delays and gains using ITU pedestrian
B channel parameters. Set the maximum Doppler shift to 50 Hz.

fs = 3.84e6; % Hz

pathDelays = [0 200 800 1200 2300 3700]*1e-9; % sec

avgPathGains = [0 -0.9 -4.9 -8 -7.8 -23.9]; % dB

fD = 50; % Hz

Create a Rayleigh channel System object with the previously defined parameters and set
the Visualization property to Impulse and frequency responses using name-
value pairs.

h = comm.RayleighChannel('SampleRate',fs, ...

 'PathDelays',pathDelays, ...

 'AveragePathGains',avgPathGains, ...

 'MaximumDopplerShift',fD, ...

 'Visualization','Impulse and frequency responses');

Generate random binary data and pass it through the Rayleigh channel using the step
function. The impulse response plot allows you to easily identify the individual paths and
their corresponding filter coefficients. The frequency selective nature of the pedestrian B
channel is shown by the frequency response plot.

x = randi([0 1],1000,1);

y = step(h,x);

3 Alphabetical List

3-1436

 comm.RayleighChannel System object

3-1437

Generate a Rayleigh Channel Using Sum-of-Sinusoids Technique

This example shows how to generate a Rayleigh channel using the sum-of-sinusoids
technique.

Set the channel parameters.

fs = 1000; % Sample rate (Hz)

3 Alphabetical List

3-1438

pathDelays = [0 2.5e-3]; % Path delays (s)

pathPower = [0 -6]; % Path power (dB)

fD = 5; % Maximum Doppler shift (Hz)

numSamples = 1000; % Number of samples

Create a Rayleigh channel object using a name-value pair to set the FadingTechnique
property to Sum of sinusoids.

hChan = comm.RayleighChannel('SampleRate',fs, ...

'PathDelays',pathDelays,'AveragePathGains',pathPower, ...

'MaximumDopplerShift',fD,'FadingTechnique','Sum of sinusoids')

hChan =

 System: comm.RayleighChannel

 Properties:

 SampleRate: 1000

 PathDelays: [0 0.0025]

 AveragePathGains: [0 -6]

 NormalizePathGains: true

 MaximumDopplerShift: 5

 DopplerSpectrum: [1x1 struct]

 FadingTechnique: 'Sum of sinusoids'

 NumSinusoids: 48

 InitialTimeSource: 'Property'

 InitialTime: 0

 RandomStream: 'Global stream'

 PathGainsOutputPort: false

 Visualization: 'Off'

Pass data through the Rayleigh channel using the step function.

y = step(hChan,ones(numSamples,1));

Plot the magnitude of the Rayleigh channel output.

t = (0:numSamples-1)'/fs;

plot(t,20*log10(abs(y)))

xlabel('Time (s)')

ylabel('Amplitude')

 comm.RayleighChannel System object

3-1439

Selected Bibliography

[1] Oestges, C., and B. Clerckx. MIMO Wireless Communications: From Real-World
Propagation to Space-Time Code Design, Academic Press, 2007.

[2] Correira, L. M. Mobile Broadband Multimedia Networks: Techniques, Models and
Tools for 4G, Academic Press, 2006.

[3] Kermoal, J. P., L. Schumacher, K. I. Pedersen, P. E. Mogensen, and F. Frederiksen.
“A stochastic MIMO radio channel model with experimental validation." IEEE
Journal on Selected Areas of Communications. Vol. 20, Number 6, 2002, pp.
1211–1226.

3 Alphabetical List

3-1440

[4] Jeruchim, M., P. Balaban, and K. S. Shanmugan. Simulation of Communication
Systems, Second Edition, New York, Kluwer Academic/Plenum, 2000.

[5] Pätzold, Matthias, Cheng-Xiang Wang, and Bjorn Olav Hogstand. “Two New Sum-of-
Sinusoids-Based Methods for the Efficient Generation of Multiple Uncorrelated
Rayleigh Fading Waveforms.” IEEE Transactions on Wireless Communications.
Vol. 8, Number 6, 2009, pp. 3122–3131.

See Also
comm.LTEMIMOChannel | comm.RicianChannel | comm.AWGNChannel |
comm.MIMOChannel

 clone

3-1441

clone
System object: comm.RayleighChannel
Package: comm

Create RayleighChannel object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a RayleighChannel object C, with the same property values as
H. The clone method creates a new unlocked object with uninitialized states.

The clone method creates an instance of an object. The property values, but not internal
states, are copied into the new instance of the object.

3 Alphabetical List

3-1442

isLocked
System object: comm.RayleighChannel
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the RayleighChannel System
object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

 info

3-1443

info
System object: comm.RayleighChannel
Package: comm

Display information about the RayleighChannel object

Syntax

S = info(OBJ)

Description

S = info(OBJ) returns a structure, S, containing characteristic information for the
System object, OBJ. If OBJ has no characteristic information, S is empty. If OBJ has
characteristic information, the fields of S vary depending on OBJ. For object specific
details, refer to the help on the infoImpl method of that object.

3 Alphabetical List

3-1444

release
System object: comm.RayleighChannel
Package: comm

Allow property value and input characteristics changes

Syntax

release(obj)

Description

release(obj) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 reset

3-1445

reset
System object: comm.RayleighChannel
Package: comm

Reset states of the RayleighChannel object

Syntax

reset(H)

Description

reset(H) resets the states of the RayleighChannel object, H.

If you set the “RandomStream” property of H to Global stream, the reset method
only resets the filters. If you set RandomStream to mt19937ar with seed, the reset
method not only resets the filters but also reinitializes the random number stream to the
value of the “Seed” property.

3 Alphabetical List

3-1446

step
System object: comm.RayleighChannel
Package: comm

Filter input signal through multipath Rayleigh fading channel

Syntax
Y = step(H,X)

[Y,PATHGAINS] = step(H,X)

Y = step(H,X,INITIALTIME)

[Y,PATHGAINS] = step(H,X,INITIALTIME)

step(H,X,INITIALTIME)

Description
Y = step(H,X) filters input signal X through a multipath Rayleigh fading channel and
returns the result in Y. Both the input X and the output signal Y are of size Ns–by–1,
where Ns represents the number of samples. The input X can be of double precision data
type with real or complex values. Y is of double precision data type with complex values.

[Y,PATHGAINS] = step(H,X) returns the channel path gains of the underlying
Rayleigh fading process in PATHGAINS. This syntax applies when you set the
“PathGainsOutputPort” property of H to true. PATHGAINS is of size Ns–by–Np,
where Np represents the number of paths, i.e., the length of the “PathDelays” property
value of H. PATHGAINS is of double precision data type with complex values.

Y = step(H,X,INITIALTIME), [Y,PATHGAINS] = step(H,X,INITIALTIME), or
step(H,X,INITIALTIME) passes data through the Rayleigh channel beginning at
INITIALTIME, where INITIALTIME is a nonnegative real scalar measured in seconds.
This syntax applies when the “FadingTechnique” property of H is set to Sum of
sinusoids and the “InitialTimeSource” property of H is set to Input port.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,

 step

3-1447

complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

3 Alphabetical List

3-1448

comm.RectangularQAMDemodulator System object
Package: comm

Demodulate using rectangular QAM signal constellation

Description

The RectangularQAMDemodulator object demodulates a signal that was modulated
using quadrature amplitude modulation with a constellation on a rectangular lattice.

To demodulate a signal that was modulated using quadrature amplitude modulation:

1 Define and set up your rectangular QAM demodulator object. See “Construction” on
page 3-1448.

2 Call step to demodulate the signal according to the properties of
comm.RectangularQAMDemodulator. The behavior of step is specific to each
object in the toolbox.

Construction

H = comm.RectangularQAMDemodulator creates a demodulator System object, H.
This object demodulates the input signal using the rectangular quadrature amplitude
modulation (QAM) method.

H = comm.RectangularQAMDemodulator(Name,Value) creates a rectangular
QAM demodulator object, H, with each specified property set to the specified
value. You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

H = comm.RectangularQAMDemodulator(M,Name,Value) creates a rectangular
QAM demodulator object, H. This object has the ModulationOrder property set to M,
and the other specified properties set to the specified values.

Properties

ModulationOrder

 comm.RectangularQAMDemodulator System object

3-1449

Number of points in signal constellation

Specify the number of points in the signal constellation as scalar value with a positive,
integer power of two. The default is 16.

PhaseOffset

Phase offset of constellation

Specify the phase offset of the signal constellation, in radians, as a real scalar value. The
default is 0.

BitOutput

Output data as bits

Specify whether the output consists of groups of bits or integer symbol values. When you
set this property to true the step method outputs a column vector of bit values whose
length equals log2(“ModulationOrder”) times the number of demodulated symbols.
When you set this property to false, the step method outputs a column vector with a
length equal to the input data vector. This vector contains integer symbol values between
0 and ModulationOrder-1. The default is false.

SymbolMapping

Constellation encoding

Specify how the object maps an integer or group of log2(“ModulationOrder”) bits to the
corresponding symbol as one of Binary | Gray | Custom. The default is Gray. When you
set this property to Gray, the object uses a Gray-coded signal constellation. When you
set this property to Binary, the object uses a natural binary-coded constellation. When
you set this property to Custom, the object uses the signal constellation defined in the
“CustomSymbolMapping” property.

CustomSymbolMapping

Custom constellation encoding

Specify a custom constellation symbol mapping vector. The default is 0:15. This property
is a row or column vector with a size of “ModulationOrder” and with unique integer
values in the range [0, ModulationOrder-1]. The values must be of data type double.
The first element of this vector corresponds to the top-leftmost point of the constellation,
with subsequent elements running down column-wise, from left to right. The last

3 Alphabetical List

3-1450

element corresponds to the bottom-rightmost point. This property applies when you set
the “SymbolMapping” property to Custom.

NormalizationMethod

Constellation normalization method

Specify the method used to normalize the signal constellation as Minimum distance
between symbols | Average power | Peak power. The default is Minimum
distance between symbols.

MinimumDistance

Minimum distance between symbols

Specify the distance between two nearest constellation points as a positive, real,
numeric scalar value. The default is 2. This property applies when you set the
“NormalizationMethod” property to Minimum distance between symbols.

AveragePower

Average power of constellation

Specify the average power of the symbols in the constellation as a positive, real,
numeric scalar value. The default is 1. This property applies when you set the
“NormalizationMethod” property to Average power.

PeakPower

Peak power of constellation

Specify the maximum power of the symbols in the constellation as a positive, real,
numeric scalar value. The default is 1. This property applies when you set the
“NormalizationMethod” property to Peak power.

DecisionMethod

Demodulation decision method

Specify the decision method the object uses as Hard decision | Log-likelihood
ratio | Approximate log-likelihood ratio. The default is Hard decision.
When you set the “BitOutput” property to false the object always performs hard-
decision demodulation. This property applies when you set the BitOutput property to
true.

 comm.RectangularQAMDemodulator System object

3-1451

VarianceSource

Source of noise variance

Specify the source of the noise variance as Property | Input port. The default is
Property. This property applies when you set the “BitOutput” property to true and
the “DecisionMethod” property to Log-likelihood ratio or Approximate log-
likelihood ratio.

Variance

Noise variance

Specify the variance of the noise as a positive, real scalar value. The default is 1. If
this value is very small (i.e., SNR is very high), log-likelihood ratio (LLR) computations
may yield Inf or -Inf. This result occurs because the LLR algorithm computes the
exponential of very large or very small numbers using finite-precision arithmetic. In such
cases, using approximate LLR is recommended because its algorithm does not compute
exponentials. This property applies when you set the “BitOutput” property to true,
the “DecisionMethod” property to Log-likelihood ratio or Approximate log-
likelihood ratio, and the “VarianceSource” property to Property. This property
is tunable.

OutputDataType

Data type of output

Specify the output data type as Full precision | Smallest unsigned integer |
double | single | int8 | uint8 | int16 | uint16 | int32 | uint32. The default is
Full precision.

This property applies only when you set the “BitOutput” property to false or when
you set the BitOutput property to true and the “DecisionMethod” property to
Hard decision. In this case, when the “OutputDataType” property is set to Full
precision, and the input data type is single- or double-precision, the output data has
the same data type as the input.

When the input data is of a fixed-point type, the output data type behaves as if you had
set the OutputDataType property to Smallest unsigned integer.

When you set the BitOutput property to true and the DecisionMethod property to
Hard Decision, then logical data type becomes a valid option.

3 Alphabetical List

3-1452

When you set the BitOutput property to true and the DecisionMethod property to
Log-likelihood ratio or Approximate log-likelihood ratio, the output data
type is the same as that of the input. In this case, that data type can only be single- or
double-precision.

Fixed-Point Properties

FullPrecisionOverride

Full precision override for fixed-point arithmetic

Specify whether to use full precision rules. If you set FullPrecisionOverride to
true, which is the default, the object computes all internal arithmetic and output
data types using full precision rules. These rules provide the most accurate fixed-point
numerics. It also turns off the display of other fixed-point properties because they do
not apply individually. These rules guarantee that no quantization occurs within the
object. Bits are added, as needed, to ensure that no roundoff or overflow occurs. If you
set FullPrecisionOverride to false, fixed-point data types are controlled through
individual fixed-point property settings. For more information, see “Full Precision for
Fixed-Point System Objects”.

DerotateFactorDataType

Data type of derotate factor

Specify the derotate factor data type as Same word length as input | Custom.
The default is Same word length as input. This property applies when you set the
“BitOutput” property to false, or when you set the BitOutput property to true and the
“DecisionMethod” property to Hard decision. The object uses the derotate factor
in the computations only when the step method input is of a fixed-point type and the

“PhaseOffset” property has a value that is not a multiple of p

2
.

CustomDerotateFactorDataType

Fixed-point data type of derotate factor

Specify the derotate factor fixed-point type as an unscaled numerictype object with a
signedness of Auto. The default is numerictype([],16). This property applies when
you set the “DerotateFactorDataType” property to Custom.

 comm.RectangularQAMDemodulator System object

3-1453

DenormalizationFactorDataType

Data type of denormalization factor

Specify the denormalization factor data type as Same word length as input |
Custom. The default is Same word length as input. This property applies when you
set the “BitOutput” property to false or when you set the BitOutput property to true
and the “DecisionMethod” property to Hard decision.

CustomDenormalizationFactorDataType

Fixed-point data type of denormalization factor

Specify the denormalization factor fixed-point type as an unscaled numerictype object
with a signedness of Auto. The default is numerictype([],16). This property applies
when you set the “DenormalizationFactorDataType” property to Custom.

ProductDataType

Data type of product

Specify the product data type as Full precision | Custom. The default is Full
precision. This property applies when you set the “BitOutput” property to false or
when you set the BitOutput property to true and the “DecisionMethod” property to
Hard decision.

CustomProductDataType

Fixed-point data type of product

Specify the product fixed-point type as an unscaled numerictype object with a
signedness of Auto. The default is numerictype([],32). This property applies when
you set the “ProductDataType” property to Custom.

ProductRoundingMethod

Rounding of fixed-point numeric value of product

Specify the product rounding method as Ceiling | Convergent | Floor | Nearest |
Round | Simplest | Zero. The default is Floor. This property applies when the object
is not in a full precision configuration, when you set the “BitOutput” property to false
or when you set the BitOutput property to true and the “DecisionMethod” property
to Hard decision.

3 Alphabetical List

3-1454

ProductOverflowAction

Action when fixed-point numeric value of product overflows

Specify the product overflow action as Wrap | Saturate. The default is Wrap. This
property applies when the object is not in a full precision configuration, when you set the
“BitOutput” property to false or when you set the BitOutput property to true and
the “DecisionMethod” property to Hard decision.

SumDataType

Data type of sum

Specify the sum data type as Full precision | Same as product | Custom.
The default is Full precision. This property applies when you set the
“FullPrecisionOverride” property to false, when you set the “BitOutput” property
to false or when you set the BitOutput property to true and the “DecisionMethod”
property to Hard decision.

CustomSumDataType

Fixed-point data type of sum

Specify the sum fixed-point type as an unscaled numerictype object with a signedness
of Auto. The default is numerictype([],32). This property applies when you set the
“FullPrecisionOverride” property to false or when you set the “SumDataType”
property Custom.

Methods

clone
Create rectangular QAM demodulator
object with same property values

constellation
Calculate or plot ideal signal constellation

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

 comm.RectangularQAMDemodulator System object

3-1455

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

step
Demodulate using rectangular QAM
method

Examples

Modulate and Demodulate Data Using 16-QAM

This example shows how to modulate and demodulate data using 16-QAM modulation.

Create rectangular QAM modulator and demodulator objects with the modulation order
set to 16.

hMod = comm.RectangularQAMModulator('ModulationOrder',16);

hDemod = comm.RectangularQAMDemodulator('ModulationOrder',16);

Create an AWGN channel object.

hAWGN = comm.AWGNChannel('EbNo',2,'BitsPerSymbol',4);

To track the number of errors, create an error rate counter object.

hError = comm.ErrorRate;

Set the random number generator to its default state to ensure repeatability.

rng default

Generate random data symbols and apply 16-QAM modulation.

dataIn = randi([0 15],10000,1);

txSig = step(hMod,dataIn);

Pass the modulated data through the AWGN channel.

rxSig = step(hAWGN,txSig);

3 Alphabetical List

3-1456

Display the noisy constellation using the scatterplot function.

scatterplot(rxSig)

Demodulate the received data symbols.

 comm.RectangularQAMDemodulator System object

3-1457

dataOut = step(hDemod,rxSig);

Using the step function of hError, calculate the error statistics.

errorStats = step(hError,dataIn,dataOut);

Display the error statistics, where you can observe that 8 errors were recorded in 10,000
transmitted symbols.

fprintf('\nError rate = %f\nNumber of errors = %d\nNumber of symbols = %d\n', ...

errorStats)

Error rate = 0.000800

Number of errors = 8

Number of symbols = 10000

Algorithms

This object implements the algorithm, inputs, and outputs described on the Rectangular
QAM Demodulator Baseband block reference page. The object properties correspond to
the block parameters.

See Also
comm.RectangularQAMModulator | comm.GeneralQAMDemodulator

3 Alphabetical List

3-1458

clone
System object: comm.RectangularQAMDemodulator
Package: comm

Create rectangular QAM demodulator object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a RectangularQAMDemodulator object C, with the same
property values as H. The clone method creates a new unlocked object with uninitialized
states.

 constellation

3-1459

constellation

System object: comm.RectangularQAMDemodulator
Package: comm

Calculate or plot ideal signal constellation

Syntax

y = constellation(h)

constellation(h)

Description

y = constellation(h) returns the numerical values of the constellation.

constellation(h) generates a constellation plot for the object.

Examples

Calculate Ideal Signal Constellation for
comm.RectangularQAMDemodulator

Create a comm.RectangularQAMDemodulator System object, and then calculate its
ideal signal constellation.

Create a comm.RectangularQAMDemodulator System object by entering the following
at the MATLAB command line:

h = comm.RectangularQAMDemodulator

Calculate and display the ideal signal constellation by calling the constellation
method.

3 Alphabetical List

3-1460

a = constellation(h)

Plot Ideal Signal Constellation for comm.RectangularQAMDemodulator

Create a comm.RectangularQAMDemodulator System object, and then plot the ideal
signal constellation.

Create a comm.RectangularQAMDemodulator System object by entering the following
at the MATLAB command line:

h = comm.RectangularQAMDemodulator

Plot the ideal signal constellation by calling the constellation method.

constellation(h)

 getNumInputs

3-1461

getNumInputs
System object: comm.RectangularQAMDemodulator
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of
expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H)

3 Alphabetical List

3-1462

getNumOutputs
System object: comm.RectangularQAMDemodulator
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

 isLocked

3-1463

isLocked
System object: comm.RectangularQAMDemodulator
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the
RectangularQAMDemodulator System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

3 Alphabetical List

3-1464

release
System object: comm.RectangularQAMDemodulator
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H)Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 step

3-1465

step
System object: comm.RectangularQAMDemodulator
Package: comm

Demodulate using rectangular QAM method

Syntax

Y = step(H,X)

Y = step(H,X,VAR)

Description

Y = step(H,X) demodulates the input data, X, with the rectangular QAM demodulator
System object, H, and returns, Y. Input X must be a scalar or a column vector with double
or single precision data type. When ModulationOrder is an even power of two and you
set the BitOutput property to false or, when you set the DecisionMethod to Hard
decision and the BitOutput property to true, the data type of the input can also be
signed integer, or signed fixed point (fi objects). Depending on the BitOutput property
value, output Y can be integer or bit valued.

Y = step(H,X,VAR) uses soft decision demodulation and noise variance VAR. This
syntax applies when you set the BitOutput property to true, the DecisionMethod
property to Approximate log-likelihood ratioor Log-likelihood ratio, and
the VarianceSource property to Input port. The data type of input VAR must be
double or single precision.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

3 Alphabetical List

3-1466

comm.RectangularQAMModulator System object

Package: comm

Modulate using rectangular QAM signal constellation

Description

The RectangularQAMModulator object modulates using M-ary quadrature amplitude
modulation with a constellation on a rectangular lattice. The output is a baseband
representation of the modulated signal. This block accepts a scalar or column vector
input signal.

To modulate a signal using quadrature amplitude modulation:

1 Define and set up your rectangular QAM modulator object. See “Construction” on
page 3-1466.

2 Call step to modulate the signal according to the properties of
comm.RectangularQAMModulator. The behavior of step is specific to each object
in the toolbox.

Construction

H = comm.RectangularQAMModulator creates a modulator object, H. This object
modulates the input using the rectangular quadrature amplitude modulation (QAM)
method.

H = comm.RectangularQAMModulator(Name,Value) creates a rectangular
QAM modulator object, H, with each specified property set to the specified
value. You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

H = comm.RectangularQAMModulator(M,Name,Value) creates a rectangular QAM
modulator object, H. This object has the ModulationOrder property set to M, and the
other specified properties set to the specified values.

 comm.RectangularQAMModulator System object

3-1467

Properties
ModulationOrder

Number of points in signal constellation

Specify the number of points in the signal constellation as scalar value that is a positive
integer power of two. The default is 16.

PhaseOffset

Phase offset of constellation

Specify the phase offset of the signal constellation, in radians, as a real scalar value. The
default is 0.

BitInput

Assume bit inputs

Specify whether the input is bits or integers. The default is false. When you set this
property to true, the step method input requires a column vector of bit values. The
length of this vector must an integer multiple of log2(“ModulationOrder”). This vector
contains bit representations of integers between 0 and ModulationOrder–1. When you
set this property to false, the step method input must be a column vector of integer
symbol values between 0 and ModulationOrder–1.

SymbolMapping

Constellation encoding

Specify how the object maps an integer or group of log2(“ModulationOrder”) input bits
to the corresponding symbol as Binary | Gray | Custom. The default is Gray. When you
set this property to Gray, the System object uses a Gray-coded signal constellation. When
you set this property to Binary, the object uses a natural binary-coded constellation.
When you set this property to Custom, the object uses the signal constellation defined in
the “CustomSymbolMapping” property.

CustomSymbolMapping

Custom constellation encoding

Specify a custom constellation symbol mapping vector. The default is 0:15. This property
is a row or column vector with a size of “ModulationOrder”. This vector has unique

3 Alphabetical List

3-1468

integer values in the range [0, ModulationOrder–1]. These values must be of data
type double. The first element of this vector corresponds to the top-leftmost point of the
constellation, with subsequent elements running down column-wise, from left to right.
The last element corresponds to the bottom-rightmost point. This property applies when
you set the “SymbolMapping” property to Custom.

NormalizationMethod

Constellation normalization method

Specify the method used to normalize the signal constellation as Minimum distance
between symbols | Average power | Peak power. The default is Minimum
distance between symbols.

MinimumDistance

Minimum distance between symbols

Specify the distance between two nearest constellation points as a positive, real,
numeric scalar value. The default is 2. This property applies when you set the
“NormalizationMethod” property to Minimum distance between symbols.

AveragePower

Average power of constellation

Specify the average power of the symbols in the constellation as a positive, real,
numeric scalar value. The default is 1. This property applies when you set the
“NormalizationMethod” property to Average power.

PeakPower

Peak power of constellation

Specify the maximum power of the symbols in the constellation as a positive real,
numeric scalar value. The default is 1. This property applies when you set the
“NormalizationMethod” property to Peak power.

OutputDataType

Data type of output

Specify the output data type as double | single | Custom. The default is double.

 comm.RectangularQAMModulator System object

3-1469

Fixed-Point Properties

CustomOutputDataType

Fixed-point data type of output

Specify the output fixed-point type as a numerictype object with a signedness of
Auto. The default is numerictype([],16). This property applies when you set the
“OutputDataType” property to Custom.

Methods

clone
Create rectangular QAM modulator object
with same property values

constellation
Calculate or plot ideal signal constellation

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

step
Modulate using rectangular QAM method

Examples

Modulate Data with 64-QAM

This example shows how to modulate binary data with a 64-QAM System object and to
view the resultant constellation.

3 Alphabetical List

3-1470

Generate random binary data. As there are 6 bits/symbol in 64-QAM, the number of bits
input to the modulator must be a multiple of 6.

data = randi([0 1],6000,1);

Create a 64-QAM modulator object that accepts binary input.

hMod = comm.RectangularQAMModulator('ModulationOrder',64,'BitInput',true);

Modulate the data using the step function.

dataMod = step(hMod,data);

Plot the modulated data using the scatterplot function.

scatterplot(dataMod)

 comm.RectangularQAMModulator System object

3-1471

Algorithms
This object implements the algorithm, inputs, and outputs described on the Rectangular
QAM Modulator Baseband block reference page. The object properties correspond to the
block parameters.

3 Alphabetical List

3-1472

See Also
comm.RectangularQAMDemodulator | comm.GeneralQAMModulator

 clone

3-1473

clone
System object: comm.RectangularQAMModulator
Package: comm

Create rectangular QAM modulator object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a RectangularQAMModulator object C, with the same property
values as H. The clone method creates a new unlocked object with uninitialized states.

3 Alphabetical List

3-1474

constellation

System object: comm.RectangularQAMModulator
Package: comm

Calculate or plot ideal signal constellation

Syntax

y = constellation(h)

constellation(h)

Description

y = constellation(h) returns the numerical values of the constellation.

constellation(h) generates a constellation plot for the object.

Examples

Calculate Ideal Signal Constellation for comm.RectangularQAMModulator

Create a comm.RectangularQAMModulator System object, and then calculate its ideal
signal constellation.

Create a comm.RectangularQAMModulator System object by entering the following at
the MATLAB command line:

h = comm.RectangularQAMModulator

Calculate and display the ideal signal constellation by calling the constellation
method.

 constellation

3-1475

a = constellation(h)

Plot Ideal Signal Constellation for comm.RectangularQAMModulator

Create a comm.RectangularQAMModulator System object, and then plot the ideal
signal constellation.

Create a comm.RectangularQAMModulator System object by entering the following at
the MATLAB command line:

h = comm.RectangularQAMModulator

Plot the ideal signal constellation by calling the constellation method.

constellation(h)

3 Alphabetical List

3-1476

getNumInputs
System object: comm.RectangularQAMModulator
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of
expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H)

 getNumOutputs

3-1477

getNumOutputs
System object: comm.RectangularQAMModulator
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

3 Alphabetical List

3-1478

isLocked
System object: comm.RectangularQAMModulator
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the RectangularQAMModulator
System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

 release

3-1479

release
System object: comm.RectangularQAMModulator
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H)Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

3 Alphabetical List

3-1480

step
System object: comm.RectangularQAMModulator
Package: comm

Modulate using rectangular QAM method

Syntax

Y = step(H,X)

Description

Y = step(H,X) modulates input data, X, with the rectangular QAM modulator object,
H. It returns the baseband modulated output, Y. Depending on the value of the BitInput
property, input X can be an integer or bit valued column vector with numeric, logical, or
fixed-point data types.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

 comm.RectangularQAMTCMDemodulator System object

3-1481

comm.RectangularQAMTCMDemodulator System
object
Package: comm

Demodulate convolutionally encoded data mapped to rectangular QAM signal
constellation

Description
The RectangularQAMTCMDemodulator object uses the Viterbi algorithm to decode
a trellis-coded modulation (TCM) signal that was previously modulated using a
rectangular QAM signal constellation.

To demodulate convolutionally encoded data mapped to a rectangular QAM signal
constellation:

1 Define and set up your rectangular QAM TCM demodulator object. See
“Construction” on page 3-1481.

2 Call step to demodulate the signal according to the properties of
comm.RectangularQAMTCMDemodulator. The behavior of step is specific to each
object in the toolbox.

Construction
H = comm.RectangularQAMTCMDemodulator creates a trellis-coded, rectangular,
quadrature amplitude (QAM TCM) demodulator System object, H. This object
demodulates convolutionally encoded data that has been mapped to a rectangular QAM
constellation.

H = comm.RectangularQAMTCMDemodulator(Name,Value) creates a rectangular,
QAM TCM, demodulator object, H, with each specified property set to the specified
value. You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

H = comm.RectangularQAMTCMDemodulator(TRELLIS,Name,Value) creates a
rectangular QAM TCM demodulator object, H. This object has the TrellisStructure
property set to TRELLIS, and the other specified properties set to the specified values.

3 Alphabetical List

3-1482

Properties

TrellisStructure

Trellis structure of convolutional code

Specify trellis as a MATLAB structure that contains the trellis description of the
convolutional code. Use the istrellis function to check whether a structure is a valid
trellis. The default is the result of poly2trellis([3 1 1], [5 2 0 0; 0 0 1 0;
0 0 0 1]).

TerminationMethod

Termination method of encoded frame

Specify the termination method as Continuous | Truncated | Terminated. The
default is Continuous.

When you set this property to Continuous, the object saves the internal state metric at
the end of each frame. The next frame uses the same state metric. The object treats each
traceback path independently. If the input signal contains only one symbol, you should
use Continuous mode.

When you set this property to Truncated, the object treats each input vector
independently. The traceback path starts at the state with the best metric and always
ends in the all-zeros state.

When you set this property to Terminated, the object treats each input vector
independently, and the traceback path always starts and ends in the all-zeros state.

TracebackDepth

Traceback depth for Viterbi decoder

Specify the scalar, integer number of trellis branches to construct each traceback path.
The default is 21. The Traceback depth parameter influences the decoding accuracy and
delay. The decoding delay is the number of zero symbols that precede the first decoded
symbol in the output.

When you set the “TerminationMethod” property to Continuous, the decoding delay
consists of TracebackDepth zero symbols or TracebackDepth ¥ K zero bits for a rate K/N
convolutional code.

 comm.RectangularQAMTCMDemodulator System object

3-1483

When you set the TerminationMethod property to Truncated or Terminated, no
output delay occurs and the traceback depth must be less than or equal to the number of
symbols in each input vector.

ResetInputPort

Enable demodulator reset input

Set this property to true to enable an additional input to the step method. The
default is false. When this additional reset input is a nonzero value, the internal
states of the encoder reset to initial conditions. This property applies when you set the
“TerminationMethod” property to Continuous.

ModulationOrder

Number of points in signal constellation

Specify the number of points in the signal constellation used to map the convolutionally
encoded data as a positive, integer scalar value. The number of points must be 4, 8,
16, 32, or 64. The default is 16. The “ModulationOrder” property value must equal
the number of possible input symbols to the convolutional decoder of the rectangular
QAM TCM demodulator object. The ModulationOrder must equal 2N for a rate K/N
convolutional code.

OutputDataType

Data type of output

Specify output data type as logical | double. The default is double.

Methods

clone
Create rectangular QAM TCM demodulator
object with same property values

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

3 Alphabetical List

3-1484

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

reset
Reset states of the rectangular QAM TCM
demodulator object

step
Demodulate convolutionally encoded data
mapped to rectangular QAM constellation

Examples

Modulate and Demodulate Using Rectangular 16-QAM TCM

Modulate and demodulate data using 16-QAM TCM in an AWGN channel. Estimate the
BER.

Create QAM TCM modulator and demodulator System objects™.

hMod = comm.RectangularQAMTCMModulator;

hDemod = comm.RectangularQAMTCMDemodulator('TracebackDepth',16);

Create an AWGN channel object.

hAWGN = comm.AWGNChannel('EbNo',5);

Determine the delay through the QAM TCM demodulator. The demodulator uses the
Viterbi algorithm to decode the TCM signal that was modulated using rectangular QAM.
To accurately calculate the bit error rate, the delay through the decoder must be known.

bitsPerSymbol = log2(hDemod.TrellisStructure.numInputSymbols);

delay = hDemod.TracebackDepth*bitsPerSymbol;

Create an error rate calculator object with the ReceiveDelay property set to delay.

hErrorCalc = comm.ErrorRate('ReceiveDelay',delay);

 comm.RectangularQAMTCMDemodulator System object

3-1485

Generate binary data and modulate with 16-QAM TCM. Pass the signal through an
AWGN channel and demodulate. Calculate the error statistics. The loop runs until either
100 bit errors are encountered or 1e7 total bits are transmitted.

% Initialize the error results vector.

errStats = [0 0 0];

while errStats(2) < 100 && errStats(3) < 1e7

 % Transmit frames of 200 3-bit symbols

 txData = randi([0 1],600,1);

 % Modulate

 txSig = step(hMod,txData);

 % Pass through AWGN channel

 rxSig = step(hAWGN,txSig);

 % Demodulate

 rxData = step(hDemod,rxSig);

 % Collect error statistics

 errStats = step(hErrorCalc,txData,rxData);

end

Display the error data.

fprintf('Error rate = %4.2e\nNumber of errors = %d\n', ...

 errStats(1),errStats(2))

Error rate = 1.94e-03

Number of errors = 100

Algorithms

This object implements the algorithm, inputs, and outputs described on the Rectangular
QAM TCM Decoder block reference page. The object properties correspond to the block
parameters.

See Also
comm.ViterbiDecoder | comm.RectangularQAMTCMModulator |
comm.GeneralQAMTCMDemodulator

3 Alphabetical List

3-1486

clone
System object: comm.RectangularQAMTCMDemodulator
Package: comm

Create rectangular QAM TCM demodulator object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a RectangularQAMTCMDemodulator object C, with the same
property values as H. The clone method creates a new unlocked object with uninitialized
states.

 getNumInputs

3-1487

getNumInputs
System object: comm.RectangularQAMTCMDemodulator
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of
expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H)

3 Alphabetical List

3-1488

getNumOutputs
System object: comm.RectangularQAMTCMDemodulator
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

 isLocked

3-1489

isLocked
System object: comm.RectangularQAMTCMDemodulator
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the
RectangularQAMTCMDemodulator System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

3 Alphabetical List

3-1490

release
System object: comm.RectangularQAMTCMDemodulator
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H)Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 reset

3-1491

reset
System object: comm.RectangularQAMTCMDemodulator
Package: comm

Reset states of the rectangular QAM TCM demodulator object

Syntax

reset(H)

Description

reset(H) resets the states of the RectangularQAMTCMDemodulator object, H.

3 Alphabetical List

3-1492

step
System object: comm.RectangularQAMTCMDemodulator
Package: comm

Demodulate convolutionally encoded data mapped to rectangular QAM constellation

Syntax

Y = step(H,X)

Y = step(H,X,R)

Description

Y = step(H,X) demodulates the rectangular QAM modulated input data, X, and uses
the Viterbi algorithm to decode the resulting demodulated, convolutionally encoded bits.
X must be a complex, double or single precision column vector. The step method outputs
a demodulated, binary data column vector, Y. When the convolutional encoder represents
a rate K/N code, the length of the output vector is K*L, where L is the length of the input
vector, X.

Y = step(H,X,R) resets the decoder to the all-zeros state when you input a reset
signal, R that is non-zero. R must be a double precision or logical, scalar integer. This
syntax applies when you set the ResetInputPort property to true.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

 comm.RectangularQAMTCMModulator System object

3-1493

comm.RectangularQAMTCMModulator System object

Package: comm

Convolutionally encode binary data and map using rectangular QAM signal constellation

Description

The RectangularQAMTCMModulator object implements trellis-coded modulation
(TCM) by convolutionally encoding the binary input signal and mapping the result to a
rectangular QAM signal constellation.

To convolutionally encode binary data and map the result using a rectangular QAM
constellation:

1 Define and set up your rectangular QAM TCM modulator object. See “Construction”
on page 3-1493.

2 Call step to modulate the signal according to the properties of
comm.RectangularQAMTCMModulator. The behavior of step is specific to each
object in the toolbox.

Construction

H = comm.RectangularQAMTCMModulator creates a trellis-coded, rectangular,
quadrature amplitude (QAM TCM) System object, H. This object convolutionally encodes
a binary input signal and maps the result to a rectangular QAM constellation.

H = comm.RectangularQAMTCMModulator(Name,Value) creates a rectangular
QAM TCM modulator object, H, with each specified property set to the specified
value. You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

H = comm.RectangularQAMTCMModulator(TRELLIS,Name,Value) creates a
rectangular QAM TCM modulator object, H. This object has the TrellisStructure
property set to TRELLIS and the other specified properties set to the specified values.

3 Alphabetical List

3-1494

Properties

TrellisStructure

Trellis structure of convolutional code

Specify trellis as a MATLAB structure that contains the trellis description of the
convolutional code. Use the istrellis function to check whether a structure is a valid
trellis. The default is the result of poly2trellis([3 1 1], [5 2 0 0; 0 0 1 0; 0
0 0 1]).

TerminationMethod

Termination method of encoded frame

Specify the termination method as Continuous | Truncated | Terminated. The
default is Continuous.

When you set this property to Continuous, the object retains the encoder states at the
end of each input vector for use with the next input vector.

When you set this property to Truncated, the object treats each input vector
independently. The encoder is reset to the all-zeros state at the start of each input vector.

When you set this property to Terminated, the object treats each input vector
independently. For each input vector, the object uses extra bits to set the encoder to the
all-zeros state at the end of the vector. For a rate K/N code, the step method outputs the

vector with a length given by y N L S
K

= ¥
+() , where S = constraintLength–1 (or, in the

case of multiple constraint lengths, S = sum(constraintLength(i)–1)). L is the length of
the input to the step method.

ResetInputPort

Enable modulator reset input

Set this property to true to enable an additional input to the step method. The default
is false. When you set the reset input to the step method to a nonzero value, the
object resets the encoder to the all-zeros state. This property applies when you set the
“TerminationMethod” property to Continuous.

ModulationOrder

 comm.RectangularQAMTCMModulator System object

3-1495

Number of points in signal constellation

Specify the number of points in the signal constellation used to map the convolutionally
encoded data as a positive integer scalar value equal to 4, 8, 16, 32, or 64. The default
is 16. The value of the “ModulationOrder” property must equal the number of possible
output symbols from the convolutional encoder of the QAM TCM modulator. Thus, the
value for the ModulationOrder property must equal 2N for a rate K/N convolutional
code.

OutputDataType

Data type of output

Specify the output data type as one of double | single. The default is double.

Methods

clone
Create rectangular QAM TCM modulator
object with same property values

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

reset
Reset states of the rectangular QAM TCM
modulator object

step
Convolutionally encode binary data and
map using rectangular QAM constellation

3 Alphabetical List

3-1496

Examples

Modulate Data Using Rectangular QAM TCM

Modulate data using rectangular 16-QAM TCM modulation and display the scatter plot.

Generate random binary data. The length of the data vector must be an integer multiple
of the number of input streams into the encoder, log2(8) = 3.

data = randi([0 1],3000,1);

Create a modulator System object™ and use its step function to modulate the data.

hMod = comm.RectangularQAMTCMModulator;

modData = step(hMod,data);

Plot the modulated data.

scatterplot(modData)

 comm.RectangularQAMTCMModulator System object

3-1497

Algorithms
This object implements the algorithm, inputs, and outputs described on the Rectangular
QAM TCM Encoder block reference page. The object properties correspond to the block
parameters.

3 Alphabetical List

3-1498

See Also
comm.RectangularQAMTCMDemodulator | comm.GeneralQAMTCMModulator |
comm.ConvolutionalEncoder

 clone

3-1499

clone
System object: comm.RectangularQAMTCMModulator
Package: comm

Create rectangular QAM TCM modulator object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a RectangularQAMTCMModulator object C, with the same
property values as H. The clone method creates a new unlocked object with uninitialized
states.

3 Alphabetical List

3-1500

getNumInputs
System object: comm.RectangularQAMTCMModulator
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of
expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H)

 getNumOutputs

3-1501

getNumOutputs
System object: comm.RectangularQAMTCMModulator
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

3 Alphabetical List

3-1502

isLocked
System object: comm.RectangularQAMTCMModulator
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the
RectangularQAMTCMModulator System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

 release

3-1503

release
System object: comm.RectangularQAMTCMModulator
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H)Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

3 Alphabetical List

3-1504

reset
System object: comm.RectangularQAMTCMModulator
Package: comm

Reset states of the rectangular QAM TCM modulator object

Syntax

reset(H)

Description

reset(H) resets the states of the RectangularQAMTCMModulator object, H.

 step

3-1505

step
System object: comm.RectangularQAMTCMModulator
Package: comm

Convolutionally encode binary data and map using rectangular QAM constellation

Syntax

Y = step(H,X)

Y = step(H,X,R)

Description

Y = step(H,X) convolutionally encodes and modulates the input data numeric or
logical column vector X, and returns the encoded and modulated data, Y. X must be of
data type numeric, logical, or unsigned fixed point of word length 1 (fi object). When the
convolutional encoder represents a rate K/N code, the length of the input vector, X, must
be K ¥ L, for some positive integer L. The step method outputs a complex column vector,
Y, of length L.

Y = step(H,X,R) resets the encoder of the rectangular QAM TCM modulator object to
the all-zeros state when you input a non-zero reset signal, R. R must be a double precision
or logical, scalar integer. This syntax applies when you set the ResetInputPort
property to true.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

3 Alphabetical List

3-1506

comm.RicianChannel System object
Package: comm

Filter input signal through a Rician fading channel

Description
The RicianChannel System object filters an input signal through a Rician multipath
fading channel. The fading processing per link is described in “Methodology for
Simulating Multipath Fading Channels”.

To filter an input signal using a Rician multipath fading channel:

1 Define and set up your Rician channel object. See “Construction” on page 3-1506.
2 Call step to filter the input signal through a Rician multipath fading channel

according to the properties of comm.Ricianhannel. The behavior of step is specific
to each object in the toolbox.

Construction
H = comm.RicianChannel creates a frequency-selective or frequency-flat multipath
Rician fading channel System object, H. This object filters a real or complex input signal
through the multipath channel to obtain the channel impaired signal.

H = comm.RicianChannel(Name,Value) creates a multipath Rician
fading channel object, H, with the specified property Name set to the specified
Value. You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties

SampleRate

Input signal sample rate (hertz)

Specify the sample rate of the input signal in hertz as a double-precision, real, positive
scalar. The default value of this property is 1 Hz.

 comm.RicianChannel System object

3-1507

PathDelays

Discrete path delay vector (seconds)

Specify the delays of the discrete paths in seconds as a double-precision, real, scalar or
row vector. The default value of this property is 0.

When you set PathDelays to a scalar, the channel is frequency flat.

When you set PathDelays to a vector, the channel is frequency selective.

AveragePathGains

Average path gain vector (decibels)

Specify the average gains of the discrete paths in decibels as a double-precision, real,
scalar or row vector. The default value of this property is 0. AveragePathGains must
have the same size as “PathDelays”.

NormalizePathGains

Normalize average path gains to 0 dB

When you set this property to true, the object normalizes the fading processes so that
the total power of the path gains, averaged over time, is 0dB. The default value of this
property is true.

KFactor

Rician K-factor scalar or vector (linear scale)

Specify the K-factor of a Rician fading channel as a double-precision, real, positive scalar
or nonnegative, nonzero row vector of the same length as PathDelays. The default value
of this property is 3.

If KFactor is a scalar, then the first discrete path is a Rician fading process with a
Rician K-factor of KFactor. The remaining discrete paths are independent Rayleigh
fading processes. If KFactor is a row vector, the discrete path corresponding to a
positive element of the KFactor vector is a Rician fading process with a Rician K factor
specified by that element. The discrete path corresponding to a zero-valued element of
the KFactor vector is a Rayleigh fading process.

DirectPathDopplerShift

3 Alphabetical List

3-1508

Doppler shift(s) of line-of-sight component(s) (hertz)

Specify the Doppler shifts for the line-of-sight components of a Rician fading channel in
hertz as a double-precision, real scalar or row vector. The default value of this property is
0.

DirectPathDopplerShift must have the same size as “KFactor”. If
DirectPathDopplerShift is a scalar, this value represents the line-of-sight component
Doppler shift of the first discrete path. This path exhibits a Rician fading process. If
DirectPathDopplerShift is a row vector, the discrete path corresponding to a positive
element of the “KFactor” vector is a Rician fading process. Its line-of-sight component
Doppler shift is specified by the corresponding element of “DirectPathDopplerShift”.

DirectPathInitialPhase

Initial phase(s) of line-of-sight component(s) (radians)

Specify the initial phase(s) of the line-of-sight components of a Rician fading channel in
radians as a double-precision, real scalar or row vector. The default value of this property
is 0.

DirectPathInitialPhase must have the same size as “KFactor”. If
DirectPathInitialPhase is a scalar, this value represents the line-of-sight component
initial phase of the first discrete path. This path exhibits a Rician fading process. If
DirectPathInitialPhase is a row vector, the discrete path corresponding to a positive
element of the “KFactor” vector is a Rician fading process. Its line-of-sight component
initial phase is specified by the corresponding element of DirectPathInitialPhase.

MaximumDopplerShift

Maximum Doppler shift (hertz)

Specify the maximum Doppler shift for all channel paths in hertz as a double-precision,
real, nonnegative scalar. The default value of this property is 0.001 Hz.

The Doppler shift applies to all the paths of the channel. When you set the
MaximumDopplerShift to 0, the channel remains static for the entire input. You can
use the reset method to generate a new channel realization.

The MaximumDopplerShift must be smaller than SampleRate/10/fc for each path,
where fc represents the cutoff frequency factor of the path. For a Doppler spectrum type
other than Gaussian and bi-Gaussian, fc is 1. For Gaussian and bi-Gaussian Doppler

 comm.RicianChannel System object

3-1509

spectrum types, fc is dependent on the Doppler spectrum object properties. Refer to the
algorithm section of the comm.MIMOChannel for more details about how fc is defined.

DopplerSpectrum

Doppler spectrum

Specify the Doppler spectrum shape for the path(s) of the channel. This property accepts
a single Doppler spectrum structure returned from the doppler function or a row cell
array of such structures. The maximum Doppler shift value necessary to specify the
Doppler spectrum/spectra is given by the “MaximumDopplerShift” property. This
property applies when the “MaximumDopplerShift” property value is greater than 0.
The default value of this property is doppler('Jakes').

If you assign a single Doppler spectrum structure to DopplerSpectrum, all paths have
the same specified Doppler spectrum. If the FadingTechnique property is Sum of
sinusoids, DopplerSpectrum must be doppler('Jakes'); otherwise, select from the
following:

• doppler('Jakes')

• doppler('Flat')

• doppler('Rounded', ...)

• doppler('Bell', ...)

• doppler('Asymmetric Jakes', ...)

• doppler('Restricted Jakes', ...)

• doppler('Gaussian', ...)

• doppler('BiGaussian', ...)

If you assign a row cell array of different Doppler spectrum structures (which can be
chosen from any of those on the previous list) to DopplerSpectrum, each path has the
Doppler spectrum specified by the corresponding structure in the cell array. In this case,
the length of DopplerSpectrum must be equal to the length of “PathDelays”.

To generate C code, specify this property to a single Doppler spectrum structure.

FadingTechnique

Fading technique used to model the channel

Select between Filtered Gaussian noise and Sum of sinusoids to specify the
way in which the channel is modeled. The default value is Filtered Gaussian noise.

3 Alphabetical List

3-1510

NumSinusoids

Number of sinusoids used to model the fading process

The NumSinuoids property is a positive integer scalar that specified the number
of sinusoids used in modeling the channel and is available only when the
FadingTechnique property is set to Sum of sinusoids. The default value is 48.

InitialTimeSource

Source to control the start time of the fading process

Specify the initial time source as either Property or Input port. This property is
available when the FadingTechnique property is set to Sum of sinusoids. When
InitialTimeSource is set to Input port, the start time of the fading process is
specified using the INITIALTIME input to the step function. The input value can change
in consecutive calls to the step function. The default value is Property.

InitialTime

Start time of the fading process

Specify the time offset of the fading process. The InitialTime property is specified
in seconds and is a real nonnegative scalar. This property is available when the
FadingTechnique property is set to Sum of sinusoids and the InitialTimeSource
property is set to Property. The default value is 0.

RandomStream

Source of random number stream

Specify the source of random number stream as one of Global stream | mt19937ar
with seed. The default value of this property is Global stream.

If you set RandomStream to Global stream, the current global random number stream
is used for normally distributed random number generation. In this case, the reset
method only resets the filters.

If you set RandomStream to mt19937ar with seed, the mt19937ar algorithm is used
for normally distributed random number generation. In this case, the reset method not
only resets the filters, but also reinitializes the random number stream to the value of
the “Seed” property.

 comm.RicianChannel System object

3-1511

Seed

Initial seed of mt19937ar random number stream

Specify the initial seed of an mt19937ar random number generator algorithm as a
double-precision, real, nonnegative integer scalar. The default value of this property is
73. This property applies when you set the “RandomStream” property to mt19937ar
with seed. The Seed reinitializes the mt19937ar random number stream in the reset
method.

PathGainsOutputPort

Output channel path gains

Set this property to true to output the channel path gains of the underlying fading
process. The default value of this property is false.

Visualization

Enable channel visualization

Specify the type of channel visualization to display as one of Off | Impulse response
| Frequency response | Impulse and frequency responses | Doppler
spectrum. The default value of this property is Off.

SamplesToDisplay

Specify percentage of samples to display

You can specify the percentage of samples to display, since displaying fewer samples will
result in better performance at the expense of lower accuracy. Specify the property as
one of 10% | 25% | 50% | 100%. This applies when Visualization is set to Impulse
response, Frequency response, or Impulse and frequency responses. The
default value is 25%.

PathsForDopplerDisplay

Specify path for Doppler display

You can specify an integer scalar which selects the discrete path used in constructing
a Doppler spectrum plot. The specified path must be an element of {1, 2, ..., Np}, where
Np is the number of discrete paths per link specified in the object. This property applies
when Visualization is set to Doppler spectrum. The default value is 1.

3 Alphabetical List

3-1512

Methods

clone
Create RicianChannel object with same
property values

isLocked
Locked status for input attributes and
nontunable properties

info
Characteristic information about Rician
Channel

release
Allow property value and input
characteristics changes

reset
Reset states of the RicianChannel object

step
Filter input signal through multipath
Rician fading channel

Visualization

Impulse Response

The impulse response plot displays the path gains, the channel filter coefficients, and the
interpolated path gains. The path gains shown in magenta occur at time instances which
correspond to the specified PathDelays property and may not be aligned with the input
sampling time. The channel filter coefficients shown in yellow are used to model the
channel. They are interpolated from the actual path gains and are aligned with the input
sampling time. In cases in which the path gains are aligned with the sampling time, they
will overlap the filter coefficients. Sinc interpolation is used to connect the channel filter
coefficients and is shown in blue. These points are used solely for display purposes and
not used in subsequent channel filtering. For a flat fading channel (one path), the sinc
interpolation curve is not displayed. For all impulse response plots, the frame and sample
numbers are shown in the display’s upper left corner.

 comm.RicianChannel System object

3-1513

The impulse response plot shares the same toolbar and menus as the System object it
was based on, dsp.ArrayPlot.

In the figure, the impulse response of a channel is shown for the case in which the path
gains are aligned with the sample time. The overlap between the path gains and filter
coefficients is evident.

The case in which the specified path gains are not aligned with the SampleRate property
is shown below. Observe that the path gains and the channel filter coefficients do not
overlap and that the filter coefficients are equally distributed.

3 Alphabetical List

3-1514

The impulse response for a frequency flat channel is shown below. You can see that the
interpolated path gains are not displayed.

 comm.RicianChannel System object

3-1515

Note:

• The displayed and specified path gain locations can differ by as much as 5% of the
input sample time.

• The visualization display speed is controlled by the combination of the
SamplesToDisplay property and the Reduce Updates to Improve Performance
menu item. Reducing the percentage of samples to display and the enabling reduced
updates will speed up the rendering of the impulse response.

• After the impulse response plots are manually closed, the step call for the Rician
channel object will be executed at its normal speed.

• Code generation is available only when the Visualization property is Off.

3 Alphabetical List

3-1516

Frequency Response

The frequency response plot displays the Rician channel spectrum by taking a
discrete Fourier transform of the channel filter coefficients. The frequency response
plot shares the same toolbar and menus as the System object it was based on,
dsp.SpectrumAnalyzer. The default parameter settings are shown below. These
parameters can be changed from their default values by using the View > Spectrum
Settings menu.

Parameter Value

Window Rectangular

WindowLength Channel filter length
FFTLength 512
PowerUnits dBW

YLimits Based on NormalizePathGains and
AveragePathGains properties

The frequency response plot for a frequency selective channel is shown.

 comm.RicianChannel System object

3-1517

Note:

• The visualization display speed is controlled by the combination of the
SamplesToDisplay property and the Reduce Plot Rate to Improve

Performance menu item. Reducing the percentage of samples to display and the
enabling reduced updates will speed up the rendering of the frequency response.

• After the frequency response plots are manually closed, the step call for the Rician
channel object will be executed at its normal speed.

• Code generation is available only when the Visualization property is Off.

3 Alphabetical List

3-1518

Doppler Spectrum

The Doppler spectrum plot displays both the theoretical Doppler spectrum and the
empirically determined data points. The theoretical data is displayed as a yellow line
for the case of non-static channels and as a yellow point for static channels, while the
empirical data is shown in blue. There is an internal buffer which must be completely
filled with filtered Gaussian samples before the empirical plot is updated. The empirical
plot is the running mean of the spectrum calculated from each full buffer. For non-static
channels, the number of input samples needed before the next update is displayed in
the upper left hand corner. The samples needed is a function of the sample rate and the
maximum Doppler shift. For static channels, the text Reset fading channel for
next update is displayed.

 comm.RicianChannel System object

3-1519

Note:

• After the Doppler spectrum plots are manually closed, the step call for the Rician
channel object will be executed at its normal speed.

• Code generation is available only when the Visualization property is Off.

Examples

Produce the Same Rican Channel Output Using Different Random Number Generation Methods

The Rician Channel System object™ has two methods for random number generation.
You can use the current global stream or the mt19937ar algorithm with a specified seed.
By interacting with the global stream, the object can produce the same outputs from the
two methods.

Create a PSK Modulator System object to modulate randomly generated data.

3 Alphabetical List

3-1520

hMod = comm.PSKModulator;

channelInput = step(hMod,randi([0 hMod.ModulationOrder-1],1024,1));

Create a Rician channel System object. Set the RandomStream property to mt19937ar
with seed using a name-value pair. Set the random number seed to 73.

hRicianChan = comm.RicianChannel(...

 'SampleRate',1e6,...

 'PathDelays',[0.0 0.5 1.2]*1e-6,...

 'AveragePathGains',[0.1 0.5 0.2],...

 'KFactor',2.8,...

 'DirectPathDopplerShift',5.0,...

 'DirectPathInitialPhase',0.5,...

 'MaximumDopplerShift',50,...

 'DopplerSpectrum',doppler('Bell', 8),...

 'RandomStream','mt19937ar with seed', ...

 'Seed',73, ...

 'PathGainsOutputPort',true);

Filter the modulated data using the Rician channel System object, hRicianChan.

[RicianChanOut1, RicianPathGains1] = step(hRicianChan,channelInput);

Set the object to use the global stream for random number generation.

release(hRicianChan);

hRicianChan.RandomStream = 'Global stream';

Set the global stream to use the same seed that was specified for hRicianChan.

rng(73)

Filter the modulated data using hRicianChan for the the case where the channel uses
the global random number generator.

[RicianChanOut2,RicianPathGains2] = step(hRicianChan,channelInput);

Verify that the channel and path gain outputs are the same for two step calls.

isequal(RicianChanOut1,RicianChanOut2)

isequal(RicianPathGains1,RicianPathGains2)

ans =

 comm.RicianChannel System object

3-1521

 1

ans =

 1

Display Impulse and Frequency Responses of a Rician Channel

This example shows how to create a frequency selective Rician channel and display its
impulse and frequency responses.

Set the sample rate to 3.84 MHz and specify path delays and gains using ITU pedestrian
B channel parameters. Set the Rician K-factor to 10 and the maximum Doppler shift to
50 Hz.

fs = 3.84e6; % Hz

pathDelays = [0 200 800 1200 2300 3700]*1e-9; % sec

avgPathGains = [0 -0.9 -4.9 -8 -7.8 -23.9]; % dB

fD = 50; % Hz

Create a Rician channel System object with the previously defined parameters and set
the Visualization property to Impulse and frequency responses using name-
value pairs.

h = comm.RicianChannel('SampleRate',fs, ...

 'PathDelays',pathDelays, ...

 'AveragePathGains',avgPathGains, ...

 'KFactor',10, ...

 'MaximumDopplerShift',fD, ...

 'Visualization','Impulse and frequency responses');

Generate random binary data and pass it through the Rician channel using the step
function. The impulse response plot allows you to easily identify the individual paths and
their corresponding filter coefficients. The frequency selective nature of the pedestrian B
channel is shown by the frequency response plot.

x = randi([0 1],1000,1);

y = step(h,x);

3 Alphabetical List

3-1522

 comm.RicianChannel System object

3-1523

Selected Bibliography

[1] Oestges, C., and B. Clerckx. MIMO Wireless Communications: From Real-World
Propagation to Space-Time Code Design, Academic Press, 2007.

3 Alphabetical List

3-1524

[2] Correira, L. M. Mobile Broadband Multimedia Networks: Techniques, Models and
Tools for 4G, Academic Press, 2006.

[3] Kermoal, J. P., L. Schumacher, K. I. Pedersen, P. E. Mogensen, and F. Frederiksen.
“A stochastic MIMO radio channel model with experimental validation." IEEE
Journal on Selected Areas of Communications. Vol. 20, Number 6, 2002, pp.
1211–1226.

[4] Jeruchim, M., P. Balaban, and K. S. Shanmugan. Simulation of Communication
Systems, Second Edition, New York, Kluwer Academic/Plenum, 2000.

[5] Pätzold, Matthias, Cheng-Xiang Wang, and Bjorn Olav Hogstand. “Two New Sum-of-
Sinusoids-Based Methods for the Efficient Generation of Multiple Uncorrelated
Rayleigh Fading Waveforms.” IEEE Transactions on Wireless Communications.
Vol. 8, Number 6, 2009, pp. 3122–3131.

See Also
comm.LTEMIMOChannel | comm.RayleighChannel | comm.AWGNChannel |
comm.MIMOChannel

 clone

3-1525

clone
System object: comm.RicianChannel
Package: comm

Create RicianChannel object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a RicianChannel object C, with the same property values as H.
The clone method creates a new unlocked object with uninitialized states.

The clone method creates an instance of an object. The property values, but not internal
states, are copied into the new instance of the object.

3 Alphabetical List

3-1526

isLocked
System object: comm.RicianChannel
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the RicianChannel System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

 info

3-1527

info
System object: comm.RicianChannel
Package: comm

Characteristic information about Rician Channel

Syntax

S = info(OBJ)

Description

S = info(OBJ) returns a structure, S, containing characteristic information for the
System object, OBJ. If OBJ has no characteristic information, S is empty. If OBJ has
characteristic information, the fields of S vary depending on OBJ. For object specific
details, refer to the help on the infoImpl method of that object.

3 Alphabetical List

3-1528

release
System object: comm.RicianChannel
Package: comm

Allow property value and input characteristics changes

Syntax

release(obj)

Description

release(obj) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 reset

3-1529

reset
System object: comm.RicianChannel
Package: comm

Reset states of the RicianChannel object

Syntax

reset(H)

Description

reset(H) resets the states of the RicianChannel object, H.

If you set the “RandomStream” property of H to Global stream, the reset method
only resets the filters. If you set RandomStream to mt19937ar with seed, the reset
method not only resets the filters but also reinitializes the random number stream to the
value of the “Seed” property.

3 Alphabetical List

3-1530

step
System object: comm.RicianChannel
Package: comm

Filter input signal through multipath Rician fading channel

Syntax
Y = step(H,X)

[Y,PATHGAINS] = step(H,X)

Y = step(H,X,INITIALTIME)

[Y,PATHGAINS] = step(H,X,INITIALTIME)

step(H,X,INITIALTIME)

Description
Y = step(H,X) filters input signal X through a multipath Rician fading channel and
returns the result in Y. Both the input X and the output signal Y are of size Ns–by–1,
where Ns represents the number of samples. The input X can be of double precision data
type with real or complex values. Y is of double precision data type with complex values.

[Y,PATHGAINS] = step(H,X) returns the channel path gains of the underlying
Rician fading process in PATHGAINS. This syntax applies when you set the
“PathGainsOutputPort” property of H to true. PATHGAINS is of size Ns–by–Np,
where Np represents the number of paths, i.e., the length of the “PathDelays” property
value of H. PATHGAINS is of double precision data type with complex values.

Y = step(H,X,INITIALTIME), [Y,PATHGAINS] = step(H,X,INITIALTIME),
or step(H,X,INITIALTIME) passes data through the Rician channel beginning at
INITIALTIME, where INITIALTIME is a nonnegative real scalar measured in seconds.
This syntax applies when the “FadingTechnique” property of H is set to Sum of
sinusoids and the “InitialTimeSource” property of H is set to Input port.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,

 step

3-1531

complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

3 Alphabetical List

3-1532

comm.RSDecoder System object
Package: comm

Decode data using Reed-Solomon decoder

Description

The RSDecoder object recovers a message vector from a Reed-Solomon codeword vector.
For proper decoding, the property values for this object should match those in the
corresponding RS Encoder object.

To decode data using a Reed-Solomon decoding scheme:

1 Define and set up your Reed-Solomon decoder object. See “Construction” on page
3-1532.

2 Call step to decode data according to the properties of comm.RSDecoder. The
behavior of step is specific to each object in the toolbox.

Construction

H = comm.RSDecoder creates a block decoder System object, H. This object performs
Reed-Solomon (RS) decoding.

H = comm.RSDecoder(Name,Value) creates an RS decoder object, H, with each
specified property set to the specified value. You can specify additional name-value pair
arguments in any order as (Name1,Value1,...,NameN,ValueN).

H = comm.RSDecoder(N,K,Name,Value) creates an RS decoder object, H. This object
has the CodewordLength property set to N, the MessageLength property set to N, and
the other specified properties set to the specified values.

Properties

BitInput

Assume input is bits

 comm.RSDecoder System object

3-1533

Specify whether the input comprises bits or integers. The default is false.

When you set this property to false, the step method input data value must be a
numeric, column vector of integers. The length of this vector must equal an integer
multiple of (“CodewordLength” – number of punctures). You specify the number of
punctures with the “PuncturePatternSource” and “PuncturePattern” properties.
The CodewordLength property stores the codeword length value. The decoded
data output result is a column vector of integers. The length of this vector equals
an integer multiple of the message length you specify in the “MessageLength”
property. Each symbol that forms the input codewords and output message is an integer
between 0 and 2M–1. These integers correspond to an element of the finite Galois
field GF(2M). M is the degree of the primitive polynomial that you specify with the
“PrimitivePolynomialSource” and “PrimitivePolynomial” properties.

When you set this property to true, the input encoded data value must be
a numeric column vector of bits. The length equal to an integer multiple of
(CodewordLength – number of punctures) ¥ M. You specify the number of punctures
with PuncturePatternSource and PuncturePattern properties. The decoded
data output result is a column vector of bits. The length equals an integer multiple of
MessageLength¥ M. A group of M bits represents an integer between 0 and 2M–1 that
belongs to the finite Galois field GF(2M). M is the degree of the primitive polynomial
that you specify with the PrimitivePolynomialSource and PrimitivePolynomial
properties.

When you set “BitInput” to false and “ErasuresInputPort” to true, the erasures
input, ERASURES, must be set to a length equal to the encoded data input vector.
Values of 1 in the ERASURES vector correspond to erased symbols in the same position
as the input codewords, and values of 0 correspond to nonerased symbols.

When you set this property to true and ErasuresInputPort to true, ERASURES,
requires a length of 1/M times the length of the input encoded data vector. M corresponds
to the degree of the primitive polynomial. Values of 1 in the ERASURES vector
correspond to erased symbols and values of 0 correspond to nonerased symbols. In this
case, a symbol corresponds to M bits.

CodewordLength

Codeword length

Specify the codeword length of the RS code as a double-precision, positive, integer scalar
value. The default is 7.

3 Alphabetical List

3-1534

If you set the “PrimitivePolynomialSource” property to Auto, “CodewordLength”
must be in the range 7 < < CodewordLength £ 216–1.

If you set the PrimitivePolynomialSource property to Property, CodewordLength
must be in the range 7 £ CodewordLength £ 2M–1. M is the degree of the primitive
polynomial that you specify with the PrimitivePolynomialSource and
“PrimitivePolynomial” properties. M must be in the range 3 £ M £ 16.

For a full-length RS code the value of the CodewordLength property requires the form
2M–1. If this property is less than 2M–1, the object assumes a shortened RS code.

MessageLength

Message length

Specify the message length as a double-precision, positive, integer scalar value. The
default is 3.

PrimitivePolynomialSource

Source of primitive polynomial

Specify the source of the primitive polynomial as Auto | Property. The default is Auto.

When you set this property to Auto, the object uses a primitive polynomial
of degree M = ceil(log2(“CodewordLength”+1)), which is the result of
fliplr(de2bi(primpoly(M))).

When you set this property to Property you specify a polynomial using the
“PrimitivePolynomial” property.

PrimitivePolynomial

Primitive polynomial

Specify the primitive polynomial that defines the finite field GF(2M) corresponding
to the integers that form messages and codewords. The default is the result of
fliplr(de2bi(primpoly(3))), which is [1 0 1 1] or the polynomial x x

3
1+ + .

You must set this property to a double-precision, binary, row vector that represents
a primitive polynomial over GF(2) of degree M in descending order of powers. If

 comm.RSDecoder System object

3-1535

“CodewordLength” is less than 2M–1, the object uses a shortened RS code. This property
applies when you set the “PrimitivePolynomialSource” property to Property.

GeneratorPolynomialSource

Source of generator polynomial

Specify the source of the generator polynomial as Auto | Property. The default is Auto.

When you set this property to Auto, the object automatically chooses the generator
polynomial. The object calculates the generator polynomial based on the value of the
“PrimitivePolynomialSource” property.

When you set the PrimitivePolynomialSource property
to Auto the object calculates the generator polynomial as
rsgenpoly(“CodewordLength”+SL,“MessageLength”+SL).

When you set the PrimitivePolynomialSource property
to Property, the object calculates generator polynomial as
rsgenpoly(CodewordLength+SL,MessageLength+SL, “PrimitivePolynomial”). In
both cases, SL = (2M–1) –CodewordLength is the shortened length, and M is the degree
of the primitive polynomial that you specify with the PrimitivePolynomialSource
and PrimitivePolynomial properties. When you set this property to Property, you
can specify a generator polynomial using this property.

GeneratorPolynomial

Generator polynomial

Specify the generator polynomial for the RS code as a double-precision, integer row
vector or as a Galois field row vector whose entries are in the range from 0 to 2M-1
and represent a generator polynomial in descending order of powers. The length of the
generator polynomial must be “CodewordLength”-“MessageLength”+1. This property
applies when you set the “GeneratorPolynomialSource” property to Property.

The default is the result of rsgenpoly(7,3,[],[],'double'), which corresponds to
[1 3 1 2 3].

When you use this object to generate code, you must set the generator polynomial to a
double-precision, integer row vector.

CheckGeneratorPolynomial

3 Alphabetical List

3-1536

Enable generator polynomial checking

Set this property to true to perform a generator polynomial check. The default is true.
This check verifies that ¥

“CodewordLength” + 1 is divisible by the generator polynomial you
specify in the “GeneratorPolynomial” property.

For larger codes, disabling the check accelerates processing time. You should perform the
check at least once before setting this property to false. This property applies when you
set the “GeneratorPolynomialSource” property to Property.

PuncturePatternSource

Source of puncture pattern

Specify the source of the puncture pattern as None | Property. The default is None. If
you set this property to None then the object does not apply puncturing to the code. If you
set this property to Property then the object punctures the code based on a puncture
pattern vector specified in the “PuncturePattern” property.

PuncturePattern

Puncture pattern vector

Specify the pattern used to puncture the encoded data as a double-precision, binary
column vector of length (“CodewordLength”-“MessageLength”). The default is
[ones(2,1); zeros(2,1)]. Zeros in the puncture pattern vector indicate the position
of the parity symbols that are punctured or excluded from each codeword. This property
applies when you set the “PuncturePatternSource” property to Property.

ErasuresInputPort

Enable erasures input

Set this property to true to specify a vector of erasures as an input to the step method.
The default is false. The erasures input must be a double-precision or logical binary
column vector that indicates which symbols of the input codewords to erase.

When you set “BitInput” to true, the erasures vector length must equal 1/M times
the length of the input encoded data vector, where M corresponds to the degree of the
primitive polynomial. Values of 1 in the erasures vector correspond to erased symbols in
the same position of the bit-packed input codewords. Values of 0 correspond to nonerased
symbols.

 comm.RSDecoder System object

3-1537

When you set BitInput to false, the erasures vector length must equal the input
encoded data vector. Values of 1 in the erasures vector correspond to erased symbols in
the same position of the input codewords. Values of 0 correspond to nonerased symbols.

When this property is set to false the object assumes no erasures.

NumCorrectedErrorsOutputPort

Enable number of corrected errors output

Set this property to true to obtain the number of corrected errors as an output to the
step method. The default is true. A nonnegative value in the i-th element of the error
output vector, denotes the number of corrected errors in the i-th input codeword. A
value of -1 in the i-th element of the error output vector indicates that a decoding error
occurred for that codeword. A decoding error occurs when an input codeword has more
errors than the error correction capability of the RS code.

OutputDataType

Data type of output

Specify the output data type as Same as input | double | logical. The default is
Same as input. This property applies when you set the “BitInput” property to true.

Methods

clone
Create RS decoder object with same
property values

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

3 Alphabetical List

3-1538

step
Decode data using a Reed-Solomon decoder

Examples

Transmit an RS-encoded, 8-DPSK-modulated symbol stream through an AWGN channel.
Then, demodulate, decode, and count errors.

 hEnc = comm.RSEncoder;

 hMod = comm.DPSKModulator('BitInput',false);

 hChan = comm.AWGNChannel(...

 'NoiseMethod','Signal to noise ratio (SNR)','SNR',10);

 hDemod = comm.DPSKDemodulator('BitOutput',false);

 hDec = comm.RSDecoder;

 hError = comm.ErrorRate('ComputationDelay',3);

 for counter = 1:20

 data = randi([0 7], 30, 1);

 encodedData = step(hEnc, data);

 modSignal = step(hMod, encodedData);

 receivedSignal = step(hChan, modSignal);

 demodSignal = step(hDemod, receivedSignal);

 receivedSymbols = step(hDec, demodSignal);

 errorStats = step(hError, data, receivedSymbols);

 end

 fprintf('Error rate = %f\nNumber of errors = %d\n', ...

 errorStats(1), errorStats(2))

Algorithms

This object implements the algorithm, inputs, and outputs described on the Binary-
Output RS Decoder and Integer-Output RS Decoder block reference pages. The object
properties correspond to the block parameters, except:
The “BitInput” property allows you to select between the Binary-Output RS Decoder
and Integer-Output RS Decoder algorithms.

See Also
comm.BCHDecoder | comm.RSEncoder

 clone

3-1539

clone
System object: comm.RSDecoder
Package: comm

Create RS decoder object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a RSDecoder object C, with the same property values as H. The
clone method creates a new unlocked object with uninitialized states.

3 Alphabetical List

3-1540

getNumInputs
System object: comm.RSDecoder
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of
expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H)

 getNumOutputs

3-1541

getNumOutputs
System object: comm.RSDecoder
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

3 Alphabetical List

3-1542

isLocked
System object: comm.RSDecoder
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the RSDecoder System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

 release

3-1543

release
System object: comm.RSDecoder
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H)Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

3 Alphabetical List

3-1544

step
System object: comm.RSDecoder
Package: comm

Decode data using a Reed-Solomon decoder

Syntax

[Y,ERR] = step(H,X)

Y = step(H,X)

Y = step(H,X,ERASURES)

Description

[Y,ERR] = step(H,X) decodes the encoded input data, X, into the output vector Y and
returns the number of corrected errors in output vector ERR. The value of the BitInput
property determines whether X is a vector of integers or bits with a numeric, logical, or
fixed-point data type. The PuncturePatternSource and PuncturePattern properties
affect the expected length of X. The MessageLength property affects the length of Y.
This syntax applies when you set the NumCorrectedErrorsOutputPort property to
true.

Y = step(H,X) decodes the encoded data, X, into the output vector Y. This syntax
applies when you set the NumCorrectedErrorsOutputPort property to false.

Y = step(H,X,ERASURES) uses the binary column input vector, ERASURES, to erase
the symbols of the input codewords. The elements in ERASURES must be of data type
double or logical. Values of 1 in the ERASURES vector correspond to erased symbols,
and values of 0 correspond to non-erased symbols. This syntax applies when you set the
ErasuresInputPort property to true. See the “ErasuresInputPort” property help for
more information.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,

 step

3-1545

complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

3 Alphabetical List

3-1546

comm.RSEncoder System object
Package: comm

Encode data using Reed-Solomon encoder

Description

The RSEncoder object creates a Reed-Solomon code with message and codeword lengths
you specify.

To encode data using a Reed-Solomon encoding scheme:

1 Define and set up your Reed-Solomon encoder object. See “Construction” on page
3-1546.

2 Call step to encode data according to the properties of comm.RSEncoder. The
behavior of step is specific to each object in the toolbox.

Construction

H = comm.RSEncoder creates a block encoder System object, H. This object performs
Reed-Solomon (RS) encoding.

H = comm.RSEncoder(Name,Value) creates an RS encoder object, H, with each
specified property set to the specified value. You can specify additional name-value pair
arguments in any order as (Name1,Value1,...,NameN,ValueN).

H = comm.RSEncoder(N,K,Name,Value) creates an RS encoder object, H. This object
has the CodewordLength property set to N, the MessageLength property set to K, and
the other specified properties set to the specified values.

Properties

BitInput

Assume input is bits

Specify whether the input comprises bits or integers. The default is false.

 comm.RSEncoder System object

3-1547

When you set this property to false, the step method input data value must be a
numeric, column vector of integers. The length equals an integer multiple of the message
length value stored in the “MessageLength” property. Each group of MessageLength
input elements represents one message word the object will encode.

The step method outputs an encoded data output vector. The output result is a column
vector of integers. The length is an integer multiple of (“CodewordLength” – number of
punctures). You specify the number of punctures with the “PuncturePatternSource”
and “PuncturePattern” properties. Each symbol that forms the input message and
output codewords is an integer between 0 and 2M–1. These integers correspond to an
element of the finite Galois field GF(2M). M is the degree of the primitive polynomial that
you specify with the “PrimitivePolynomialSource” and “PrimitivePolynomial”
properties.

When you set this property to true, the input value must be a numeric, column
vector of bits with an integer multiple of MessageLength¥ M bits. Each group of
MessageLength¥ M input bits represents one message word the object will encode. The
encoded data output result is a column vector of bits. The length of this vector equals
an integer multiple of (CodewordLength – number of punctures) ¥ M . You specify
the number of punctures with the PuncturePatternSource and PuncturePattern
properties. A group of M bits represents an integer between 0 and 2M–1 that belongs to
the finite Galois field GF(2M). M is the degree of the primitive polynomial that you specify
with the PrimitivePolynomialSource and PrimitivePolynomial properties.

CodewordLength

Codeword length

Specify the codeword length of the RS code as a double-precision, positive, integer scalar
value. The default is 7.

If you set the “PrimitivePolynomialSource” property to Auto, CodewordLength
must be in the range 7< CodewordLength £ 216–1.

When you set the PrimitivePolynomialSource property to Property,
CodewordLength must be in the range 7 £ CodewordLength £ 2M–1. M is the degree
of the primitive polynomial that you specify with the PrimitivePolynomialSource
and “PrimitivePolynomial” properties. M must be in the range 3 £ M £ 16. For a full-
length RS code, the value of this property requires the form 2M–1.

3 Alphabetical List

3-1548

If the value of this property is less than 2M–1, the object assumes a shortened RS code.

MessageLength

Message length

Specify the message length as a double-precision, positive integer scalar value. The
default is 3.

PrimitivePolynomialSource

Source of primitive polynomial

Specify the source of the primitive polynomial as Auto | Property. The default is Auto.

When you set this property to Auto, the object uses a primitive polynomial
of degree M = ceil(log2(“CodewordLength”+1)), which is the result of
fliplr(de2bi(primpoly(M))).

When you set this property to Property, you can specify a polynomial using the
“PrimitivePolynomial” property.

PrimitivePolynomial

Primitive polynomial

Specify the primitive polynomial that defines the finite field GF(2M) corresponding to
the integers that form messages and codewords. You must set this property to a double-
precision, binary row vector that represents a primitive polynomial over GF(2) of degree
M in descending order of powers.

If “CodewordLength” is less than 2M–1, the object uses a shortened RS code. The default
is the result of fliplr(de2bi(primpoly(3))), which is [1 0 1 1] or the polynomial
x x

M
+ + 1 .

This property applies when you set the “PrimitivePolynomialSource” property to
Property.

GeneratorPolynomialSource

Source of generator polynomial

Specify the source of the generator polynomial as Auto | Property. The default is Auto.

 comm.RSEncoder System object

3-1549

When you set this property to Auto, the object automatically chooses the generator
polynomial. The object calculates the generator polynomial based on the value of the
“PrimitivePolynomialSource” property.

When you set the PrimitivePolynomialSource property
to Auto the object calculates the generator polynomial as
rsgenpoly(“CodewordLength”+SL,“MessageLength”+SL).

When you set the PrimitivePolynomialSource property
to Property, the object computes generator polynomial as
rsgenpoly(CodewordLength+SL,MessageLength+SL, “PrimitivePolynomial”). In
both cases, SL = (2M–1)–CodewordLength is the shortened length, and M is the degree
of the primitive polynomial that you specify with the PrimitivePolynomialSource
and PrimitivePolynomial properties.

When you set this property to Property, you can specify a generator polynomial using
the “GeneratorPolynomial” property.

GeneratorPolynomial

Generator polynomial

Specify the generator polynomial for the RS code as a double-precision, integer row
vector or as a Galois row vector whose entries are in the range from 0 to 2M-1and
represent a generator polynomial in descending order of powers. Each coefficient is an
element of Galois field GF(2M) represented in integer format. The default is the result of
rsgenpoly(7,3,[],[],'double'), which evaluates to a GF(23) array with elements [1 3 1 2
3]. This property applies when you set the GeneratorPolynomialSource property to
Property.

CheckGeneratorPolynomial

Enable generator polynomial checking

Set this property to true to perform a generator polynomial check. The default
is true. This check verifies that ¥

“CodewordLength” + 1 is divisible by the generator
polynomial specified in the “GeneratorPolynomial” property. For larger codes,
disabling the check speeds up processing. You should perform the check at least
once before setting this property to false. This property applies when you set the
“GeneratorPolynomialSource” property to Property.

3 Alphabetical List

3-1550

PuncturePatternSource

Source of puncture pattern

Specify the source of the puncture pattern as None | Property. The default is None. If
you set this property to None then the object does not apply puncturing to the code. If you
set this property to Property then the object punctures the code based on a puncture
pattern vector specified in the “PuncturePattern” property.

PuncturePattern

Puncture pattern vector

Specify the pattern used to puncture the encoded data as a double-precision, binary
column vector with a length of (“CodewordLength”–“MessageLength”). The default is
[ones(2,1); zeros(2,1)]. Zeros in the puncture pattern vector indicate the position
of the parity symbols that are punctured or excluded from each codeword. This property
applies when you set the “PuncturePatternSource” property to Property.

OutputDataType

Data type of output

Specify the output data type as Same as input | double | logical. The default is
Same as input. This property applies when you set the “BitInput” property to true.

Methods

clone
Create RS encoder object with same
property values

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

isLocked
Locked status for input attributes and
nontunable properties

 comm.RSEncoder System object

3-1551

release
Allow property value and input
characteristics changes

step
Encode data using a Reed-Solomon encoder

Examples

Transmit an RS-encoded, 8-DPSK-modulated symbol stream through an AWGN channel.
Then, demodulate, decode, and count errors.

 hEnc = comm.RSEncoder;

 hMod = comm.DPSKModulator('BitInput',false);

 hChan = comm.AWGNChannel(...

 'NoiseMethod','Signal to noise ratio (SNR)','SNR',10);

 hDemod = comm.DPSKDemodulator('BitOutput',false);

 hDec = comm.RSDecoder;

 hError = comm.ErrorRate('ComputationDelay',3);

 for counter = 1:20

 data = randi([0 7], 30, 1);

 encodedData = step(hEnc, data);

 modSignal = step(hMod, encodedData);

 receivedSignal = step(hChan, modSignal);

 demodSignal = step(hDemod, receivedSignal);

 receivedSymbols = step(hDec, demodSignal);

 errorStats = step(hError, data, receivedSymbols);

 end

 fprintf('Error rate = %f\nNumber of errors = %d\n', ...

 errorStats(1), errorStats(2))

Algorithms

This object implements the algorithm, inputs, and outputs described on the Binary-Input
RS Encoder and Integer-Input RS Encoder block reference pages. The object properties
correspond to the block parameters, except for:
The “BitInput” property allows you to select between the Binary-Input RS Encoder and
Integer-Input RS Encoder algorithms.

3 Alphabetical List

3-1552

See Also
comm.BCHEncoder | comm.RSDecoder

 clone

3-1553

clone
System object: comm.RSEncoder
Package: comm

Create RS encoder object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a RSEncoder object C, with the same property values as H. The
clone method creates a new unlocked object with uninitialized states.

3 Alphabetical List

3-1554

getNumInputs
System object: comm.RSEncoder
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of
expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H)

 getNumOutputs

3-1555

getNumOutputs
System object: comm.RSEncoder
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

3 Alphabetical List

3-1556

isLocked
System object: comm.RSEncoder
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the RSEncoder System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

 release

3-1557

release
System object: comm.RSEncoder
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H)Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

3 Alphabetical List

3-1558

step
System object: comm.RSEncoder
Package: comm

Encode data using a Reed-Solomon encoder

Syntax

Y = step(H,X)

Description

Y = step(H,X) encodes the numeric column input data vector, X, and returns the
encoded data, Y. The value of the BitInput property determines whether X is a vector
of integers or bits with a numeric, logical, or fixed-point data type. The MessageLength
property affects the expected length of X. The PuncturePatternSource and
PuncturePattern properties affect the length of Y.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

 comm.Scrambler System object

3-1559

comm.Scrambler System object
Package: comm

Scramble input signal

Description

The Scrambler object scrambles a scalar or column vector input signal.

To scramble the input signal:

1 Define and set up your scrambler object. See “Construction” on page 3-1559.
2 Call step to scramble the input signal according to the properties of

comm.Scrambler. The behavior of step is specific to each object in the toolbox.

Construction

H = comm.Scrambler creates a scrambler System object, H. This object scrambles the
input data using a linear feedback shift register that you specify with the Polynomial
property.

H = comm.Scrambler(Name,Value) creates a scrambler object, H, with each
specified property set to the specified value. You can specify additional name-value pair
arguments in any order as (Name1,Value1,...,NameN,ValueN).

H = comm.Scrambler(N,POLY,COND,Name,Value) creates a scrambler object, H.
This object has the CalculationBase property set to N, the Polynomial property set to
POLY, the InitialConditions property set to COND, and the other specified properties
set to the specified values.

Properties

CalculationBase

Range of input data

3 Alphabetical List

3-1560

Specify calculation base as a positive, integer, scalar value. Set the calculation base
property to one greater than the number of input values. The step method input and
output integers are in the range [0, CalculationBase–1]. The default is 4.

Polynomial

Linear feedback shift register connections

Specify the polynomial that determines the shift register feedback connections. The
default is [1 1 1 0 1]. You can specify the generator polynomial as a numeric,
binary vector that lists the coefficients of the polynomial in order of ascending powers
of z–1, where p(z–1) = 1 + p1z-1 + p2z-2 + ... is the generator polynomial. The first and
last elements must be 1. Alternatively, you can specify the generator polynomial as a
numeric vector. This vector must contain the exponents of z–1 for the nonzero terms of
the polynomial, in order of ascending powers of z–1. In this case, the first vector element
must be 0. For example, both [1 0 0 0 0 0 1 0 1] and [0 -6 -8] specify the same
polynomial p z z z()

- - -
= + +

1 6 8
1 .

InitialConditionsSource

Source of initial conditions

Specify the source of the InitialConditions property as either Property or Input
port. If set to Input port, the initial conditions are provided as an input argument to
the step function. The default value is Property.

InitialConditions

Initial values of linear feedback shift register

Specify the initial values of the linear feedback shift register as an integer row vector
with values in [0 CalculationBase–1]. The default is [0 1 2 3]. The length of this
property vector must equal the order of the “Polynomial” property vector. This property
is available when InitialConditionsSource is set to Property.

ResetInputPort

Scrambler state reset port

Specify the creation of an input port that is used to reset the state of the scrambler. If
ResetInputPort is true, the scrambler is reset when a nonzero input argument is

 comm.Scrambler System object

3-1561

provided to the step function. The default value is false. This property is available
when InitialConditionsSource is set to Property.

Methods

clone
Create scrambler object with same property
values

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

reset
Reset states of scrambler object

step
Scramble input signal

Examples

Scramble and Descramble Data

Scramble and descramble 8-ary data using comm.Scrambler and comm.Descrambler
System objects™ having a calculation base of 8.

Create scrambler and descrambler objects while specifying the generator polymomial and
initial conditions using name-value pairs.

N = 8;

hSCR = comm.Scrambler(N,[1 0 1 1 0 1 0 1], ...

 [0 3 2 2 5 1 7]);

3 Alphabetical List

3-1562

hDSCR = comm.Descrambler(N,[1 0 1 1 0 1 0 1], ...

 [0 3 2 2 5 1 7]);

Scramble and descramble random integers and verify that the descrambled output
matches the initial data

data = randi([0 N-1],5,1);

scrData = step(hSCR,data);

deScrData = step(hDSCR,scrData);

[data scrData deScrData]

ans =

 6 7 6

 7 5 7

 1 7 1

 7 0 7

 5 3 5

Scramble and Descramble Data With Changing Initial Conditions

Scramble and descramble quaternary data while changing the initial conditions between
step calls.

Create scrambler and descrambler System objects™. Set the
InitialConditionsSource property to Input port to be able to set the initial
conditions as an argument to the step function.

N = 4;

hSCR = comm.Scrambler(N,[1 0 0 1],'InitialConditionsSource','Input port');

hDSCR = comm.Descrambler(N,[1 0 0 1],'InitialConditionsSource','Input port');

Allocate memory for errVec.

errVec = zeros(10,1);

Scramble and descramble random integers while changing the initial conditions,
initCond, each time the loop executes. Use the symerr function to determine if the
scrambling and descrambing operations result in symbol errors.

for k = 1:10

 initCond = randperm(3)';

 data = randi([0 N-1],5,1);

 comm.Scrambler System object

3-1563

 scrData = step(hSCR,data,initCond);

 deScrData = step(hDSCR,scrData,initCond);

 errVec(k) = symerr(data,deScrData);

end

Examine errVec to verify that the output from the descrambler matches the original
data.

errVec

errVec =

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

Algorithms

This object implements the algorithm, inputs, and outputs described on the Scrambler
block reference page. The object properties correspond to the block parameters.

See Also
comm.PNSequence | comm.Descrambler

3 Alphabetical List

3-1564

clone
System object: comm.Scrambler
Package: comm

Create scrambler object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a Scrambler object C, with the same property values as H. The
clone method creates a new unlocked object with uninitialized states.

 getNumInputs

3-1565

getNumInputs
System object: comm.Scrambler
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of
expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H)

3 Alphabetical List

3-1566

getNumOutputs
System object: comm.Scrambler
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

 isLocked

3-1567

isLocked
System object: comm.Scrambler
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the Scrambler System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

3 Alphabetical List

3-1568

release
System object: comm.Scrambler
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H)Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 reset

3-1569

reset
System object: comm.Scrambler
Package: comm

Reset states of scrambler object

Syntax

reset(H)

Description

reset(H) resets the states of the Scrambler object, H.

3 Alphabetical List

3-1570

step
System object: comm.Scrambler
Package: comm

Scramble input signal

Syntax

Y = step(H,X)

Y = step(H,X,IC)

Y = step(H,X,RESET)

Description

Y = step(H,X) scrambles input data, X, and returns the result in Y. X must be a double
precision, logical, or integer column vector. The output Y is same data type and length as
the input vector.

Y = step(H,X,IC) scrambles the input data given initial values of the linear feedback
shift register, IC. The length of IC must be the same as order of the Polynomial
property. This syntax is available when InitialConditionsSource is set to Input
port.

Y = step(H,X,RESET) resets the state of the scrambler when a nonzero value
is applied as an input to the RESET argument. This syntax is available when
InitialConditionsSource is set to Property and ResetInputPort is true.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

 comm.SphereDecoder System object

3-1571

comm.SphereDecoder System object
Package: comm

Decode input using sphere decoder

Description

The Sphere Decoder System object decodes the symbols sent over Nt antennas using
the sphere decoding algorithm.

To decode input symbols using a sphere decoder:

1 Define and set up your sphere decoder object. See “Construction” on page 3-1571.
2 Call step to decode input symbols according to the properties of

comm.SphereDecoder. The behavior of step is specific to each object in the toolbox.

Construction

H = comm.SphereDecoder creates a System object, H. This object uses the sphere
decoding algorithm to find the maximum-likelihood solution for a set of received symbols
over a MIMO channel with Nt transmit antennas and Nr receive antennas.

H = comm.SphereDecoder(Name,Value) creates a sphere decoder object, H, with
the specified property name set to the specified value. Name must appear inside
single quotes (''). You can specify several name-value pair arguments in any order as
Name1,Value1,…,NameN,ValueN.

H = comm.SphereDecoder(CONSTELLATION,BITTABLE) creates a sphere decoder
object, H, with the Constellation property set to CONSTELLATION, and the BitTable
property set to BITTABLE.

Properties

Constellation

Signal constellation per transmit antenna

3 Alphabetical List

3-1572

Specify the constellation as a complex column vector containing the constellation points
to which the transmitted bits are mapped. The default setting is a QPSK constellation
with an average power of 1. The length of the vector must be a power of two. The object
assumes that each transmit antenna uses the same constellation.

BitTable

Bit mapping used for each constellation point.

Specify the bit mapping for the symbols that the “Constellation” property specifies as
a numerical matrix. The default is [0 0; 0 1; 1 0; 1 1], which matches the default
“Constellation” property value.

The matrix size must be [ConstellationLength bitsPerSymbol].
ConstellationLength represents the length of the “Constellation” property.
bitsPerSymbol represents the number of bits that each symbol encodes.

InitialRadius

Initial search radius of the decoding algorithm.

Specify the initial search radius for the decoding algorithm as either Infinity | ZF
Solution. The default is Infinity.

When you set this property to Infinity, the object sets the initial search radius to Inf.

When you set this property to ZF Solution, the object sets the initial search radius to
the zero-forcing solution. This calculation uses the pseudo-inverse of the input channel
when decoding. Large constellations and/or antenna counts can benefit from the initial
reduction in the search radius. In most cases, however, the extra computation of the ZF
Solution will not provide a benefit.

DecisionType

Specify the decoding decision method as either Soft | Hard. The default is Soft.

When you set this property to Soft, the decoder outputs log-likelihood ratios (LLRs), or
soft bits.

When you set this property to Hard, the decoder converts the soft LLRs to bits. The hard-
decision output logical array follows the mapping of a zero for a negative LLR and one for
all other values.

 comm.SphereDecoder System object

3-1573

Methods

clone
Create SphereDecoder object with same
property values

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

step
Decode received symbols using sphere
decoding algorithm

Examples

Decode Using a Sphere Decoder

Modulate a set of bits using 16-QAM constellation. Transmit the signal as two parallel
streams over a MIMO channel. Decode using a sphere decoder with perfect channel
knowledge.

Specify the modulation order, the number of transmitted bits, the Eb/No ratio, and the
symbol mapping.

M = 16;

nBits = 1e3*log2(M);

ebno = 10;

symMap = [11 10 14 15 9 8 12 13 1 0 4 5 3 2 6 7];

Create a Rectangular QAM modulator System object™ whose properties are set using
name-value pairs.

hMod = comm.RectangularQAMModulator(...

 'ModulationOrder',M, ...

 'BitInput',true, ...

 'NormalizationMethod','Average power', ...

 'SymbolMapping','Custom', ...

3 Alphabetical List

3-1574

 'CustomSymbolMapping',symMap);

Display the symbol mapping of the 16-QAM modulator by using the constellation
function.

constellation(hMod)

Convert the decimal value of the symbol map to binary bits using the left bit as the most
significant bit (msb). The M-by-log2(M) matrix bitTable is used by the sphere decoder.

bitTable = de2bi(symMap,log2(M),'left-msb');

Create a 2x2 MIMO Channel System object with PathGainsOutputPort set to true to
use the path gains as a channel estimate. To ensure the repeatability of results, set the
object to use the global random number stream.

 comm.SphereDecoder System object

3-1575

hMIMO = comm.MIMOChannel(...

 'PathGainsOutputPort',true, ...

 'RandomStream','Global stream');

Create an AWGN Channel System object.

hAWGN = comm.AWGNChannel('EbNo',ebno,'BitsPerSymbol',log2(M));

Create a Sphere Decoder System object that processes bits using hard-decision decoding.

hSpDec = comm.SphereDecoder('Constellation',constellation(hMod),...

 'BitTable',bitTable,'DecisionType','Hard');

Create an error rate System object.

hBER = comm.ErrorRate;

Set the global random number generator seed.

rng(37)

Generate a random data stream.

data = randi([0 1],nBits,1);

Modulate the data and reshape it into two streams to be used with the 2x2 MIMO
channel.

modData = step(hMod,data);

modData = reshape(modData,[],2);

Pass the modulated data through the MIMO fading channel and add AWGN.

[fadedSig,pathGains] = step(hMIMO,modData);

rxSig = step(hAWGN,fadedSig);

Decode the received signal using pathGains as a perfect channel estimate.

decodedData = step(hSpDec,rxSig,squeeze(pathGains));

Convert the decoded hard-decision data, which is a logical matrix, into a double column
vector to enable the calculation of error statistics. Calculate and display the bit error rate
and the number of errors.

dataOut = double(decodedData(:));

errorStats = step(hBER,data,dataOut);

errorStats(1:2)

3 Alphabetical List

3-1576

ans =

 0.0380

 152.0000

LTE PHY Downlink with Spatial Multiplexing

For an additional example that uses this System object, see the LTE PHY Downlink
with Spatial Multiplexing example. This example shows the Downlink Shared Channel
(eNodeB to UE) processing of the Long Term Evolution (LTE) physical layer (PHY)
specifications developed by the Third Generation Partnership Project (3GPP).

Algorithm

This object implements a soft-output max-log APP MIMO detector by means of a soft-
output Schnorr-Euchner sphere decoder (SESD), implemented as single tree search
(STS) tree traversal. The algorithm assumes the same constellation and bit table on all
of the transmit antennas. Given as inputs, the received symbol vector and the estimated
channel matrix, the algorithm outputs the log-likelihood ratios (LLRs) of the transmitted
bits.

The algorithm assumes a MIMO system model with Nt transmit antennas and Nr receive
antennas where Nt symbols are simultaneously sent, which is express as:

y Hs n= +

where the received symbols y are a function of the transmitted symbol vector s, the
MIMO channel matrix, H, and the thermal noise, n.

The goal of the MIMO detector is to find the maximum-likelihood (ML) solution, for
which it holds that

s y Hs
ML

s o

$
= -

Œ

arg min
2

where O is the complex-valued constellation from which the Nt elements of s are chosen.

../examples/lte-phy-downlink-with-spatial-multiplexing.html
../examples/lte-phy-downlink-with-spatial-multiplexing.html

 comm.SphereDecoder System object

3-1577

Soft detection additionally delivers, for each bit, estimates on how reliable the estimate

is. For each of the sent bits, denoted as x j b, (the b-th bit of the j-th symbol), the
reliability of the estimate is calculated by means of the log-likelihood ratio (LLR), which
is denoted as L and is calculated as using the max-log approximation:

L x y Hs y Hsi j
s x s xj b

ML

j b

j b
M

, min min
,

()
,

()

,

() = - - -
Œ Œ0 1

2 2

l l

1 244 344

LL

1 244 344

where x
j b,
()0

 and x
j b,
()1

 are the disjoint sets of vector symbols that have the b-th bit in the
label of the j-th scalar symbol equal to 0 and 1, respectively. The symbol λ denotes the
distance calculated as norm squared. The two terms can be expressed as the difference of:

1
The distance to the ML solution sML

$, denoted as l
ML .

2
The distance l j b

ML

, to the counter-hypothesis, which denotes the binary complement

of the b-th bit in the binary label of the j-th entry of sML
$, i.e., the minimum of the

symbol set x
j b

x j b
ML

,

,()
, which contains all of the possible vectors for which the b-th bit of

the j-th entry is flipped compared to the same entry of sML
$.

Thus, depending on whether x
j b

x j b

ML

,

,

()
 is zero or one, the LLR for the bit x j b, is expressed

as

L x j b x

x

j b
ML ML

j b
ML

ML
j b
ML

j b
ML

(),
,

,

, ,

, ,=
Ï
Ì
Ó - =

- =

l l

l l

1

0

The design of a decoder thus aims at efficiently finding sML
$, l

ML , and l j b
ML
, .

This search can be converted into a tree search by means of the sphere decoding
algorithms. To this end, the channel matrix is decomposed into H QR= by means of a
QR decomposition. Left-multiplying y by QH, the problem can be reformulated as

3 Alphabetical List

3-1578

l

l

ML

s o

j b
ML

s x

y Rs

y Rs

j b

x
j b
ML

= -

=

Œ

Œ

-
Ê

Ë
Á

ˆ

¯
˜

argmin

,

argmin

,

,

2

2

from which the triangular structure of R can be exploited to arrange a tree structure
where each of the leaf nodes corresponds to a possible s vector and the partial distances
to the nodes in the tree can be calculated cumulatively adding to the partial distance of
the parent node.

In the STS algorithm, the l
ML and l j b

ML
, metrics are searched concurrently. The main

idea is to have a list containing the metric l
ML , along with the corresponding bit

sequence x
ML and the metrics x

j b

x j b

ML

,

,

()
 of all counter-hypotheses. Then, we search the

sub-tree originating from a given node only if the result can lead to an update of either

l
ML or l j b

ML
, .

The STS algorithm flow can be summarized as:

1
If when reaching a leaf node, a new ML hypothesis is found d x

ML() <()l , all

l j b
ML
, for which x xj b j b

ML
, ,

= are set to l
ML which now turns into a valued counter-

hypothesis. Then, l
ML is set to the current distance d(x).

2
If the current partial distance d(x) satisfies d x

ML
() ≥ l , only the counter-hypotheses

have to be checked. For all j and b for which d x
ML() <()l and x xj b j b

ML
, ,

= the

decoder updates l j b
ML
, to be d(x).

3 A sub-tree is pruned if the partial distance of the node is bigger than the current

l j b
ML
, which may be affected when traversing the subtree.

 comm.SphereDecoder System object

3-1579

4 The algorithm finalizes once all of the tree nodes have been visited once or pruned.

Selected Bibliography

[1] Studer, C., M. Wenk, A. Burg, and H. Bölcskei. "Soft-output MIMO detection
algorithms: Performance and implementation aspects" Proceedings of the 40th
Asilomar Conference on signals, Systems, and Computers, October 2006.

[2] Cho, Y. S., et.al. "MIMO-OFDM Wireless communications with MATLAB," IEEE
Press, 2011.

[3] Hochwald, B.M., S. ten Brink. “Achieving near-capacity on a multiple-antenna
channel”, IEEE Transactions on Communications, Vol. 51, No. 3, Mar 2003, pp.
389-399.

[4] Agrell, E., T. Eriksson, A. Vardy, K. Zeger. “Closest point search in lattices”, IEEE
Transactions on Information Theory, Vol. 48, No. 8, Aug 2002, pp. 2201-2214.

See Also
comm.MIMOChannel | comm.LTEMIMOChannel | comm.OSTBCCombiner | Sphere
Decoder

3 Alphabetical List

3-1580

clone
System object: comm.SphereDecoder
Package: comm

Create SphereDecoder object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a SphereDecoder object C, with the same property values as H.
The clone method creates a new unlocked object with uninitialized states.

The clone method creates an instance of an object. The property values, but not internal
states, are copied into the new instance of the object.

 isLocked

3-1581

isLocked
System object: comm.SphereDecoder
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the SphereDecoder System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

3 Alphabetical List

3-1582

release
System object: comm.SphereDecoder
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 step

3-1583

step
System object: comm.SphereDecoder
Package: comm

Decode received symbols using sphere decoding algorithm

Syntax

Y = step(H, RXSYMBOLS, CHAN)

Description

Y = step(H, RXSYMBOLS, CHAN) decodes the received symbols, RXSYMBOLS, using
the sphere decoding algorithm. The algorithm can be employed to decode Ns channel
realizations in one call, where in each channel realization, Nr symbols are received.

The inputs are:

RXSYMBOLS: a [Ns Nr] complex double matrix containing the received symbols.

CHAN: a [Ns Nt Nr] or [1 Nt Nr] complex double matrix representing the fading channel
coefficients of the flat-fading MIMO channel. For the [Ns Nt Nr] case, the object applies
each channel matrix to each Nr symbol set. For the block fading case, i.e., when the size
of CHAN is [1 Nt Nr], the same channel is applied to all of the received symbols.

The output Y, which depends on the setting of the “DecisionType” property, is a
double matrix containing the Log-Likelihood Ratios (LLRs) of the decoded bits or the
bits themselves. For both cases, the size of the output is [Ns*bitsPerSymbol Nt], where
bitsPerSymbol represents the number of bits per transmitted symbol, as determined by
the “BitTable” property.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an

3 Alphabetical List

3-1584

input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

 comm.ThermalNoise System object

3-1585

comm.ThermalNoise System object
Package: comm

Add receiver thermal noise

Description

The ThermalNoise object simulates the effects of thermal noise on a complex, baseband
signal.

To add receiver thermal noise to a complex, baseband signal:

1 Define and set up your thermal noise object. See “Construction” on page 3-1585.
2 Call step to add receiver thermal noise according to the properties of

comm.ThermalNoise. The behavior of step is specific to each object in the toolbox.

Construction

H = comm.ThermalNoise creates a receiver thermal noise System object, H. This object
adds thermal noise to the complex, baseband input signal.

H = comm.ThermalNoise(Name,Value) creates a receiver thermal noise object, H,
with each specified property set to the specified value. You can specify additional name-
value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties

NoiseMethod

Method to specify noise level

Select the method to specify the noise level as Noise temperature | Noise figure |
Noise factor. The default is Noise temperature.

NoiseTemperature

Noise temperature

3 Alphabetical List

3-1586

Specify the noise temperature in degrees Kelvin as a numeric, nonnegative, real scalar
value. The default is 290. This property applies when you set the “NoiseMethod”
property to Noise temperature.

NoiseFigure

Noise figure

Specify the noise figure in decibels relative to a noise temperature of 290 K. You must set
this property to a numeric, nonnegative, real scalar value. This property applies when
you set the “NoiseMethod” property to Noise figure. The default is 3.01 dB, which
corresponds to a noise temperature of 290 ¥ (10(NoiseFigure/10)–1). This value approximates
290 K.

NoiseFactor

Noise factor

Specify the noise factor as a factor relative to a noise temperature of 290 K. You must
set this property to a numeric, real scalar value greater than or equal to 1. This property
applies when you set the “NoiseMethod” property to Noise factor. The default is 2,
which corresponds to a noise temperature of 290 ¥ (NoiseFactor–1) = 290 K.

SampleRate

Sample time

Specify the sample rate of the input samples in Hz as a numeric, real, positive scalar.
The default is 1. The object computes the variance of the noise added to the input
signal as (kT*SampleRate). The value k is Boltzmann's constant and T is the noise
temperature specified explicitly or implicitly via one of the noise methods.

Methods

clone
Create thermal noise object with same
property values

getNumInputs
Number of expected inputs to step method

 comm.ThermalNoise System object

3-1587

getNumOutputs
Number of outputs from step method

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

step
Add receiver thermal noise

Examples

Add thermal noise with a noise temperature of 290 K to QPSK data.

 hTNoise = comm.ThermalNoise('NoiseTemperature',290);

% Create a modulator and obtain complex baseband signal

 hMod = comm.QPSKModulator;

 data = randi([0 3],32,1);

 modData = step(hMod,data);

% Add noise to signal

 noisyData = step(hTNoise,modData);

Algorithms

This object implements the algorithm, inputs, and outputs described on the Receiver
Thermal Noise block reference page. The object properties correspond to the block
parameters, except:

• This object uses the MATLAB default random stream to generate random numbers.
The block uses a random number generator based on the V5 RANDN (Ziggurat)
algorithm. The block also uses an initial seed, set with the Initial seed parameter
to initialize the random number generator. Ever time the system that contains the
block runs, the block generates the same sequence of random numbers. To generate
reproducible numbers using this object, you can reset the MATLAB default random
stream using the following code.

reset(RandStream.getGlobalStream)

3 Alphabetical List

3-1588

For more information, see help for RandStream.
• The object provides a “SampleRate” property, which needs to be specified. The block

senses the sample time of the signal and therefore does not have a corresponding
parameter.

See Also
comm.AWGNChannel

 clone

3-1589

clone
System object: comm.ThermalNoise
Package: comm

Create thermal noise object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a ThermalNoise object C, with the same property values as H.
The clone method creates a new unlocked object with uninitialized states.

3 Alphabetical List

3-1590

getNumInputs
System object: comm.ThermalNoise
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of
expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H)

 getNumOutputs

3-1591

getNumOutputs
System object: comm.ThermalNoise
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

3 Alphabetical List

3-1592

isLocked
System object: comm.ThermalNoise
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the ThermalNoise System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

 release

3-1593

release
System object: comm.ThermalNoise
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H)Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

3 Alphabetical List

3-1594

step
System object: comm.ThermalNoise
Package: comm

Add receiver thermal noise

Syntax

Y = step(H,X)

Description

Y = step(H,X) adds thermal noise to the complex, baseband input signal, X, and
outputs the result in Y. The input signal X must be a complex, double or single precision
data type column vector or scalar.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

 comm.TurboDecoder System object

3-1595

comm.TurboDecoder System object
Package: comm

Decode input signal using parallel concatenated decoding scheme

Description
The Turbo Decoder System object decodes the input signal using a parallel
concatenated decoding scheme that employs the a-posteriori probability (APP) decoder
as the constituent decoder. Both constituent decoders use the same trellis structure and
algorithm.

To decode an input signal using a turbo decoding scheme:

1 Define and set up your turbo decoder object. See “Construction” on page 3-1595.
2 Call step to decode a binary signal according to the properties of

comm.TurboDecoder. The behavior of step is specific to each object in the toolbox.

Construction
H = comm.TurboDecoder creates a System object, H. This object uses the a-posteriori
probability (APP) constituent decoder to iteratively decode the parallel-concatenated
convolutionally encoded input data.

H = comm.TurboDecoder(Name, Value) creates a turbo decoder object, H, with
the specified property name set to the specified value. Name must appear inside single
quotes (''). You can specify several name-value pair arguments in any order as
Name1,Value1,…,NameN,ValueN.

H = comm.TurboDecoder(TRELLIS, INTERLVRINDICES, NUMITER) creates a
turbo decoder object, H, with the TrellisStructure property set to TRELLIS, the
InterleaverIndices property set to INTERLVRINDICES, and the NumIterations
property set to NUMITER.

Properties
TrellisStructure

3 Alphabetical List

3-1596

Trellis structure of constituent convolutional code

Specify the trellis as a MATLAB structure that contains the trellis description of the
constituent convolutional code. Use the istrellis function to check if a structure is a
valid trellis structure. The default is the result of poly2trellis(4, [13 15], 13).

InterleaverIndicesSource

Source of interleaver indices

Specify the source of the interleaver indices as one of Property | Input port. When
you set this property to Input port, the object uses the interleaver indices specified as
an input to the step method. When you set this property to Property, the object uses the
interleaver indices that you specify in the “InterleaverIndices” property. When you
set this property to Input port, the object processes variable-size signals.

Default: Property

InterleaverIndices

Interleaver indices

Specify the mapping used to permute the input bits at the encoder as a column vector of
integers. This mapping is a vector with the number of elements equal to length, L, of the
output of the step method. Each element must be an integer between 1 and L, with no
repeated values.

Default: (64:-1:1).'.

Algorithm

Decoding algorithm

Specify the decoding algorithm that the object uses for decoding as one of True APP |
Max* | Max. When you set this property to True APP, the object implements true a-
posteriori probability decoding. When you set this property to any other value, the object
uses approximations to increase the speed of the computations.

Default: True APP

NumScalingBits

Number of scaling bits

 comm.TurboDecoder System object

3-1597

Specify the number of bits the constituent decoders use to scale the input data to avoid
losing precision during the computations. The constituent decoders multiply the input
by 2 NumScalingBits and divide the pre-output by the same factor. The NumScalingBits
property must be a scalar integer between 0 and 8. This property applies when you set
the “Algorithm” property to Max*.

Default: 3

NumIterations

Number of decoding iterations

Specify the number of decoding iterations used for each call to the step method. The
object iterates and provide updates to the log-likelihood ratios (LLR) of the uncoded
output bits. The output of the step method is the hard-decision output of the final LLR
update.

Default: 6

Methods
clone

Create Turbo Decoder object with same
property values

isLocked
Locked status (logical)

release
Allow property value and input
characteristics changes

step
Decode input signal using parallel
concatenated decoding scheme

Examples
Transmit and Receive Turbo-Encoded Data over a BPSK-Modulated AWGN Channel

Simulate the transmission and reception of BPSK data over an AWGN channel using
turbo encoding and decoding.

3 Alphabetical List

3-1598

Set the Eb/No (dB) and frame length parameters. Set the random number generator to
its default state to ensure that the results are repeatable.

EbNo= -6;

frmLen = 256;

rng default

Calculate the noise variance from the Eb/No ratio. Generate random interleaver indices.

noiseVar = 10^(-EbNo/10);

intrlvrIndices = randperm(frmLen);

Create a turbo encoder and decoder pair using the trellis structure given by
poly2trellis(4,[13 15 17],13) and intrlvrIndices.

hTEnc = comm.TurboEncoder('TrellisStructure',poly2trellis(4, ...

 [13 15 17],13),'InterleaverIndices',intrlvrIndices);

hTDec = comm.TurboDecoder('TrellisStructure',poly2trellis(4, ...

 [13 15 17],13),'InterleaverIndices',intrlvrIndices, ...

 'NumIterations',4);

Create a BPSK modulator and demodulator pair, where the demodulator outputs soft
bits determined by using a log-likelihood ratio method.

hMod = comm.BPSKModulator;

hDemod = comm.BPSKDemodulator('DecisionMethod','Log-likelihood ratio', ...

 'Variance',noiseVar);

Create an AWGN channel object and an error rate object.

hChan = comm.AWGNChannel('EbNo',EbNo);

hError = comm.ErrorRate;

The main processing loop performs the following steps:

• Generate binary data
• Turbo encode the data
• Modulate the encoded data
• Pass the modulated signal through an AWGN channel
• Demodulate the noisy signal using LLR to output soft bits
• Turbo decode the demodulated data. Because the the bit mapping from the

demodulator is opposite that expected by the turbo decoder, the decoder input must
use the inverse of demodulated signal.

 comm.TurboDecoder System object

3-1599

• Calculate the error statistics

for frmIdx = 1:100

 data = randi([0 1],frmLen,1);

 encodedData = step(hTEnc,data);

 modSignal = step(hMod,encodedData);

 receivedSignal = step(hChan,modSignal);

 demodSignal = step(hDemod,receivedSignal);

 receivedBits = step(hTDec,-demodSignal);

 errorStats = step(hError,data,receivedBits);

end

Display the error data.

fprintf('Bit error rate = %5.2e\nNumber of errors = %d\nTotal bits = %d\n', ...

 errorStats)

Bit error rate = 2.34e-04

Number of errors = 6

Total bits = 25600

Turbo Coding with 16-QAM Modulation in an AWGN Channel

Simulate an end-to-end communication link employing 16-QAM using turbo codes in an
AWGN channel. The frame sizes are randomly selected from a set of {500, 1000, 1500}.
Because the frame size varies, provide the interleaver indices to the turbo encoder and
decoder objects as an input to their associated step functions.

Set the modulation order and Eb/No (dB) parameters. Set the random number generator
to its default state to be able to repeat the results.

M = 16;

EbNo= -2;

rng default

Calculate the noise variance from the Eb/No ratio and the modulation order.

noiseVar = 10^(-EbNo/10)*(1/log2(M));

Create a turbo encoder and decoder pair, where the interleaver indices are supplied by an
input argument to the step function.

hTEnc = comm.TurboEncoder('InterleaverIndicesSource','Input port');

hTDec = comm.TurboDecoder('InterleaverIndicesSource','Input port', ...

3 Alphabetical List

3-1600

 'NumIterations',4);

Create a QPSK modulator and demodulator pair, where the demodulator outputs soft
bits determined by using a log-likelihood ratio method. The modulator and demodulator
objects are normalized to use an average power of 1 W.

hMod = comm.RectangularQAMModulator('ModulationOrder',M, ...

 'BitInput',true, ...

 'NormalizationMethod','Average power');

hDemod = comm.RectangularQAMDemodulator('ModulationOrder',M, ...

 'BitOutput',true, ...

 'NormalizationMethod','Average power', ...

 'DecisionMethod','Log-likelihood ratio', ...

 'Variance',noiseVar);

Create an AWGN channel object and an error rate object.

hChan = comm.AWGNChannel('EbNo',EbNo,'BitsPerSymbol',log2(M));

hError = comm.ErrorRate;

The processing loop performs the following steps:

• Select a random frame size and generate interleaver indices
• Generate random binary data
• Turbo encode the data
• Apply 16-QAM modulation
• Pass the modulated signal through an AWGN channel
• Demodulate the noisy signal using an LLR algorithm
• Turbo decode the data
• Calculate the error statistics

for frmIdx = 1:100

 % Randomly select one of three possible frame sizes

 frmLen = 500*randi([1 3],1,1);

 % Determine the interleaver indices given the frame length

 intrlvrIndices = randperm(frmLen);

 % Generate random binary data

 data = randi([0 1],frmLen,1);

 comm.TurboDecoder System object

3-1601

 % Turbo encode the data

 encodedData = step(hTEnc,data,intrlvrIndices);

 % Modulate the encoded data

 modSignal = step(hMod,encodedData);

 % Pass the signal through the AWGN channel

 receivedSignal = step(hChan,modSignal);

 % Demodulate the received signal

 demodSignal = step(hDemod,receivedSignal);

 % Turbo decode the demodulated signal. Because the bit mapping from the

 % demodulator is opposite that expected by the turbo decoder, the

 % decoder input must use the inverse of demodulated signal.

 receivedBits = step(hTDec,-demodSignal,intrlvrIndices);

 % Calculate the error statistics

 errorStats = step(hError,data,receivedBits);

end

Display the error statistics.

fprintf('Bit error rate = %5.2e\nNumber of errors = %d\nTotal bits = %d\n', ...

 errorStats)

Bit error rate = 3.51e-04

Number of errors = 33

Total bits = 94000

Algorithms

This object implements the algorithm, inputs, and outputs described on the Turbo
Decoder block reference page. The object properties correspond to the block parameters.

See Also
comm.APPDecoder | comm.TurboEncoder | Turbo Decoder

3 Alphabetical List

3-1602

clone
System object: comm.TurboDecoder
Package: comm

Create Turbo Decoder object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a Turbo Decoder object C, with the same property values as H.
The clone method creates a new unlocked object with uninitialized states.

The clone method creates an instance of an object. The property values, but not internal
states, are copied into the new instance of the object.

 isLocked

3-1603

isLocked
System object: comm.TurboDecoder
Package: comm

Locked status (logical)

Syntax

TF = isLocked(H)

Description

Description

TF = isLocked(H) returns the locked status, TF of the TurboDecoder System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

3 Alphabetical List

3-1604

release
System object: comm.TurboDecoder
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 step

3-1605

step
System object: comm.TurboDecoder
Package: comm

Decode input signal using parallel concatenated decoding scheme

Syntax

Y = step(H,X)

Y = step(H, X, INTERLVRINDICES)

Description

Y = step(H,X) decodes the input data, X, using the parallel concatenated
convolutional coding scheme that you specify using the TrellisStructure and
InterleaverIndices properties. It returns the binary decoded data, Y. Both X and
Y are column vectors of double precision data type. When the constituent convolutional
code represents a rate 1/N code, the step method sets the length of the output vector, Y,
to (M-2*numTails)/(2*N-1), where M represents the input vector length and numTails is
given by log2(TrellisStructure.numStates)*N. The output length, L, is the same as the
length of the interleaver indices.

Y = step(H, X, INTERLVRINDICES) uses the INTERLVRINDICES specified as an
input. INTERLVRINDICES is a column vector containing integer values from 1 to L with
no repeated values. The lengths of the INTERLVRINDICES input and the Y output are
the same.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

3 Alphabetical List

3-1606

comm.TurboEncoder System object
Package: comm

Encode input signal using parallel concatenated encoding scheme

Description

The Turbo Encoder System object encodes a binary input signal using a parallel
concatenated coding scheme. This coding scheme uses two identical convolutional
encoders and appends the termination bits at the end of the encoded data bits.

To encode an input signal using a turbo coding scheme:

1 Define and set up your turbo encoder object. See “Construction” on page 3-1606.
2 Call step to encode a binary signal according to the properties of

comm.TurboEncoder. The behavior of step is specific to each object in the toolbox.

Construction

H = comm.TurboEncoder creates a System object, H, that encodes binary data using a
turbo encoder.

H = comm.TurboEncoder(Name, Value) creates a turbo encoder object, H, with
the specified property name set to the specified value. Name must appear inside single
quotes (''). You can specify several name-value pair arguments in any order as
Name1,Value1,…,NameN,ValueN.

H = comm.TurboEncoder(TRELLIS, INTERLVRINDICES) creates a turbo encoder
object, H. In this construction, the TrellisStructure property is set to TRELLIS, and
the InterleaverIndices property is set to INTERLVRINDICES.

Properties

TrellisStructure

Trellis structure of constituent convolutional code

 comm.TurboEncoder System object

3-1607

Specify the trellis as a MATLAB structure that contains the trellis description of the
constituent convolutional code. Use the istrellis function to check if a structure is a
valid trellis structure. The default is the result of poly2trellis(4, [13 15], 13).

InterleaverIndicesSource

Source of interleaver indices

Specify the source of the interleaver indices as one of Property | Input port. When
you set this property to Input port, the object uses the interleaver indices specified as
an input to the step method. When you set this property to Property, the object uses the
interleaver indices that you specify in the “InterleaverIndices” property. When you
set this property to Input port, the object processes variable-size signals.

Default: Property

InterleaverIndices

Interleaver indices

Specify the mapping used to permute the input bits at the encoder as a column vector of
integers. This mapping is a vector with the number of elements equal to the length of the
input for the step method. Each element must be an integer between 1 and L, with no
repeated values.

Default: (64:-1:1).'.

Methods

clone
Create Turbo Encoder object with same
property values

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

3 Alphabetical List

3-1608

step
Encode input signal using parallel
concatenated coding scheme

Examples

Transmit and Receive Turbo-Encoded Data over a BPSK-Modulated AWGN Channel

Simulate the transmission and reception of BPSK data over an AWGN channel using
turbo encoding and decoding.

Set the Eb/No (dB) and frame length parameters. Set the random number generator to
its default state to ensure that the results are repeatable.

EbNo= -6;

frmLen = 256;

rng default

Calculate the noise variance from the Eb/No ratio. Generate random interleaver indices.

noiseVar = 10^(-EbNo/10);

intrlvrIndices = randperm(frmLen);

Create a turbo encoder and decoder pair using the trellis structure given by
poly2trellis(4,[13 15 17],13) and intrlvrIndices.

hTEnc = comm.TurboEncoder('TrellisStructure',poly2trellis(4, ...

 [13 15 17],13),'InterleaverIndices',intrlvrIndices);

hTDec = comm.TurboDecoder('TrellisStructure',poly2trellis(4, ...

 [13 15 17],13),'InterleaverIndices',intrlvrIndices, ...

 'NumIterations',4);

Create a BPSK modulator and demodulator pair, where the demodulator outputs soft
bits determined by using a log-likelihood ratio method.

hMod = comm.BPSKModulator;

hDemod = comm.BPSKDemodulator('DecisionMethod','Log-likelihood ratio', ...

 'Variance',noiseVar);

Create an AWGN channel object and an error rate object.

 comm.TurboEncoder System object

3-1609

hChan = comm.AWGNChannel('EbNo',EbNo);

hError = comm.ErrorRate;

The main processing loop performs the following steps:

• Generate binary data
• Turbo encode the data
• Modulate the encoded data
• Pass the modulated signal through an AWGN channel
• Demodulate the noisy signal using LLR to output soft bits
• Turbo decode the demodulated data. Because the the bit mapping from the

demodulator is opposite that expected by the turbo decoder, the decoder input must
use the inverse of demodulated signal.

• Calculate the error statistics

for frmIdx = 1:100

 data = randi([0 1],frmLen,1);

 encodedData = step(hTEnc,data);

 modSignal = step(hMod,encodedData);

 receivedSignal = step(hChan,modSignal);

 demodSignal = step(hDemod,receivedSignal);

 receivedBits = step(hTDec,-demodSignal);

 errorStats = step(hError,data,receivedBits);

end

Display the error data.

fprintf('Bit error rate = %5.2e\nNumber of errors = %d\nTotal bits = %d\n', ...

 errorStats)

Bit error rate = 2.34e-04

Number of errors = 6

Total bits = 25600

Turbo Coding with 16-QAM Modulation in an AWGN Channel

Simulate an end-to-end communication link employing 16-QAM using turbo codes in an
AWGN channel. The frame sizes are randomly selected from a set of {500, 1000, 1500}.
Because the frame size varies, provide the interleaver indices to the turbo encoder and
decoder objects as an input to their associated step functions.

3 Alphabetical List

3-1610

Set the modulation order and Eb/No (dB) parameters. Set the random number generator
to its default state to be able to repeat the results.

M = 16;

EbNo= -2;

rng default

Calculate the noise variance from the Eb/No ratio and the modulation order.

noiseVar = 10^(-EbNo/10)*(1/log2(M));

Create a turbo encoder and decoder pair, where the interleaver indices are supplied by an
input argument to the step function.

hTEnc = comm.TurboEncoder('InterleaverIndicesSource','Input port');

hTDec = comm.TurboDecoder('InterleaverIndicesSource','Input port', ...

 'NumIterations',4);

Create a QPSK modulator and demodulator pair, where the demodulator outputs soft
bits determined by using a log-likelihood ratio method. The modulator and demodulator
objects are normalized to use an average power of 1 W.

hMod = comm.RectangularQAMModulator('ModulationOrder',M, ...

 'BitInput',true, ...

 'NormalizationMethod','Average power');

hDemod = comm.RectangularQAMDemodulator('ModulationOrder',M, ...

 'BitOutput',true, ...

 'NormalizationMethod','Average power', ...

 'DecisionMethod','Log-likelihood ratio', ...

 'Variance',noiseVar);

Create an AWGN channel object and an error rate object.

hChan = comm.AWGNChannel('EbNo',EbNo,'BitsPerSymbol',log2(M));

hError = comm.ErrorRate;

The processing loop performs the following steps:

• Select a random frame size and generate interleaver indices
• Generate random binary data
• Turbo encode the data
• Apply 16-QAM modulation

 comm.TurboEncoder System object

3-1611

• Pass the modulated signal through an AWGN channel
• Demodulate the noisy signal using an LLR algorithm
• Turbo decode the data
• Calculate the error statistics

for frmIdx = 1:100

 % Randomly select one of three possible frame sizes

 frmLen = 500*randi([1 3],1,1);

 % Determine the interleaver indices given the frame length

 intrlvrIndices = randperm(frmLen);

 % Generate random binary data

 data = randi([0 1],frmLen,1);

 % Turbo encode the data

 encodedData = step(hTEnc,data,intrlvrIndices);

 % Modulate the encoded data

 modSignal = step(hMod,encodedData);

 % Pass the signal through the AWGN channel

 receivedSignal = step(hChan,modSignal);

 % Demodulate the received signal

 demodSignal = step(hDemod,receivedSignal);

 % Turbo decode the demodulated signal. Because the bit mapping from the

 % demodulator is opposite that expected by the turbo decoder, the

 % decoder input must use the inverse of demodulated signal.

 receivedBits = step(hTDec,-demodSignal,intrlvrIndices);

 % Calculate the error statistics

 errorStats = step(hError,data,receivedBits);

end

Display the error statistics.

fprintf('Bit error rate = %5.2e\nNumber of errors = %d\nTotal bits = %d\n', ...

 errorStats)

Bit error rate = 3.51e-04

Number of errors = 33

3 Alphabetical List

3-1612

Total bits = 94000

Algorithms

This object implements the algorithm, inputs, and outputs described on the Turbo
Encoder block reference page. The object properties correspond to the block parameters.

See Also
comm.TurboDecoder | comm.ConvolutionalEncoder | Turbo Encoder

 clone

3-1613

clone
System object: comm.TurboEncoder
Package: comm

Create Turbo Encoder object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a Turbo Encoder object C, with the same property values as H.
The clone method creates a new unlocked object with uninitialized states.

The clone method creates an instance of an object. The property values, but not internal
states, are copied into the new instance of the object.

3 Alphabetical List

3-1614

isLocked
System object: comm.TurboEncoder
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

Description

TF = isLocked(H) returns the locked status, TF of the TurboEncoder System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

 release

3-1615

release
System object: comm.TurboEncoder
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

3 Alphabetical List

3-1616

step
System object: comm.TurboEncoder
Package: comm

Encode input signal using parallel concatenated coding scheme

Syntax

Y = step(H,X)

Y = step(H, X, INTERLVRINDICES)

Description

Y = step(H,X) encodes the input data, X, using the parallel concatenated
convolutional coding scheme that you specify using the TrellisStructure
and InterleaverIndices properties. It returns the binary decoded data, Y.
Both X and Y are column vectors of numeric, logical, or unsigned fixed point with
word length 1 (fi object). When the constituent convolutional encoder represents
a rate 1/N code, the step method sets the length of the output vector, Y, to
L*(2*N-1)+2*numTails where L represents the input vector length and numTails is
given by log2(TrellisStructure.numStates)*N. The tail bits, due to the termination, are
appended at the end after the input bits are encoded.

Y = step(H, X, INTERLVRINDICES) uses the INTERLVRINDICES specified as an
input. INTERLVRINDICES is a column vector containing integer values from 1 to L with
no repeated values. The length of the data input X and the INTERLVRINDICES input
must be the same.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

 comm.ViterbiDecoder System object

3-1617

comm.ViterbiDecoder System object
Package: comm

Decode convolutionally encoded data using Viterbi algorithm

Description

The ViterbiDecoder object decodes input symbols to produce binary output symbols.
This object can process several symbols at a time for faster performance. This object
processes variable-size signals; however, variable-size signals cannot be applied for
erasure inputs.

To decode input symbols and produce binary output symbols:

1 Define and set up your Viterbi decoder object. See “Construction” on page 3-1617.
2 Call step to decode input symbols according to the properties of

comm.ViterbiDecoder. The behavior of step is specific to each object in the
toolbox.

Construction

H = comm.ViterbiDecoder creates a Viterbi decoder System object, H. This object uses
the Viterbi algorithm to decode convolutionally encoded input data.

H = comm.ViterbiDecoder(Name,Value) creates a Viterbi decoder object, H, with
each specified property set to the specified value. You can specify additional name-value
pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

H = comm.ViterbiDecoder(TRELLIS,Name,Value) creates a Viterbi decoder object,
H. This object has the TrellisStructure property set to TRELLIS and the other
specified properties set to the specified values.

Properties

TrellisStructure

3 Alphabetical List

3-1618

Trellis structure of convolutional code

Specify the trellis as a MATLAB structure that contains the trellis description of the
convolutional code. The default is the result of poly2trellis(7, [171 133]). Use the
istrellis function to verify whether a structure is a valid trellis.

InputFormat

Input format

Specify the format of the input to the decoder as Unquantized | Hard | Soft. The
default is Unquantized.

When you set this property to Unquantized, the input must be a real vector of double- or
single-precision soft values that are unquantized. The object considers negative numbers
to be 1s and positive numbers to be 0s.

When you set this property to Hard, the input must be a vector of hard decision values,
which are 0s or 1s. The data type of the inputs can be double-precision, single-precision,
logical, 8-, 16-, and 32-bit signed integers. You can also use 8-, 16-, and 32-bit unsigned
integers.

When you set this property to Soft, the input requires a vector of quantized soft values

represented as integers between 0 and . The data
type of the inputs can be double-precision, single-precision, logical, 8-, 16-, and 32-bit
signed integers. You can also use 8-, 16-, and 32-bit unsigned integers. Alternately, you
can specify the data type as an unsigned and unscaled fixed point object (fi) with a word
length equal to the word length that you specify in the SoftInputWordLength property.
The object considers negative numbers to be 0s and positive numbers to be 1s.

SoftInputWordLength

Soft input word length

Specify the number of bits to represent each quantized soft input value as a positive,
integer scalar value. The default is 4 bits. This property applies when you set the
“InputFormat” property to Soft.

InvalidQuantizedInputAction

Action when input values are out of range

 comm.ViterbiDecoder System object

3-1619

Specify the action the object takes when input values are out of range as Ignore |
Error. The default is Ignore. Set this property to Error so that the object generates an
error when the quantized input values are out of range. This property applies when you
set the “InputFormat” property to Hard or Soft.

TracebackDepth

Traceback depth

Specify the number of trellis branches to construct each traceback path as a numeric,
integer scalar value. The default is 34. The traceback depth influences the decoding
accuracy and delay. The number of zero symbols that precede the first decoded symbol in
the output represent a decoding delay.

When you set the “TerminationMethod” property to Continuous, the decoding delay
consists of “TracebackDepth” zero symbols or TracebackDepth¥ K zero bits for a rate
K/N convolutional code.

When you set the TerminationMethod property to Truncated or Terminated, there is
no output delay. In this case, TracebackDepth must be less than or equal to the number

of symbols in each input. If the code rate is 1
2

, a typical traceback depth value is about
five times the constraint length of the code.

TerminationMethod

Termination method of encoded frame

Specify the termination method as Continuous | Truncated | Terminated. The
default is Continuous.

In Continuous mode, the object saves the internal state metric at the end of each frame
for use with the next frame. The object treats each traceback path independently.

In Truncated mode, the object treats each frame independently. The traceback path
starts at the state with the best metric and always ends in the all-zeros state. In
Terminated mode, the object treats each frame independently, and the traceback path
always starts and ends in the all-zeros state.

ResetInputPort

Enable decoder reset input

3 Alphabetical List

3-1620

Set this property to true to enable an additional step method input. The default
is false. When the reset input is a nonzero value, the object resets the internal
states of the decoder to initial conditions. This property applies when you set the
“TerminationMethod” property to Continuous.

DelayedResetAction

Reset on nonzero input via port

Set this property to true to delay resetting the object output. The default is false. When
you set this property to true, the reset of the internal states of the decoder occurs after
the object computes the decoded data. When you set this property to false, the reset of the
internal states of the decoder occurs before the object computes the decoded data. This
property applies when you set the “ResetInputPort” property to true.

PuncturePatternSource

Source of puncture pattern

Specify the source of the puncture pattern as None | Property. The default is None.

When you set this property to None, the object assumes no puncturing. Set this property
to Property to decode punctured codewords based on a puncture pattern vector specified
via the “PuncturePattern” property.

PuncturePattern

Puncture pattern vector

Specify puncture pattern to puncture the encoded data. The default is [1; 1; 0; 1;
0; 1]. The puncture pattern is a column vector of 1s and 0s. The 0s indicate the position
to insert dummy bits. The puncture pattern must match the puncture pattern used
by the encoder. This property applies when you set the “PuncturePatternSource”
property to Property.

ErasuresInputPort

Enable erasures input

Set this property to true to specify a vector of erasures as a step method input. The
default is false. The erasures input must be a double-precision or logical, binary,

 comm.ViterbiDecoder System object

3-1621

column vector. This vector indicates which symbols of the input codewords to erase.
Values of 1 indicate erased bits. The decoder does not update the branch metric for the
erasures in the incoming data stream.

The lengths of the step method erasure input and the step method data input must be
the same. When you set this property to false, the object assumes no erasures.

OutputDataType

Data type of output

Specify the data type of the output as Full precision | Smallest unsigned
integer | double | single | int8 | uint8 | int16 | uint16 | int32 | uint32 |
logical. The default is Full precision.

When the input signal is an integer data type, you must have a Fixed-Point Designer
user license to use this property in Smallest unsigned integer or Full precision
mode.

Fixed-Point Properties

StateMetricDataType

Data type of state metric

Specify the state metric data type as Full precision | Custom. The default is Full
precision.

When you set this property to Full precision, the object sets the state metric
fixed-point type to numerictype([],16). This property applies when you set the
“InputFormat” property to Hard or Soft.

When you set the InputFormat property to Hard, the step method data input must be
a column vector. This vector comprises unsigned, fixed point numbers (fi objects) of word
length 1 to enable fixed-point Viterbi decoding. Based on this input (either a 0 or a 1), the
object calculates the internal branch metrics using an unsigned integer of word length L.
In this case, L indicates the number of output bits as specified by the trellis structure.

When you set the InputFormat property to Soft, the step method data input
must be a column vector. This vector comprises unsigned, fixed point numbers (fi

3 Alphabetical List

3-1622

objects) of word length N. N indicates the number of soft-decision bits specified in the
“SoftInputWordLength” property.

The step method data inputs must be integers in the range 0 to 2N–1. The object
calculates the internal branch metrics using an unsigned integer of word length L = (N
+ Nout – 1). In this case, Nout represents the number of output bits as specified by the
trellis structure.

CustomStateMetricDataType

Fixed-point data type of state metric

Specify the state metric fixed-point type as an unscaled, numerictype object with a
signedness of Auto. The default is numerictype([],16). This property applies when
you set the “StateMetricDataType” property to Custom.

Methods

clone
Create Viterbi decoder object with same
property values

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

reset
Reset states of the Viterbi decoder object

step
Decode convolutionally encoded data using
Viterbi algorithm

 comm.ViterbiDecoder System object

3-1623

Examples

Transmit a convolutionally encoded 8-DPSK-modulated bit stream through an AWGN
channel. Then, demodulate, decode using a Viterbi decoder, and count errors.

 hConEnc = comm.ConvolutionalEncoder;

 hMod = comm.DPSKModulator('BitInput',true);

 hChan = comm.AWGNChannel('NoiseMethod', ...

 'Signal to noise ratio (SNR)', 'SNR',10);

 hDemod = comm.DPSKDemodulator('BitOutput',true);

 hDec = comm.ViterbiDecoder('InputFormat','Hard');

 % Delay in bits is TracebackDepth times the number of bits per symbol

 delay = hDec.TracebackDepth*...

 log2(hDec.TrellisStructure.numInputSymbols);

 hError = comm.ErrorRate('ComputationDelay',3,'ReceiveDelay',delay);

 for counter = 1:20

 data = randi([0 1],30,1);

 encodedData = step(hConEnc, data);

 modSignal = step(hMod, encodedData);

 receivedSignal = step(hChan, modSignal);

 demodSignal = step(hDemod, receivedSignal);

 receivedBits = step(hDec, demodSignal);

 errorStats = step(hError, data, receivedBits);

 end

 fprintf('Error rate = %f\nNumber of errors = %d\n', ...

 errorStats(1), errorStats(2))

Algorithms

This object implements the algorithm, inputs, and outputs described on the Viterbi
Decoder block reference page. The object properties correspond to the block parameters,
except:

• The Decision type parameter corresponds to the “InputFormat” property.
• The Operation mode parameter corresponds to the “TerminationMethod”

property.

See Also
comm.APPDecoder | comm.ConvolutionalEncoder

3 Alphabetical List

3-1624

clone
System object: comm.ViterbiDecoder
Package: comm

Create Viterbi decoder object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a ViterbiDecoder object C, with the same property values as H.
The clone method creates a new unlocked object with uninitialized states.

 getNumInputs

3-1625

getNumInputs
System object: comm.ViterbiDecoder
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of
expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H)

3 Alphabetical List

3-1626

getNumOutputs
System object: comm.ViterbiDecoder
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

 isLocked

3-1627

isLocked
System object: comm.ViterbiDecoder
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the ViterbiDecoder System
object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

3 Alphabetical List

3-1628

release
System object: comm.ViterbiDecoder
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H)Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 reset

3-1629

reset
System object: comm.ViterbiDecoder
Package: comm

Reset states of the Viterbi decoder object

Syntax

reset(H)

Description

reset(H) resets the states of the ViterbiDecoder object, H.

3 Alphabetical List

3-1630

step

System object: comm.ViterbiDecoder
Package: comm

Decode convolutionally encoded data using Viterbi algorithm

Syntax

Y = step(H,X)

Y = step(H,X,ERASURES)

Y = step(H,X,R)

Description

Y = step(H,X) decodes encoded data, X, using the Viterbi algorithm and returns
Y. X, must be a column vector with data type and values that depend on how you set
the InputFormat property. If the convolutional code uses an alphabet of 2N possible
symbols, the length of the input vector, X, must be L ¥ N for some positive integer L.
Similarly, if the decoded data uses an alphabet of 2K possible output symbols, the length
of the output vector, Y, is L ¥ K.

Y = step(H,X,ERASURES) uses the binary column input vector, ERASURES, to erase
the symbols of the input codewords. The elements in ERASURES must be of data type
double or logical. Values of 1 in the ERASURES vector correspond to erased symbols, and
values of 0 correspond to non-erased symbols. The lengths of the X and ERASURES inputs
must be the same. This syntax applies when you set the ErasuresInputPort property
to true.

Y = step(H,X,R) resets the internal states of the decoder when you input a non-zero
reset signal, R. R must be a double precision or logical scalar. This syntax applies when
you set the TerminationMethod property to Continuous and the ResetInputPort
property to true.

Note: H specifies the System object on which to run this step method.

 step

3-1631

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

3 Alphabetical List

3-1632

comm.WalshCode System object
Package: comm

Generate Walsh code from orthogonal set of codes

Description

The WalshCode object generates a Walsh code from an orthogonal set of codes.

To generate a Walsh code:

1 Define and set up your Walsh code object. See “Construction” on page 3-1632.
2 Call step to encode the input signal according to the properties of

comm.WalshCode. The behavior of step is specific to each object in the toolbox.

Construction

H = comm.WalshCode creates a Walsh code generator System object, H. This object
generates a Walsh code from a set of orthogonal codes.

H = comm.WalshCode(Name,Value) creates a Walsh code generator object, H, with
each specified property set to the specified value. You can specify additional name-value
pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties

Length

Length of generated code

Specify the length of the generated code as a numeric, integer scalar value that is a
power of two. The default is 64.

Index

Index of code of interest

 comm.WalshCode System object

3-1633

Specify the index of the desired code from the available set of codes as a numeric, integer
scalar value in the range [0, 1, ... , N-1]. N is the value of the “Length” property.
The default is 60. The number of zero crossings in the generated code equals the value of
the specified index.

SamplesPerFrame

Number of output samples per frame

Specify the number of Walsh code samples that the step method outputs as a numeric,
positive, integer scalar value . The default is 1. If you set this property to a value of M,
then the step method outputs M samples of a Walsh code of length N. N is the length of
the code that you specify in the “Length” property.

OutputDataType

Data type of output

Specify the output data type as double | int8. The default is double.

Methods

clone
Create Walsh code generator object with
same property values

getNumInputs
Number of expected inputs to step method

getNumOutputs
Number of outputs from step method

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

reset
Reset states of Walsh code generator object

3 Alphabetical List

3-1634

step
Generate Walsh code from orthogonal set of
codes

Examples

Generate 10 samples of a length-64 Walsh code sequence.

 hwc = comm.WalshCode('SamplesPerFrame', 10);

 seq = step(hwc)

Algorithms

This object implements the algorithm, inputs, and outputs described on the Walsh
Code Generator block reference page. The object properties correspond to the block
parameters, except:

• The object does not have a property to select frame based outputs.
• The object does not have a property that corresponds to the Sample time parameter.

See Also
comm.OVSFCode | comm.HadamardCode

 clone

3-1635

clone
System object: comm.WalshCode
Package: comm

Create Walsh code generator object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates a WalshCode object C, with the same property values as H. The
clone method creates a new unlocked object with uninitialized states.

3 Alphabetical List

3-1636

getNumInputs
System object: comm.WalshCode
Package: comm

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of
expected inputs to the step method. This value will change if any properties that turn
inputs on or off are changed. The step method must be called with a number of input
arguments equal to the result of getNumInputs(H)

 getNumOutputs

3-1637

getNumOutputs
System object: comm.WalshCode
Package: comm

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value will change if any properties that turn inputs on or off are changed.

3 Alphabetical List

3-1638

isLocked
System object: comm.WalshCode
Package: comm

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the WalshCode System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

 release

3-1639

release
System object: comm.WalshCode
Package: comm

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) Release system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You cannot use the release method on System objects in code generated from
MATLAB.

3 Alphabetical List

3-1640

reset
System object: comm.WalshCode
Package: comm

Reset states of Walsh code generator object

Syntax

reset(H)

Description

reset(H) resets the states of the WalshCode object, H.

 step

3-1641

step
System object: comm.WalshCode
Package: comm

Generate Walsh code from orthogonal set of codes

Syntax

Y = step(H)

Description

Y = step(H) outputs a frame of the Walsh code in column vector Y. Specify the frame
length with the SamplesPerFrame property. The Walsh code corresponds to a row of
an NxN Hadamard matrix, where N is a nonnegative power of 2 that you specify in the
Length property. Use the Index property to choose the row of the Hadamard matrix.
The output code is in a bi-polar format with 0 and 1 mapped to 1 and -1 respectively.

Note: H specifies the System object on which to run this step method.

The object performs an initialization the first time the step method is executed. This
initialization locks “nontunable properties ” and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, you must first call the release method to unlock the object.

3-1642

